Фазы газораспределения: Sorry! This site is experiencing technical difficulties.

Содержание

Регулировка фаз газораспределения (N40 / N45)

Регулировка фаз газораспределения (N40 / N45)

Необходимые приспособления для настройки фаз ГРМ:

  •  00 9 250
  •  11 7 251
  •  11 7 252
  •  11 7 253
  •  11 7 260
  •  11 9 190
  •  11 9 340

Необходимые подготовительные операции:

  •  Проверить фазы газораспределения распредвалов.

Распредвал впускных клапанов:
Примечание:
Лыска для фиксирования распределительного вала на верхней стороне имеет закругление, а
на нижней стороне — прямая.
При положении поршня 1-го цилиндра в ВМТ конца такта сжатия лыска с закруглением
показывает вверх по направлению оси цилиндра.

Распредвал выпускных клапанов:
Примечание:
Лыска для фиксирования распределительного вала на верхней стороне имеет закругление, а

на нижней стороне — прямая.
При положении поршня 1-го цилиндра в ВМТ конца такта сжатия лыска с закруглением
показывает вверх по направлению оси цилиндра.
Дополнительное отличие:
При положении поршня 1-го цилиндра в ВМТ конца такта сжатия пазы (1) показывают в
сторону выпуска.

Примечание:
Отверстие для фиксирования в положении в ВМТ находится на стороне впуска ниже стартера.
Для облегчения доступа: Освободить провод в районе отверстия для фиксирования из
зажимов и оттянуть в сторону.
Зафиксировать двигатель с помощью приспособления 11 9 190 при положении
поршня 1-го цилиндра в ВМТ конца такта сжатия.

Только АКПП
На рисунке показано без АКПП.
Предупреждение!
У двигателей с АКПП рядом с отверстием (1) для фиксирования в положении в ВМТ имеется
большое отверстие (2), которое можно перепутать с отверстием для фиксирования.
Если маховик зафиксирован в правильном отверстии (1) с помощью приспособления
11 9 190, двигатель больше не проворачивается за центральный болт

Ослабить болты крепления исполнительных узлов выпуска и впуска и затем снова завернуть
до прилегания.

Установить приспособление 11 7 252 на распредвал впускных клапанов и выставить
распредвал впускных клапанов так, чтобы приспособление 11 7 252 без зазоров легло
на головку блока цилиндров.

Установить приспособление 11 7 251 на распредвал выпускных клапанов.
Вывернуть приспособление 11 7 253.
Удерживать распредвал впускных клапанов с помощью приспособления 11 7 251 так, чтобы
оно без зазоров легло на головку блока цилиндров.

Вставить болты крепления приспособления 11 7 251 и затянуть на головке блока
цилиндров.

Затянуть от руки приспособление 11 7 253 так, чтобы оно оперлось на приспособление
11 7 252.
Вставить болт крепления приспособления 11 7 252 и затянуть на головке блока
цилиндров.

Снять плунжер натяжителя цепи.

Вставить приспособление 11 9 340 в отверстие в головке блока цилиндров и от руки
ввернуть регулировочный болт до прилегания, не натягивая при этом приводную цепь.

Примечание:
Заменить болты крепления исполнительных узлов впуска и выпуска.
Вставить новые болты крепления исполнительных узлов впуска и выпуска и
завернуть до прилегания.

Установить приспособление 11 7 260, как показано на рисунке.
Выставить фиксирующие отверстия колес датчиков относительно центрирующих штифтов
на приспособлении 11 7 260.

Зафиксировать колеса датчиков с помощью приспособления 11 7 260.
Закрепить болтами приспособление 11 7 260 на головке блока цилиндров.

Ослабить болт (1) исполнительного узла выпуска на пол-оборота.
Ослабить болт (2) исполнительного узла впуска на пол-оборота.

Надеть торцевую головку на болты (1 и 2) и от руки завернуть их до прилегания.

Создать предварительный натяг планки натяжителя вращением регулировочного болта
с помощью приспособления 00 9 250 или обычным динамометрическим ключом с
моментом 0,6 Нм.

Затянуть болт (1) крепления исполнительного узла выпуска.
Момент затяжки 11 36 16AZ.

Затянуть болт (2) крепления исполнительного узла впуска.
Момент затяжки 11 36 16AZ.

Снять приспособление 11 7 260.

Ослабить и снять приспособление 11 9 340.

Примечание:
Для описанной далее проверки фаз газораспределения должен быть установлен
фирменный натяжитель цепи.


Установить плунжер натяжителя цепи.

Примечание:
Фазы газораспределения отрегулированы
правильно, если приспособление 11 7 252
прилегает к головке блока цилиндров без
зазоров, или приподнято относительно
стороны выпуска максимум на 0,5 мм.
Примечание:
Фазы газораспределения отрегулированы
правильно, если приспособление 11 7 251
прилегает к головке блока цилиндров без
зазоров, или приподнято относительно
стороны выпуска максимум на 1,0 мм.
Снять все приспособления.
Собрать двигатель.

 


Фазы газораспределения

На рис. 45 приведена схема привода газораспределительного механизма с помощью конической передачи. От коленчатого вала пара конических шестерен приводит в движение вертикальный вал, который через другую пару конических шестерен передает вращение среднему распределительному валу, управляющему впускными клапанами.

Распределительные валы, управляющие выпускными клапанами, приводятся через шестеренную передачу.

Рис. 45. Привод верхних распределительных валов посредством вертикального вала с коническими шестернями

В некоторых случаях привод верхних распределительных валов осуществляется цилиндрическими шестернями. Пример такой конструкции представлен на рис. 46. Распределительные валы, перенесенные в верхнюю часть блока, приводятся отдельными шестернями, получающими вращение от одной промежуточной шестерни.

Для уменьшения вибрации при передаче вращения на распределительный вал не следует шестерни привода устанавливать на переднем конце коленчатого вала, который в большей степени подвержен действию крутильных колебаний. Привод располагают иногда в середине коленчатого вала (при составных блоках) или же в задней части двигателя, хотя это вызывает усложнение конструкции.

Рис. 46. Привод верхних распределительных валов цилиндрическими шестернями

Фазы газораспределения выбирают в зависимости от числа оборотов коленчатого вала двигателя. Обычно высокооборотные двигатели имеют сильно развитые фазы газораспределения. С увеличением числа оборотов возрастает скорость движения газов в трубопроводах и соответственно увеличивается инерция газового потока, которую стремятся использовать для улучшения очистки цилиндров от отработавших газов и для лучшего наполнения цилиндров горючей смесью.

Для более полной очистки цилиндров и уменьшения противодавления на поршень при вытеснении им отработавших газов выпускной клапан открывается значительно раньше, чем поршень достигнет н. м. т. У некоторых современных двигателей гоночных автомобилей угол опережения открытия выпускного клапана составляет 80—85°.

Вследствие высокого давления в цилиндре в момент открытия выпускного клапана скорость выходящих отработавших газов в начале выпуска очень велика и достигает 400—500 м/сек. Во время выпуска она постепенно снижается вместе с уменьшением количества выходящих газов и к концу выпуска в трубопроводе создает некоторое понижение давления, что способствует удалению отработавших газов из цилиндра, даже после того, как поршень начал движение вниз. Процесс выпуска продолжается и после прихода поршня в верхнюю мертвую точку, для чего выпускной клапан закрывается со значительным запаздыванием (50—55° после в. м. т.). При этом происходит хорошая очистка камеры сгорания от отработавших газов.

Улучшение наполнения цилиндров горючей смесью обеспечивается открытием впускного клапана с опережением (50—60° до в. м. т.), чем прежде всего достигается большее открытие впускного клапана к моменту начала хода впуска. Кроме того, инерция потока горючей смеси во впускном трубопроводе обеспечивает некоторое повышение давления перед впускным клапаном к моменту его открытия, что способствует лучшему наполнению цилиндра горючей смесью.

Закрытие впускного клапана происходит со значительным запаздыванием (60—70° после н. м. т.). В этот период давление в цилиндре будет значительно ниже, чем давление во впускном трубопроводе, несмотря на начавшееся движение поршня вверх. Только после того, как давление в трубопроводе и в цилиндре выравняется, наполнение цилиндра горючей смесью прекратится. Это выравнивание давлений наступит тем позднее, чем больше число оборотов коленчатого вала двигателя.

Таким образом, продолжительность открытия выпускного клапана увеличивается до 310—320°, а впускного клапана — до 290—310°. Перекрытие клапанов (т. е. период одновременного открытия впускного и выпускного клапанов) достигает 100—115°.

Рис. 47. Примерная диаграмма фаз газораспределения четырехтактного двигателя гоночного автомобиля без нагнетателя

При больших числах оборотов нет опасности попадания отработавших газов во впускной трубопровод, так как потоки выходящих газов и горючей смеси имеют различные направления. На рис. 47 представлена примерная диаграмма фаз газораспределения двигателя гоночного автомобиля (без нагнетателя).

Фазы газораспределения обеспечивают наиболее благоприятные условия работы двигателя в диапазоне определенного числа оборотов. Сильно развитые фазы газораспределения ухудшают работу двигателя на средних оборотах и значительно повышают число оборотов, соответствующее устойчивой работе на холостом ходу.

Установка нагнета теля вызывает необходимость некоторого изменения фаз газораспределения. Угол запаздывания закрытия впускного клапана несколько уменьшают, а угол опережения открытия выпускного клапана увеличивают.

Выбор правильных фаз газораспределения проверяют экспериментально при стендовых испытаниях двигателя, когда имеется возможность учесть влияние различных конструктивных элементов.

Фазы газораспределения двухтактных двигателей определяются углами открытия и закрытия окон по отношению к мертвым точкам поршня. При описании конструкции двухтактных двигателей гоночных автомобилей указывалось, что для них применяются несимметричные фазы газораспределения, которые удается получить при наличии у двух цилиндров общей камеры сгорания. При этом поршень в одном цилиндре управляет продувочными окнами, а поршень в другом цилиндре — выпускными, в результате чего можно получить необходимое смещение фаз.

На получивших у нас наибольшее распространение двухтактных двигателях, имеющих П-образное расположение цилиндров с несимметричной диаграммой газораспределения вследствие применения прицепного шатуна, фазы газораспределения выбирают следующими
Открытие выпускных окон — 75—82°
Закрытие выпускных окон + 51—57°
Открытие продувочных окон — 48—55°
Закрытие продувочных окон + 65—82°

При наличии прицепного шатуна поршни обоих цилиндров приходят в мертвые точки не одновременно. В некоторых случаях фазы берут по отношению к н. м. т. поршня, связанного с прицепным шатуном.

Как видно из приведенных данных, продувочные окна открываются позднее выпускных, из-за чего значительно понижается давление в цилиндре к моменту начала продувки и создается интенсивный поток отработавших газов, выходящих через выпускные окна под действием избыточного давления в цилиндре. После открытия продувочных окон вытеснение отработавших газов продолжается под действием поступающей в цилиндр свежей смеси.

Закрытие продувочных окон происходит с большим запаздыванием по сравнению с выпускными окнами, что при наличии нагнетателя обеспечивает дополнительный наддув горючей смеси в цилиндры.


Что такое система изменения фаз газораспределения

Эффективность работы любого ДВС, КПД двигателя, показатель мощности, моментная характеристика и топливная экономичность напрямую зависят от ряда факторов. Одной из важных составляющих в списке являются фазы газораспределения. Ответить на вопрос, что такое фазы газораспределения двигателя, можно следующим образом. Под такими фазами стоит понимать своевременное открытие и закрытие впускных и выпускных клапанов.

Большинство современных ДВС все более активно получают систему изменения фаз газораспределения, хотя еще около 20 лет назад массово доступный четырехтактный двигатель данной системы не имел. В обычном моторе клапаны открываются благодаря воздействию на них кулачков распределительного вала. Форма профиля кулачка распредвала определяет момент и продолжительность открытия клапана.

Указанные параметры составляют так называемую ширину фазы газораспределения.  Дополнительным параметром также является величина хода клапана (высота его подъема). Стоит учитывать, что топливно-воздушная смесь и отработавшие газы во впуске, в цилиндре ДВС и на выпуске ведут себя не одинаково, что зависит от различных режимов его работы. Скорость течения динамично изменяется, появляются колебания газовых сред, которые приводят к резонансам или застою. Все это влияет на эффективность наполнения цилиндров и их продувки на разных режимах работы силового агрегата.

Фиксированные фазы газораспределения заставляют конструкторов ДВС проектировать мотор так, чтобы присутствовала уверенная тяга в диапазоне низких и средних оборотов, но при этом оставался запас мощности для поддержания набранной скорости и дальнейшего ускорения автомобиля при выходе ДВС на режимы около зоны максимальных оборотов. Дополнительно необходимо обеспечить устойчивую работу силового агрегата на холостом ходу, эластичность на переходных режимах, а также экономичность и экологичность силовой установки. Если фазы газораспределения фиксированы, то улучшение одних параметров закономерно повлечет ухудшение других. Для решения этой задачи была разработана система изменения фаз газораспределения, которая гибко и динамично изменяет основные параметры работы ГРМ зависимо от того режима, в котором работает двигатель в определенный момент.

Система изменения фаз газораспределения VVT (англ. Variable Valve Timing) создана для динамичной корректировки рабочих параметров механизма газораспределения. Данное управление осуществляется с учетом различных режимов работы силового агрегата. Использование указанной системы регулировки фаз газораспределения позволяет добиться повышения мощности мотора и моментной характеристики. Система VVT обеспечивает экономию горючего, а также снижает токсичность выхлопных газов в процессе работы двигателя.

Система изменения фаз газораспределения влияет на основные параметры работы газораспределительного механизма. К таким параметрам относят моменты открытия и закрытия впускных и выпускных клапанов, длительность времени открытия клапана и высоту его подъема. Указанные параметры представляют собой в итоге фазы газораспределения, так как от них зависит продолжительность такта впуска и выпуска, что выражается тем углом, на который повернут коленчатый вал двигателя по отношению к мертвым точкам (ВМТ и НМТ) во время движения поршня в цилиндре. Форма кулачка распределительного вала определяет фазу газораспределения, так как указанный кулачок оказывает прямое воздействие на впускной или выпускной клапан ГРМ.

Содержание статьи

Для чего необходима система изменения фаз газораспределения

Для достижения наибольшей эффективности применительно к динамично изменяющимся режимам работы ДВС необходима различная величина фаз газораспределения. В режиме холостого хода наиболее рациональными становятся «узкие» фазы газораспределения, под которыми понимается позднее открытие и ранее закрытие клапанов. При этом исключается перекрытие фаз, под которым понимается время одновременного открытия впускного и выпускного клапана. Это необходимо для того, чтобы исключить попадание выхлопных газов во впуск и выброс топливно-воздушной смеси в выпускной коллектор.

Выход мотора на режим максимальной мощности означает повышение оборотов, так как распредвал крутится быстрее и время открытия клапанов сокращается. Для того чтобы не терялась мощность и крутящий момент на высоких оборотах сохранялся, в двигатель должно поступать намного больше топливно-воздушной смеси, а выпуск отработавших газов должен быть реализован максимально эффективно. Задача решается путем раннего открытия клапанов и увеличения времени их открытия, делая фазу «широкой». Фаза перекрытия также расширяется до максимума с ростом оборотов, что необходимо для качественной продувки цилиндров.

Если мотор работает на низких оборотах, нужны максимально короткие фазы газораспределения. Это означает, что время открытия клапанов должно быть минимальным по продолжительности, обеспечивая так называемые «узкие» фазы. Высокие обороты двигателя требуют полной противоположности в виде «широких» фаз газораспределения. Время открытия клапана должно быть увеличено до максимума, параллельно обеспечивая такты впуска и выпуска, а также эффективное перекрытие.

Сам кулачок распредвала имеет форму, которая способна обеспечить как реализацию узкой, так и широкой фазы. Проблема заключается в том, что фиксированная форма кулачка не позволяет одновременно добиться узких и широких фаз газораспределения. Получается, форма кулачка подобрана с расчетом на возможный оптимальный баланс между высоким показателем крутящего момента на низких оборотах ДВС и максимальной мощностью агрегата в режиме высокой частоты вращения коленчатого вала. Система изменения фаз газораспределения позволяет намного более гибко изменять эти параметры, буквально «подстраивая» ГРМ  под конкретный режим работы двигателя для достижения лучшей отдачи от мотора и топливной экономичности.

Системы изменения фаз газораспределения представлены несколькими видами. Главные отличия заключаются в тех и или иных параметрах регулировки ГРМ в процессе его работы.  Сегодня используются следующие решения для управления фазами газораспределения:

  • система поворота распредвала;
  • кулачки распредвала с различным профилем;
  • система изменения высоты подъема клапанов;

Система на основе гидроуправляемой муфты

Широкое распространение получили системы изменения фаз газораспределения, принцип работы которых основан на осуществлении поворота распредвала. К таким схемам управления фазами газораспределения относят: японскую систему VVT-i, Dual VVT-i, решение немецкого концерна BMW под названием VANOS, Double VANOS, схему VVT от Volkswagen, управление фазами газораспределения VTEC от Honda, систему CVVT брендов Hyundai, Kia и концерна GM, регулировку фаз VCP от Renault и т.д.

Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением. Данный тип систем изменения фаз газораспределения конструктивно состоит из специальной муфты, которая управляется гидравлическим способом, а также дополнительной системы управления указанной муфтой. Гидроуправляемая муфта среди автомехаников получила название фазовращатель.

Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.

Получается, гидроуправляемая муфта реализует поворот распредвала ГРМ. Данная муфта конструктивно включает в себя:

  • ротор, который соединен с распредвалом;
  • корпус, которым выступает шкив привода распредвала;

В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.

Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет  шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.

Электронное управление автоматически регулирует работу гидроуправляемой муфты. Система такого управления включает в себя:

  • группу входных датчиков;
  • электронный блок управления;
  • список исполнительных устройств;

Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы  и другие датчики, которые используются ЭБУ для управления работой всего двигателя.

К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на  специальное управляющее (исполнительное) устройство.

Таким устройством, на которое воздействует электронный блок управления двигателем, является электромагнитный клапан (электрогидравлический распределитель). Клапан представляет собой распределитель, который при необходимости открывает доступ потоку моторного масла к гидроуправляемой муфте, а также реализует отвод масла от фазовращателя. Это зависит от того, в каком режиме работает силовой агрегат.

Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.

Система ступенчатого изменения фаз газораспределения

Эволюция систем изменения фаз газораспределения позволила инженерам не только осуществлять сдвиг фаз, но и эффективно выполнять их расширение и сужение. Следующим типом систем изменения фаз газораспределения являются решения, основанные на использовании кулачков  распредвала разной формы. Благодаря такому способу удается достичь ступенчатого изменения момента времени, на который открывается клапан, а также изменить саму высоту подъема клапанов. В списке подобных систем находится VVTL-i от автогиганта Toyotа, VTEC японской Honda и MIVEC от Mitsubishi, решение от Audi под названием Valvelift System и другие.

Указанные системы похожи друг на друга как конструктивно, так и по принципу действия. Немного отличается только немецкая Valvelift System. Наибольшую известность получила системаVVTL-i, VTEC и MIVEC. В основе таких систем изменения фаз газораспределения находятся кулачки с различным профилем, а также система управления.  Распределительный вал в таких системах управления фазами газораспределения выполнен так, что имеет сразу два кулачка малого размера, а также один кулачок большего размера. Меньшие кулачки при помощи специального рокера (коромысла) соединяются с впускными клапанами. Большой кулачок отвечает за перемещение одного незадействованного коромысла.

Такая система изменения фаз газораспределения позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.

Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения  в таком режиме имеют небольшую продолжительность (узкая фаза).

Если двигатель раскручивается до определенных оборотов, система управления активирует механизм блокировки. В результате происходит соединение коромысел малых и большого кулачков, что обеспечивает жесткость конструкции. Соединение происходит при помощи особого стопорного штифта, а усилие на впускные клапаны начинает поступать от единственного большого кулачка. Малые кулачки распредвала на высоких оборотах двигателя становятся неактивными.

Существующие разновидности систем VTEC могут иметь сразу три режима регулирования ГРМ. В данной модификации на низких оборотах ДВС работает один малый кулачок распредвала, который осуществляет открытие только одного впускного клапана. Два маленьких кулачка задействуются в режиме средних нагрузок и оборотов двигателя, обеспечивая открытие двух впускных клапанов. Большой кулачок вступает в действие при выходе силовой установки на режим оборотов, приближенных к максимальным.

Система изменения фаз газораспределения I-VTEC, которая представлена производителем Honda, объединила в себе главные преимущества решений как VTC, так и VTEC. Регулирование по трем ступеням обеспечивает существенную экономию топлива. При низкой частоте вращения половина впускных клапанов практически не имеет активности. Увеличение частоты вращения до уровня средних оборотов подключает дезактивированные клапаны, но высота их подъема не подразумевает полного открытия.

Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.

Если рассмотреть пример с системой VVTL-i от Toyota, то после выхода мотора с таким решением на обороты около 6000 об/мин стандартный кулачек распредвала исключается из работы и замещается кулачком с измененным профилем. Указанный кулачек обеспечивает дугой алгоритм работы клапана, сдвигает (расширяет) фазу и увеличивает высоту его подъема. На практике это будет означать, что при выходе мотора на режим высоких оборотов у двигателя появится резкий прирост тяги, необходимый для обеспечения дальнейшего уверенного разгона.

Схема работы системы VVTL-i строится на следующем алгоритме. Время открытия и высота подъема впускных клапанов регулируется аналогично другим решениям. Когда мотор работает в режиме оборотов до 6000 об/мин, тогда воздействие на клапан осуществляет меньший кулачок распредвала, который оказывает нажатие на рокер и таким образом открывает клапана. После набора оборотов выше заданной отметки управлять открытием клапанов начинает высокий кулачок с особым профилем. Для его активации специальный сухарь под давлением масла перемещается.

За своевременную подачу моторного масла по специальной магистрали в точно необходимый момент отвечает система управления. Давление масла и перемещение сухаря позволяет кулачку распредвала через специальный шток, который до этого находился в свободном положении, начать воздействовать на клапан посредством коромысла.

Система регулирования высоты подъема клапана

Дальнейшее развитие систем изменения фаз газораспределения привело к появлению сложных решений, которые основаны на управлении высотой подъема клапанов. Новатором в данной области стала компания BMW, представившая систему под названием Valvetronic на своих моторах в 2001 году.

Регулирование высоты подъема клапана дополнительно позволило исключить из схемы дроссельную заслонку применительно к основным режимам работы ДВС. Наличие заслонки заметно снижает эффективность наполнения цилиндров топливно-воздушной смесью в режиме низких и средних оборотов. Причина кроется в том, что во впускном коллекторе (в области дросселя) в процессе работы ДВС возникает разрежение. Топливно-воздушная смесь в таких условиях разрежения становится инертной, цилиндры наполняются менее эффективно, реакция на нажатие педали газа теряет остроту и становится замедленной.

Лучшим решением данной проблемы становится механическое открытие впускного клапана на такой момент времени, который необходим для эффективного наполнения цилиндра рабочей топливно-воздушной горючей смесью. Продолжительность фазы впуска (впускной фазы) в системах регулирования высоты подъема клапана изменяется зависимо от того, как сильно была нажата педаль газа. Система бездроссельного управления позволяет заметно экономить топливо (до 15% сравнительно с другими решениями), а также повышает мощностную характеристику на 10 % и более.

Конструктивно ГРМ в таких системах способен управлять работой силовой установки на разных режимах. На похожем принципе основываются также решения Valvematic от Toyota, решение VEL компании Nissan, VTI от Peugeot и другие. Что касается системы изменения высоты подъема клапана Valvetronic, возможность управления данным параметром реализована благодаря специальной кинематической схеме. Решение Valvetronic ставится на впускные клапаны. Традиционная конструкция, которая включает в себя кулачок распредвала, рокер (коромысло) и клапан, получила развитие в виде установки дополнительных элементов.

 

Система имеет эксцентриковый вал, а также промежуточный рычаг. Указанный эксцентриковый вал начинает вращаться при помощи усилия, которое создает электродвигатель посредством червячной передачи.

Такое вращение эксцентрикового вала оказывает воздействие на промежуточный рычаг, в результате чего изменяется его положение (происходит смещение точки опоры). Смена положения заставляет коромысло двигаться так, чтобы переместить (открыть) клапан точно на необходимую величину.

Система изменения высоты подъема клапана работает постоянно, а высота подъема клапанов напрямую зависит от того или иного режима работы силового агрегата. Клапана могут подниматься в переделах от 0,2 до 12 мм. Система VEL от компании Ниссан обеспечивает высоту подъема клапана в рамках от 0,5 до 2 мм.

Электромагнитный привод клапана

Сегодня конструкторы ДВС практически полностью используют потенциал ГРМ. Проектируется максимально возможное количество клапанов на цилиндр, а сами размеры клапана достигли своего предела. Но эволюция двигателя на данном этапе продолжается. Улучшить наполняемость и продувку цилиндров двигателя можно также за счет скорости, с которой возможно реализовать открытие и закрытие клапанов. Речь идет о ГРМ, в котором клапана имеют электромагнитный (электромеханический) привод, который заменяет механический с электронным управлением. Более того, распределительный вал в таком ГРМ полностью отсутствует.

Электромагнитный привод ГРМ получил название EVA (англ. Electromagne­tic Valve Actuator) и позволяет изменять фазы газораспределения максимально широко. Система с электромагнитным приводом может открывать только нужные клапана (что аналогично управляемому отключению цилиндров), причем делать это в точно определенный момент зависимо от режима работы ДВС. Решение способно экономить топливо на холостом ходу, в момент торможения двигателем и т.п. Количество попадающего в цилиндр двигателя воздуха регулируется временем открытия впускного клапана.

 

Сама длина хода клапана не является регулируемым параметром. Клапан крепится за счет пружины, а также имеет якорь. Такой якорь электромагнитного клапана размещен между двумя электромагнитами определенной мощности. Задачей таких электромагнитов становится удержание клапана в том или ином крайнем положении.

Точность положения, в котором необходимо осуществить фиксацию клапана, определяется предназначенным для этого отдельным датчиком. Снижение  разрушительных нагрузок на электромагнитный ГРМ в момент приближения клапана к его крайней точке (особенно в момент посадки клапана в седло) осуществляется благодаря «торможению» клапана.

Читайте также

Круговые диаграммы фаз газораспределения — MirMarine

Для обеспечения надлежащей работы двигателя внутреннего сгорания в его цилиндрах в определенной последовательности и в строго определенные моменты должны начинаться и заканчиваться рабочие процессы. С этой целью двигатель оборудуется газораспределительным устройством.

Моменты фаз газораспределения, т.е. положения мотыля (кривошипа) коленчатого вала по отношению к соответствующей мертвой точке в начале и конце каждого процесса, отсчитываются в углах поворота коленчатого вала, п.к.в. Данные о фазах газораспределения используются для проверки правильности установки газораспределительных органов двигателя и, при необходимости, для их регулирования. Сведения о моментах фаз газораспределения приводятся в инструкциях заводов-изготовителей двс. Так, например, для четырехтактного двигателя 6ЧР 30/38 фазы газораспределения следующие. Впускной клапан: открытие 37° до в.м.т., закрытие 47° после н.м.т. выпускной клапан: открытие- 52° до н.м.т., закрытие 32° после в.м.т.; начало подачи тoплива-18° до в.м.т.

Для большей наглядности данные газораспределения изображаются на круговой диаграмме фаз газораспределения. На рис.13 эти диаграммы представлены для конструктивно подобных двигателей с одинаковой частотой вращения n = 600 об/мин: для двигателя без наддува перекрытие клапанов составляет 69°, для двигателя с наддувом — 130°. Столь большое перекрытие клапанов для дизелей с наддувом объясняется необходимостью обеспечить лучшую очистку цилиндра и дополнительное охлаждение камеры сжатия.

Круговые диаграммы фаз газораспределения двухтактных дизелей показаны на рис. 14.

Как видно из рис. 13 и 14, двигатель определенной марки имеет фазы газораспределения, отличные от таких же фаз двигателей других марок. Для двигателей с наддувом характерно увеличение времени процессов, связанных с очисткой цилиндров от отработавших газов. Угол опережения подачи топлива зависит от частоты вращения двигателя, сорта применяемого топлива и способа смесеобразования. Более ранняя подача топлива устанавливается для двигателей с большей частотой вращения, а также при работе их на тяжелых сортах топлива.

Механизм газораспределения: фазы газораспределения

Продолжительность открытия впускных или выпускных отвер­стий цилиндра, выраженную в градусах угла поворота коленчатого вала, принято называть фазами газораспределения.

В зависимости от назначения отверстий, соединяющих цилин­дровую полость двигателя с впускным или выпускным трубопрово­дами, различают фазы впуска (продувки) и выпуска. Величину фаз выбирают сообразно с тактностью двигателя, особенностями его конструкции и быстроходностью. Правильный выбор фаз газорас­пределения для каждой конкретной модели двигателей в значи­тельной степени определяет их параметры. На окончательном выборе фаз газораспределения останавливаются после эксперименталь­ного уточнения путем испытаний данной модели двигателя на стенде.

Для большей наглядности фазы газораспределения обычно изображают в виде круговых диаграмм. На рис. 1 показаны такие диаграммы для четырехтактного автомобильного двигателя МЗМА-408 и двухтактного мотоциклетного двигателя К-175, имею­щего кривошипно-камерную продувку.

В четырехтактных двигателях рабочий цикл осуществляется за два оборота вала, причем ход впуска или выпуска совершается поршнем за 180° угла поворота коленчатого вала. Однако опыт создания четырехтактных двигателей и экспериментальные иссле­дования их показали, что продолжительность процессов впуска и выпуска должна быть больше соответствующих ходов поршня. Иначе нельзя ожидать хороших мощностных и экономических показателей. Поэтому в быстроходных автомобильных двигателях процесс впуска начинается за 10—20° до прихода поршня в в.м.т., а заканчивается примерно через 40—70° и даже 100° угла поворота вала после того, как поршень пройдет н.м.т. Следовательно, общая продолжительность фазы впуска составляет 240÷300° угла поворота коленчатого вала (см. рис. 1, а).

Рис. 1 — Диаграммы фаз распределения:

а)  четырехтактного двигателя МЗМА-408;  б)  двухтактного двигателя   К 175

Угол поворота коленчатого вала от н.м.т. до момента закрытия впускного клапана называется углом запаздывания закрытия. Увеличение угла запаздывания закрытия клапана заметно улучшает наполнение цилиндров. Объясняется это явление возникающим инерционным напором потока во впускном трубопроводе, который усиливается к концу процесса впуска. Благодаря этому свежий заряд может поступать в цилиндр и в то время, когда поршень движется от н.м.т. к в.м.т. Обычно за время запаздывания закрытия впускного клапана при полной нагрузке и номинальных оборотах вала в цилиндр поступает 10—15% свежей горючей смеси или воздуха, потребляемых двигателем.

Такую же примерно продолжительность в автомобильных дви­гателях имеет и фаза выпуска (см. рис. 1, а). Выпускной клапан открывается до прихода поршня в н.м.т. при такте расширения за 40—60° угла поворота коленчатого вала, а закрывается с запаз­дыванием на 15—20° после завершения хода выпуска (после в.м.т.).

Открытие выпускного клапана с большим углом опережения необходимо для того, чтобы лучше очистить цилиндр. К этому момен­ту газы в цилиндре имеют давление около 4—5 кГ/см2 (≈0,4—0,5 Мн/м2) и выбрасываются в атмосферу с большой скоростью равной скорости при критическом перепаде давлений Считают что за первую фазу выпуска из цилиндра выбрасывается примерно 60—70% всех отработавших газов и только 20—30% их удаляется при последующем ходе поршня от н. м.т. до в.м.т., когда осу­ществляется вторая фаза выпуска. Если бы выпускной клапан откры­вался в момент нахождения поршня в н.м.т., то все отработав­шие газы пришлось бы удалять из цилиндра при движении поршня к в.м.т. и затрачивать на это большую работу.

Увеличение работы на впуск свежего заряда в цилиндры или выпуск в атмосферу отработавших газов ведет к ухудшению эконо­мических и мощностных показателей двигателя.

Расширение фаз впуска и выпуска путем введения некоторого опережения открытия впускного и запаздывания закрытия выпуск­ного клапанов позволяет лучше использовать проходные сечения клапанных отверстий, так как к началу хода впуска и после завершения поршнем хода выпуска клапаны находятся в приоткрытом состоянии. Положение, когда поршень находится вблизи в.м.т. и оба клапана одновременно приоткрыты, называется перекрытием клапанов.

В двигателе, диаграмма фаз газораспределения которого пока­зана на рис. 1, а, перекрытие клапанов составляет 40° угла пово­рота коленчатого вала.

Рабочий процесс в двухтактных двигателях осуществляется за один оборот коленчатого вала, поэтому в сравнении с четырех­тактными двигателями продолжительность фаз газораспределения у них примерно в два раза меньше. Круговая диаграмма фаз двух­тактного двигателя (см. рис. 1, б), имеющего кривошипно-камерную продувку, существенно отличается от диаграмм четырехтакт­ных двигателей еще и тем, что характеризует газообмен одновре­менно в надпоршневой и кривошипной полостях двигателя.

Для двигателей типа К-175, показанная на рис. 1, б круговая диаграмма является типичной. Впуск горючей смеси в кривошипную камеру продолжается всего 121° угла пово­рота вала, пока открыто окно 10°. К моменту открытия окна 6 давление в цилиндре снижается почти до атмосферного и как только окно 6 приоткроется, начинается продувка цилиндра, т. е. процесс одновременного наполнения цилиндра и принудительного вытеснения из него отработавших газов.

В рассматриваемом примере выпуск продолжается 147°, а про­дувка всего 122° угла поворота коленчатого вала. Поэтому очистка и наполнение цилиндров в двигателях с двухтактным рабочим процессом всегда бывает хуже, чем в четырехтактных.

 

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г


Newer news items:

Older news items:


Фазы газораспределения двигателя автомобиля — что это такое и как они работают

В конструкцию четырехтактного двигателя, работающего по принципу выделения энергии во время сгорания смеси топлива и горючего, входит один важный механизм, без которого агрегат не сможет функционировать. Это ГРМ или газораспределительный механизм.

В большинстве стандартных моторах он устанавливается в головке блока цилиндров. Подробней об устройстве механизма рассказывается в отдельной статье. Сейчас сосредоточимся на том, что такое фаза газораспределения, а также как ее работа влияет на мощностные показатели мотора и его КПД.

Что такое фазы газораспределения двигателя

Коротко о самом механизме ГРМ. Коленчатый вал через ременный привод (во многих современных двс вместо прорезиненного ремня устанавливается цепь) соединен с распредвалом. Когда водитель запускает ДВС, стартер проворачивает маховик. Оба вала начинают синхронное вращение, но с разной скоростью (в основном за один оборот распределительного вала коленчатый совершает два оборота).

На распределительном валу имеются специальные кулачки, выполненные в форме капельки. Когда конструкция проворачивается, кулачок надавливает на подпружиненный шток клапана. Клапан открывается, позволяя топливно-воздушной смеси попасть в цилиндр или удалить выхлоп в выпускной коллектор.

Фазой газораспределения как раз и называется момент, когда клапан начинает открывать впускное/выпускное отверстие до того мгновения, когда происходит его полное закрытие. Каждый инженер, трудящийся над разработкой силового агрегата, рассчитывает, какой должна быть высота открытия клапана, а также на какое время он останется в открытом состоянии.

Влияние фаз газораспределения на работу двигателя

В зависимости от того, в каком режиме работает мотор, газораспределение должно начинаться либо раньше, либо позже. Это влияет на КПД агрегата, его экономичность и максимальный крутящий момент. Причина в том, что своевременное открытие/закрытие впускного и выпускного коллекторов имеет ключевое значение в максимально эффективном использовании энергии, высвобождающейся в процессе сгорания ВТС.

Если впускной клапан начинает открываться не в тот момент, когда поршень выполняет такт впуска, то будет происходить неравномерное наполнение полости цилиндра свежей порцией воздуха и горючее хуже смешается, что приведет к неполному сгоранию смеси.

Что касается выпускного клапана, то он тоже должен открываться не раньше, чем поршень займет нижнюю мертвую точку, но и не позже того, как он начнет свой ход вверх. В первом случае компрессия упадет, а вместе с ней мотор потеряет мощность. Во втором – продукты горения при закрытом клапане будут создавать сопротивление для поршня, начавшего свой подъем. Это дополнительная нагрузка на кривошипно-шатунный механизм, что может вывести из строя некоторые его детали.

Для адекватной работы силового агрегата требуются разные фазы газораспределения. Для одного режима нужно, чтобы клапана открывались раньше и закрывались позже, а для других – наоборот. Также имеет большое значение параметр перекрытия – будут ли одновременно открыты оба клапана.

Большинство стандартных моторов имеют неменяющееся газораспределение. Такой двигатель в зависимости от типа распредвала будет иметь максимальную эффективность либо в спортивном режиме, либо при размеренной езде на пониженных оборотах.

На сегодняшний день многие автомобили среднего и премиального сегмента оснащаются моторами, система газораспределения которых может менять некоторые параметры открытия клапанов, благодаря чему происходит качественное наполнение и вентиляция цилиндров при разных оборотах коленвала.

Вот как должно выполняться газораспределение на разных режимах двигателя:

  1. Холостой ход требует так называемых узких фаз. Это означает, что клапана позже начинают открываться, а момент закрытия у них наоборот – ранний. Одновременного открытого состояния в таком режиме нет (оба клапана не будут одновременно открытыми). Когда вращение коленвала имеет небольшое значение, при перекрытии фаз выхлопные газы могут попадать во впускной коллектор, а некоторый объем ВТС – в выпускной.
  2. Максимально мощный режим – для него нужны широкие фазы. Это такой режим, при котором из-за высоких оборотов клапаны имеют меньшую продолжительность открытого положения. Это приводит к тому, что при спортивной езде наполняемость и проветривание цилиндров выполняется некачественно. Чтобы исправить ситуацию, фазы газораспределения нужно изменять, то есть клапаны нужно раньше открыть, а их продолжительность в таком положении должно увеличиться.

Разрабатывая конструкции моторов с изменяемыми фазами газораспределения, инженеры учитывают зависимость момента открытия клапанов от оборотов коленвала. Эти сложные системы позволяют делать мотор максимально универсальным для разных стилей езды. Благодаря такой разработке агрегат показывает широкий спектр возможностей:

  • На низких оборотах мотор должен быть тягучим;
  • При повышении оборотов он не должен терять мощность;
  • Независимо от того, в каком режиме работает ДВС, экономия топлива, а вместе с ней и экологичность транспорта, должна иметь максимально возможный уровень для конкретного агрегата.

Все эти параметры можно изменять за счет замены конструкции распределительных валов. Однако и в этом случае КПД мотора будет иметь свой предел только на одном режиме. Как насчет того, чтобы мотор мог менять профиль самостоятельно в зависимости от количества оборотов коленчатого вала?

Изменяемые фазы газораспределения

Сама по себе идея менять время открытия клапанов в процессе работы силового агрегата не нова. Эта мысль периодически появлялась в умах инженеров, которые занимались разработкой еще паровых двигателей.

Так, одна из подобных разработок называлась редуктором Стивенсона. Механизм изменял время поступления пара в рабочий цилиндр. Режим назывался «отсечение пара». Когда срабатывал механизм, напор перенаправлялся в зависимости от конструкции транспортного средства. По этой причине старинные паровозы помимо дыма выбрасывали еще и клубы пара, когда состав стоял на месте.

Работа с изменением фаз газораспределения также велась с авиационными агрегатами. Так, экспериментальная модель мотора V-8 от компании Clerget-Blin мощностью в 200 лошадиных сил могла менять этот параметр за счет того, что конструкция механизма включала скользящий распредвал.

А на моторе Lycoming XR-7755 устанавливались распределительные валы, в которых имелись два разных кулачка на каждый клапан. Устройство имело механический привод, и активировался самим пилотом. Он мог выбрать один из двух вариантов в зависимости от того, ему нужно поднять самолет в небо, уйти от погони или просто выполнить экономичный перелет.

Что касается автомобилестроения, то над применением данной идеи начали задумываться инженеры еще в 20-х годах прошлого столетия. Причиной стало появление высокооборотистых моторов, которые устанавливались на спорткары. Повышение мощности в таких агрегатах имело определенный предел, хотя агрегат можно было раскрутить и сильнее. Чтобы транспортное средство имело большую мощность, вначале только увеличивали объем двигателя.

Первым, кто внедрил изменяющиеся газораспределительные фазы, был Lawrence Pomeroy, который работал главным конструктором автокомпании Vauxhall. Он создал мотор, в котором в газораспределительном механизме устанавливался особенный распредвал. Ряд его кулачков имел несколько комплектов профилей.

4.4-литровый H-Type в зависимости от оборотов коленчатого вала и нагрузки, которую тот испытывал, мог перемещать распредвал по продольной оси. Благодаря этому менялось время и высота открытия клапанов. Так как эта деталь имела ограничения в перемещении, управление фазами также имело свой предел.

Осуществлением подобной идеи занималась также компания Porsche. В 1959-м году появился патент на «колеблющиеся кулачки» распределительного вала. Эта разработка должна была менять высоту подъема клапанов, а вместе с тем и время их открытия. Разработка так и осталась на стадии проекта.

Самым первым работоспособным механизмом управления фазами газораспределения была разработка компании Fiat. Изобретение разработал Giovanni Torazza в конце 60-х гг. В механизме использовались гидротолкатели, которые меняли точку опоры толкателя клапана. Устройство работало в зависимости от того, какими были обороты двигателя и давление во впускном коллекторе.

Однако первым серийным автомобилем с изменяемыми фазами ГР был от Alfa Romeo. Модель Spider 1980-го года выпуска получила электронный механизм, меняющий фазы в зависимости от режимов работы ДВС.

Способы изменить продолжительность и ширину фаз газораспределения

На сегодняшний день существует несколько типов механизмов, меняющих момент, время и высоту открытия клапанов:

  1. В самом простом исполнении это особенная муфта, которая установлена на привод газораспределительного механизма (фазовращатель). Управление осуществляется благодаря гидравлическому воздействию на исполняющий механизм, а контроль выполняет электроника. Когда двигатель работает на холостых оборотах, распредвал находится в изначальном положении. Как только обороты повышаются, электроника реагирует на этот параметр, и активирует гидравлику, которая немного проворачивает распределительный вал относительно первоначального положения. Благодаря этому клапаны открываются немного раньше, что дает возможность быстрее наполнить цилиндры свежей порцией ВТС.
  2. Изменение профиля кулачков. Это разработка, которой пользуются автомобилисты уже достаточно давно. Если установить распредвал с нестандартными кулачками, можно заставить агрегат работать с большей эффективностью на повышенных оборотах. Однако такую модернизацию должен выполнять разбирающийся механик, что приводит к большим растратам. В моторах с системой VVTL-i распредвалы имеют несколько комплектов кулачков с разными профилями. Когда ДВС работает на холостых оборотах, свою функцию выполняют стандартные элементы. Как только показатель оборотов коленвала перемещается за отметку в 6 тысяч, распределительный вал немного смещается, благодаря чему в работу вступают другой комплект кулачков. Похожий процесс происходит, когда двигатель раскручивается до 8.5 тысяч, и начинает работать третий комплект кулачков, которые делает фазы еще шире.
  3. Изменение высоты открытия клапана. Эта разработка позволяет одновременно изменять режимы работы ГРМ, а также исключить дроссельную заслонку. В таких механизмах нажатие на педаль акселератора активирует механическое устройство, которое влияет на силу открытия впускных клапанов. Такая система обеспечивает сокращение расхода топлива приблизительно на 15 процентов, а также повышение мощности агрегата на столько же. В более современных моторах используется не механический, а электромагнитный аналог. Достоинство второго варианта в том, что электроника способна более эффективно и плавно изменять режимы открытия клапанов. Высота подъема может быть практически идеальной, а время открытия может иметь более широкие пределы по сравнению с предыдущими модификациями. Такая разработка ради экономии горючего может даже отключить некоторые цилиндры (не открывать некоторые клапаны). Такие моторы активируют систему, когда машина останавливается, но ДВС не нужно выключать (например, на светофоре) или когда водитель замедляет авто при помощи ДВС.

Зачем менять фазы газораспределения

Применение механизмов, изменяющих фазы газораспределения позволяют:

  • Более эффективно использовать ресурс силового агрегата на разных режимах его работы;
  • Увеличить мощность без необходимости в установки нестандартного распредвала;
  • Сделать транспортное средство более экономичным;
  • Обеспечить эффективное наполнение и вентиляцию цилиндров на высоких оборотах;
  • За счет более эффективного сгорания воздушно-топливной смеси повысить экологичность транспорта.

Так как разные режимы работы ДВС требуют своих параметров фаз газораспределения, с использованием механизмов изменения ФГР машина может соответствовать идеальным параметрам мощности, крутящего момента, экологичности и экономичности. Единственная проблема, которую пока ни один производитель не может решить, это дороговизна устройства. По сравнению со стандартным мотором аналог, оснащенный подобным механизмом, будет стоить почти в два раза больше.

Некоторые автомобилисты используют системы изменения фаз газораспределительного механизма, чтобы повысить мощность авто. Однако с помощью модифицированного ГРМ максимум из агрегата невозможно выжать. О других возможностях читайте здесь.

В завершение предлагаем небольшое наглядное пособие о работе системы изменения фаз газораспределения:

Вопросы и ответы:

Что называется фазой газораспределения? Это момент, когда открывается/закрывается клапан (впускной или выпускной). Этот термин выражается в градусах поворота коленвала двигателя.

Что влияет на фазы газораспределения? На фазы газораспределения влияет режим работы двигателя. Если в ГРМ нет фазовращателя, то максимальный эффект достигается только в определенном диапазоне оборотов мотора.

Для чего нужна диаграмма фаз газораспределения? Эта диаграмма показывает, насколько эффективно происходит наполнение, сгорание и очистка в цилиндрах в конкретном диапазоне оборотов. Она позволяет грамотно подобрать фазы газораспределения.

ПОХОЖИЕ СТАТЬИ

Ремонт механизмов регулировки фаз газораспределения

Представить себе современный двигатель без механизма регулировки фаз газораспределения практически невозможно. Сегодня подобные устройства есть и в «малолитражных» трехцилиндровых моторчиках, и в многолитровых V-образных «восьмерках». Само собой разумеется, что детали и узлы таких систем изнашиваются при эксплуатации и требуют замены во время капитального ремонта. Или их тоже можно ремонтировать? Во всяком случае, наши коллеги из США научились восстанавливать муфты фазовращателей и здесь рассказывают о своем опыте.

Мы начали восстанавливать фазовращатели еще в 1990-е годы по двум причинам. Во-первых, новые узлы зачастую невозможно было купить, а, если они и были в наличии, то оказывались слишком дорогими. Без ремонта (и до того, как подобные механизмы стали доступны на вторичном рынке) цены на новые детали у официальных дилеров кусались. Цена за 3-клапанную муфту Ford составляла $325, для мотора Nissan VQ40 — $230, механизмы для 2-литрового Kia — $400. И даже сегодня мы сталкиваемся с проблемами поставок некоторых механизмов фазовращателей, например – для Chevrolet Colorado, что подтолкнуло нас к освоению ремонта таких муфт, так как GMC их больше не предлагает.

Вторая причина, почему мы занялись подобным видом ремонта – наша философия: мы восстанавливаем изношенные детали и узлы, а не устанавливаем новые. Постепенно, шаг за шагом, мы освоили способы ремонта многих компонентов двигателя, и механизмы регулировки фаз газораспределения здесь не исключение. Теперь мы восстанавливаем все типы подобных механизмов.

Ремонт механизмов регулировки фаз газораспределения (муфт фазовращателей) очень успешен, потому что обычно причины поломок двигателей не в них. Обычно менее 1% поломок моторов вызывается плохим качеством самого фазовращателя. Большинство двигателей выходят из строя из-за загрязнения, низкого давления масла давления или поломки управляющего клапана. Так что большое количество шестерен/звездочек фазовращателей обычно пригодны к дальнейшему использованию.

Крайне редко встречаются шестерни/звездочки, поврежденные настолько, что их остается только выбросить. Хорошему качеству ремонта способствует чистота всех масляных каналов (их вскрытие и промывка строго обязательны), промывка всех фильтрующих элементов и строгое выдерживание масляных зазоров между деталями двигателя.

Фото. Системы регулировки фаз газораспределения есть двух видов: переключением или фазированием. Система переключения работает по принципу «да-нет»: т. е. сдвигает фазы на фиксированный угол вперед или назад. А система фазирования регулирует фазы постоянно и непрерывно. Такая система может фиксировать механизм в любом положении, в пределах рабочего диапазона.

Мы расскажем о процессе все: от демонтажа до проверки, расскажем, что работает правильно, а что нет.

Система регулировки фаз газораспределения проворачивает распределительный вал на определенный угол, в зависимости от оборотов и нагрузки на двигатель и позволяет двигателю работать при «идеальных» условиях в более широком рабочем диапазоне, чем при фиксированном положении распредвала. Система управления фазовращателем, используя информацию от множества датчиков двигателя, «командует» гидравлическим клапаном. Который, в свою очередь, направляет масло под давлением к муфте фазовращателя. Есть два основных типа механизма изменения фаз газораспределения: тип «винтовой пружины» и тип «масляной камеры». В большинстве двигателей используется механизм камерного типа. Муфта фазовращателя такого типа имеет внешний корпус, связанный со звездочкой газораспределительного механизма, и внутренний ротор, который связан с распредвалом. Промежутки между корпусом и ротором образуют рабочие камеры, разделяемые специальными уплотнениями. Стопорный штифт удерживает шестерню от смещения при запуске. Масло под давлением, наполняющее камеры, толкает ротор для поворота распредвала вперед или назад.

Ремонт механизма начинается с демонтажа деталей и их последующей промывки. Мы предварительно моем демонтированные детали в ультразвуковых ваннах, примерно полчаса, а затем вскрываем муфты фазовращателей. Затем все детали снов помещаются в моющие корзины. Ротор стоит оставить подсобранным с корпусом, чтобы не потерять уплотнения насадки или их пружины. Большинство уплотнительных насадок пластиковые, и они обычно теряются при промывании.

Важная причина, почему мы вскрываем муфту – потому что, внутри остается много масла и мелких загрязнений, которые невозможно будет вымыть. Еще одна причина вскрыть муфту – необходимость проверить наличие блокировки. Некоторые владельцы намертво блокируют муфту, чтобы увеличить мощность. Такое встречается во всех типах муфт.

После того, как все детали промыты, можно проверить их износ и повреждения. Больше всего страдают зубья шестерни ГРМ и боковые стенки корпуса, которые контактируют с торцевыми уплотнениями. Механизм с металлическими уплотнениями изнашивается больше, чем с пластиковыми. Любое повреждение, допускающее перетекание масла или заедание, в дальнейшем создаст проблему со перемещением деталей. Также надо проверить, повреждено ли отверстие стопорного штифта. Стопорный штифт подпружинен и он скользит к запорному диску, при работе шестерни. При блокировке муфты, пружина смещает штифт внутрь отверстия, поэтому заходная часть штифта может быть повреждена. Штифт или его паз испытывают на себе большие нагрузки и могут треснуть или сломаться. А износ запорных дисков может быть очень похожим на износ торцевой поверхности корпуса масляного насоса. Проверка муфты очень напоминает проверку масляного насоса – и там, и там вы можете увидеть похожие повреждения.

Обратная сборка – несложная. Детали движутся только в одном направлении, поэтому ошибиться сложно. Слегка смажьте все внутренние детали моторным маслом. Мы обычно используем масло типа 5W-30. Сборка механизма с пружиной немного сложнее. Самая очевидная ошибка – это установить ротор в корпусе вверх ногами, но в большинстве случаев стопорные диски не совместиться должным образом, и вы, поэтому, не сможете установить шестерню на распредвал. После того, как детали установлены, вы можете вручную завернуть болты, но, прежде чем болты будут затянуты полностью, вам надо выровнять ротор и стопорный диск, чтобы распредвал «подошел». Для этого вы можете использовать сам вал, или, как мы, — специальную оправку.

Болты затянуты, и шестерня готова к работе. Мы предварительно определяем момент затяжки крепежных болтов, прежде чем запустить деталь в дело. Можно для этого использовать разъединительный динамометрический ключ или маркировать болты перед отворачиванием. По нашему опыту, большинство из них тянутся моментом 13…14 Нм, но некоторые бывают затянуты на удивление слабо. Поэтому лучше всегда проверять крутящий момент для любого нового типа шестерни, которую вы устанавливаете.

Большинство ошибок при сборке всегда приводят к провальному результату: шестерня не подойдет к распредвалу или никогда не пройдет испытание. Нам встречались: отсутствие уплотнений, стопорных штифтов, поврежденные или неправильно установленные импульсные датчики. Механизм с отсутствующими деталями никогда не пройдет испытание: он не сдвинется и не заблокируется.

Чтобы избежать ошибок лучше использовать шаблоны и памятки для сборки.

Мы проверяем отремонтированные механизмы на нашем моторном стенде путем проверки перемещения ротора. Лучше это делать на небольших оборотах или с помощью стробоскопа. На испытательном стенде мы видим некоторые неисправности, чаще всего шестерня вообще не смещается, но это не всегда беда шестерни. Если есть проблемы с давлением масла, то шестерня-муфта просто не будет работать.

Большинство современных механизмов, с которыми мы сталкиваемся, очень простые, легко разбираются, чистятся, собираются и проверяются. Включение подобной услуги в перечень ваших ремонтных услуг позволит вам предложить лучшую цену вашим клиентам и подготовиться к появлению более сложных систем. Например, механизм изменения фаз газораспределения нового 5-литрового двигателя Ford, в котором управляющий клапан встроен в шестерню. Другой тип муфты, с которым вы можете столкнуться, — система электромагнитного привода на двигателях Nissan VQ35. На крышке корпуса установлен электромагнит, который работает с механическим фиксатором, прикрепленным к распредвалу. Если возникнет какая-либо деталь будет повреждена, как если бы привод коснулся магнита, ее надо заменить. Вы можете очистить детали и проверить сопротивление катушки, но вы не сможете проверить это устройство как муфту с гидроприводом. Вам придется удостовериться, что распредвал сместился, визуально.

И, напоследок, несколько полезных советов.

Если у вас нет обменного фонда механизмов муфты, которую планируете отремонтировать, то лучше всего найти их и подготовиться наилучшим образом до того, как начнете демонтаж. Я рекомендую фотографировать каждый шаг разборки устройства, чтобы обеспечить правильную сборку. Некоторые из этих компонентов содержат детали замысловатой формы, и вы должны быть уверены, что они вернутся на место в правильном положении. Если на шестерне есть датчик положения распредвала, будьте внимательны и зафиксируйте фазу, чтобы правильно вставить его назад. Есть шестерни, которые спрессованы вместе, а есть шестерни, которые стянуты болтами. С ними иметь дело проще, лишь проверьте крутящий момент на болтах, прежде чем снять шестерню.

Спрессованные шестерни, встречающиеся в моделях Nissan и GM, сложно демонтировать, для них требуются специальные оправки, которые обычно не валяются на полках. Для такого типа механизма мы маркируем все детали перед демонтажом, чтобы вновь собрать их в правильном положении. Если вы можете найти подходящую замену уплотнительным кольцам, этот тип муфты можно успешно восстановить.

Мы установили, что попытка помыть механизм, не открывая его, всегда оставляет загрязнение в нем, даже если использовать ультразвуковые очистители и даже если оставить их в ванне на ночь. Винтовые шестерни захватывают и удерживают все остатки старого масла. Как только вы поместите их в мойку, они впитают все из воды. Механизм нужно обязательно вскрыть, чтобы вымыть его, высушить и смазать должным образом.

Фото. Спрессованные шестерни, встречающиеся в моторах Nissan и GM, сложно демонтировать, для них требуются специальные оправки. Для такого типа механизма мы маркируем все элементы перед демонтажом, чтобы собрать их с правильной фазой распределения.

После того, как вы познакомитесь с ремонтом механизма изменения фаз газораспределения и разработаете свой собственный процесс их тестирования, вы обнаружите, что и процесс, и оборудование можно легко применить к другим продвинутым системам управления двигателем. Чтобы можно было и далее предлагать нашим клиентам продукцию, которую они хотят, и ремонтировать вместо того, чтобы заменять.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


Объяснение изменения фаз газораспределения: оценка того, насколько быстро работают двигатели | Функция

Из номера

за август 2017 г.

Когда речь идет о многих переменных процессах сгорания в двигателе, инженеры измеряют синхронизацию ключевых событий в градусах поворота коленчатого вала — относительной системе отсчета, которая остается постоянной без необходимости компенсировать изменение оборотов двигателя. В отсутствие знакомой общепринятой шкалы времени легко недооценить, насколько быстро все движется в двигателе внутреннего сгорания.Добавьте возможности современной электроники и средств управления, которые оптимизируют события клапана, впрыск топлива и искровое зажигание для повышения мощности или эффективности, и работа всех цилиндров зависит от миллисекундной точности.

В качестве примера можно привести рядный шестицилиндровый двигатель BMW N55 с турбонаддувом, который сочетает в себе регулируемую фазировку впускных и выпускных кулачков с регулируемым подъемом впускного клапана. При холостых оборотах двигателя 725 об/мин такты впуска, сжатия, мощности и выпуска вместе происходят всего за 0,2 секунды, буквально за мгновение ока. События, которые определяют это сгорание, например, как долго клапаны остаются открытыми, происходят в течение еще меньших долей секунды. И по мере того, как двигатель приближается к кульминации в 7000 об/мин, весь процесс сжимается в окно, которое длится примерно в 10 раз меньше, чем на холостом ходу.

Чтобы дать вам представление о том, насколько быстро работают современные двигатели, вот краткое описание операционной стратегии N55:

Время впускного клапана: Фазер впускного распредвала рядной шестерки BMW может смещать профиль кулачка до 70 градусов, но продолжительность открытия 255 градусов фиксирована.Задержка соответствует полному открытию 0,006 секунды для одного такта впуска при 7000 об/мин.

Регулятор фаз газораспределения N55

Подъем впускного клапана: Система BMW Valvetronic эффективно выполняет роль дроссельной заслонки, дозируя воздух в цилиндры в основном в зависимости от положения педали акселератора. Он может регулировать подъем впускного клапана в пределах от 0,008 дюйма, что соответствует толщине четырех страниц журнала, который вы держите в руках, при низких нагрузках и до 0.4 дюйма для полной нагрузки с помощью быстродействующего двигателя постоянного тока, который управляет поворотом толкателей кулачкового ролика.

Время работы выпускного клапана: Управляя синхронизацией распределительного вала независимо, контроллер двигателя может регулировать степень перекрытия — период, когда и выпускной, и впускной клапаны открыты. При крейсерской скорости с низкой нагрузкой и постоянной скоростью это перекрытие увеличивается, чтобы позволить части инертных выхлопных газов возвращаться в цилиндр во время такта впуска, снижая температуру сгорания и образование оксидов азота.При постоянной скорости 50 миль в час с двигателем, вращающимся со скоростью 1500 об/мин, максимальное перекрытие N55 длится 0,2 секунды. Для максимальной мощности на красной черте полностью сведенное к минимуму перекрытие клапанов длится всего 0,0005 секунды — количество времени, которое требуется звуку, чтобы пройти всего семь дюймов при комнатной температуре.

    Момент зажигания: Момент зажигания обычно сдвигается вперед при работе с малой нагрузкой, чтобы предотвратить детонацию обедненной топливно-воздушной смеси. Как на холостом ходу, так и на красной линии в N55 искра возникает примерно за шесть-восемь градусов до того, как поршень достигает верхней мертвой точки, но разрыв в частоте вращения двигателя — это разница между искрой, возникающей при 0.002 секунды и 0,0002 секунды до пика поршня. Это в 10 и 100 раз быстрее, чем один взмах крыльев колибри. Система также будет замедлять момент зажигания, когда двигатель холодный, работая в сочетании с поздним впрыском топлива и более ранним открытием выпускного клапана, чтобы быстрее довести каталитические нейтрализаторы до рабочей температуры.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano. io.

    Как работает система изменения фаз газораспределения

    Изображение: Изображение предоставлено под изображением

    Новые автомобили сбивают с толку. Со всеми компьютерами, датчиками и гаджетами может показаться, что под капотом происходит какое-то магическое колдовство. Мы здесь, чтобы показать вам, как работают современные автомобильные компьютерные системы управления. В прошлый раз мы рассмотрели электронное управление дроссельной заслонкой. Сегодняшняя тема: Изменение фаз газораспределения.

    Когда-то впускные и выпускные клапаны автомобиля открывались на определенную величину в определенный момент четырехтактного цикла и на определенное время. Это было так просто. Однако в настоящее время многие двигатели могут изменять не только время открытия их клапанов, но и то, насколько они открываются и как долго, то есть новые автомобили могут изменять фазы газораспределения, подъем клапана и продолжительность работы клапана. Давайте посмотрим, как все это работает. Для многих из вас это обзор, но если мы хотим, чтобы новое поколение автолюбителей заботилось о машинах, не мешало бы объяснить, как они на самом деле работают.

    РЕГУЛИРУЕМАЯ ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ КЛАПАНОВ

    Изображение: Изображение ниже. В двигателях с двумя верхними распредвалами имеются отдельные распределительные валы для выпускных и впускных клапанов. Эти распределительные валы изготовлены из закаленного железа или стали и соединены с коленчатым валом с помощью зубчатых ремней, цепей или шестерен. Поскольку современные бензиновые двигатели включают четырехтактный цикл, это означает, что распределительные валы вращаются один раз за каждые два оборота коленчатого вала.Чтобы усилить этот момент, рассмотрим ход впуска двигателя. Впускной клапан открыт, это означает, что выступ распределительного вала давит на толкатель кулачка и открывает клапан. Давайте проследим движение этого кулачка и сравним его с движением коленчатого вала.

    Пока впускной клапан открыт, поршень движется вниз к нижней мертвой точке. Когда двигатель достигает нижней мертвой точки, коленчатый вал поворачивается на 180 градусов. Затем поршень движется вверх, сжимая топливную смесь.Как только поршень достигает верхней мертвой точки, коленчатый вал совершает полный оборот. Затем свеча зажигания воспламеняет топливную смесь, отправляя поршень обратно в нижнюю мертвую точку. К этому моменту коленчатый вал сделал полтора полных оборота. Теперь выпускной клапан открывается, и поршень возвращается в верхнюю мертвую точку. Коленчатый вал сделал два полных оборота. Теперь, когда поршень находится примерно в верхней мертвой точке, выступ распределительного вала, за которым мы следим, возвращается в исходное положение и открывает впускной клапан, а поршень движется обратно вниз.Таким образом, после двух оборотов коленчатого вала распределительный вал провернулся один раз. Посмотрите эту гифку, чтобы увидеть все это в движении.

    В 1960-х годах автопроизводители начали разрабатывать системы изменения фаз газораспределения, которые позволяли впускным и выпускным клапанам открываться раньше или позже в 4-тактном цикле. Цель состояла в том, чтобы улучшить объемный КПД, уменьшить выбросы NOx и уменьшить насосные потери. На сегодняшний день существует два основных типа изменения фаз газораспределения: фазирование кулачков и изменение фаз газораспределения. При изменении кулачка ECU выбирает другой профиль кулачка в зависимости от нагрузки и скорости двигателя, тогда как при фазировании кулачка исполнительный механизм вращает распределительный вал, изменяя фазовый угол.Существуют десятки способов изменения фаз газораспределения, подъема и продолжительности, поэтому мы просто рассмотрим VVT-i от Toyota и VTEC от Honda.

    Прежде чем мы рассмотрим VVT-i, поговорим о датчиках. В системах VVT используются всевозможные датчики, но наиболее важными из них являются датчики положения распределительного вала и коленчатого вала (которые часто являются датчиками на эффекте Холла). ЭБУ использует эти датчики для контроля взаимосвязи между положением поршня и положением клапанов. Коленчатый вал соединен со штоком и поршнем, а выступы распределительного вала вызывают события подъема клапана. Таким образом, с помощью информации от датчиков положения коленчатого и распределительного валов ЭБУ может узнать, как быстро вращается двигатель, и относительное положение поршня и впускных и выпускных клапанов.

    Фазирование кулачков

    Фазирование кулачков опережает или задерживает события подъема клапана путем поворота распределительного вала, как правило, в диапазоне около 60 градусов относительно угла коленчатого вала. Допустим, наш впускной клапан нормально открывается за 5 градусов коленчатого вала до верхней мертвой точки и закрывается за 185 градусов коленчатого вала после верхней мертвой точки (5 градусов после нижней мертвой точки).«Запаздывание» фаз газораспределения на 10 градусов означает, что клапан открывается и закрывается на 10 градусов позже, то есть открывается на 5 градусов после ВМТ и закрывается на 195 градусов после ВМТ. Задерживая синхронизацию распределительного вала, двигатель достигает лучшего крутящего момента на высоких оборотах, в то время как опережая синхронизацию впускного распредвала обеспечивает лучшую мощность на низких оборотах.

    Существует множество различных методов изменения фаз газораспределения. Каждый производитель имеет свое название для своей системы VVT. Toyota использует VVT-i®, Honda использует VTEC®, Mitsubishi использует MIVEC®, и этот список можно продолжить.Давайте посмотрим, как работает система Toyota VVT-i.

    Система VVT, показанная на видео выше, является разновидностью Toyota VVT-i, хотя у Honda есть аналогичная система под названием VTC. В этой системе ECU получает сигналы от датчика положения распределительного вала, датчика коленчатого вала, датчика температуры масла, датчика массового расхода воздуха (MAF) и датчика температуры охлаждающей жидкости двигателя и использует эту информацию для настройки выходного сигнала на клапан управления подачей масла. Этот клапан действует как гидравлический привод, вращая ротор (соединенный с распределительным валом) внутри корпуса, который соединен с коленчатым валом через цепь привода ГРМ.Как только ЭБУ изменил фазовый угол кулачка, ЭБУ продолжает получать входные данные от всех датчиков и постоянно регулирует подачу масла на ротор. Как и электронное управление дроссельной заслонкой, это система с замкнутым контуром, что означает, что разница между текущим фазовым углом распредвала и оптимальным углом распредвала является «сигналом ошибки», который отправляется в ЭБУ. Компьютер использует сигнал ошибки, чтобы отрегулировать его выходной сигнал для привода, чтобы получить фазовый угол распределительного вала, который должен быть.

    Замена кулачка

    Изображение: Изображение предоставлено ниже изображения

    Другие системы VVT изменяют форму своих выступов распределительного вала, а не только фазовый угол распределительного вала относительно коленчатого вала.Изменение профиля кулачка влияет не только на подъем клапана (насколько далеко открывается клапан), но и на продолжительность работы клапана (как долго клапан остается открытым). На изображении выше показаны особенности кулачка распределительного вала, влияющие на подъем клапана и его продолжительность.

    При более высоких оборотах двигателя многие системы VVT изменяются на более агрессивные (т. е. с большим подъемом и продолжительностью) профили кулачков. Некоторые системы с регулируемым подъемом клапана смещают распределительный вал в осевом направлении, так что кулачок с более высоким профилем входит в зацепление с толкателем кулачка, создавая больший подъем клапана.Другие, такие как Honda VTEC (yo), прикрепляют высокопрофильный коромысло к низкоскоростному коромыслу с помощью штифта с гидравлическим приводом. Более агрессивный выступ кулачка активирует этот высокопрофильный коромысло и обеспечивает больший подъем впускного клапана, пропуская больше воздуха в цилиндр.

    Видео ниже, рассказчик которого странно похож на Ричарда Хаммонда, является отличным ресурсом для понимания двух разных типов систем VVT и показывает, как работает гидравлический привод системы VTEC Honda.

    Top Photo Credit: Тимитриус

    Система изменения фаз газораспределения (VVT)

    Переменный клапан ГРМ (ВВТ)

    Базовый Теория

    После многоклапанная технология стала стандартом в конструкции двигателя, регулировка фаз газораспределения становится следующим шагом к увеличению мощности двигателя, независимо от мощности или крутящего момента.

    Как вы знаете, клапаны активируют дыхание двигателя. время дыхания, т. то есть время впуска и выпуска воздуха контролируется формой и фазой угол кулачков.Для оптимизации дыхания двигатель требует разных фаз газораспределения на разных скоростях. Когда обороты увеличиваются, продолжительность такта впуска и выпуска уменьшается настолько, что приток свежего воздуха становится невозможным. достаточно быстро входит в камеру сгорания, при этом выхлоп становится не быстрым достаточно, чтобы покинуть камеру сгорания. Поэтому лучшее решение — открыть впускные клапаны закрываются раньше, а выпускные клапаны закрываются позже. Другими словами, Перекрытие между периодом впуска и периодом выхлопа должно быть увеличивается с увеличением оборотов.
     

     

     
    Без переменной Технология Valve Timing инженеры привыкли выбирать лучший компромисс времени. Например, фургон может иметь меньшее количество перекрытий из-за преимуществ низкой скорости. выход. Гоночный двигатель может использовать значительное перекрытие для высокой скорости. власть. Обычный седан может принять оптимизацию фаз газораспределения для средних оборотов, так что как управляемость на низких скоростях, так и выходная мощность на высоких скоростях будут не слишком жертвовать.Независимо от того, какой из них, результат просто оптимизирован для определенной скорости.

    С Регулируемые фазы газораспределения, мощность и крутящий момент могут быть оптимизированы в широком диапазоне оборотов. Наиболее заметные результаты:
     

      • Двигатель может обороты выше, что увеличивает пиковую мощность. Например, 2-литровый Neo VVL от Nissan. выходная мощность двигателя на 25% больше пиковой мощности, чем у его версии без VVT.
      • Низкооборотный крутящий момент увеличивается, что улучшает управляемость.Например, двигатель Fiat Barchetta 1,8 VVT обеспечивает 90% пикового крутящего момента. от 2000 до 6000 об/мин.

     
    Более того, все эти преимущества приходят без каких-либо недостатков.

    Переменная Лифт

    В некоторых конструкции подъем клапана также может варьироваться в зависимости от частоты вращения двигателя. На высоте скорость, более высокая подъемная сила ускоряет впуск и выпуск воздуха, тем самым еще больше оптимизируя дыхание. Конечно, на меньшей скорости такой подъем приведет к обратным эффектам, таким как ухудшение процесса смешивания топлива и воздуха, что снижает мощность или даже приводит к пропуску зажигания.Поэтому лифт должен изменяться в зависимости от частоты вращения двигателя.

    1) VVT с заменой кулачка

    Honda впервые представила подержанный VVT для дорожных автомобилей в конце 80-х. запустив свою знаменитую систему VTEC (электронное управление синхронизацией клапанов). Первый появился в Civic, CRX и NS-X, затем стал стандартным для большинства моделей.

    Вы можете рассматривайте это как 2 набора кулачков, имеющих разные формы, чтобы обеспечить разную синхронизацию и поднимать. Один комплект работает при нормальной скорости, скажем, ниже 4500 об/мин.Другая замены на более высокой скорости. Очевидно, что такая компоновка не позволяет изменение фаз газораспределения, поэтому двигатель работает скромно ниже 4500 об/мин, но выше этого он внезапно превратится в дикое животное.

    Это система действительно улучшает пиковую мощность — она ​​может поднять красную линию почти до 8000 об / мин. (даже 9000 об/мин в S2000), как двигатель с гоночными распредвалами, и увеличить максимальную мощность на целых 30 л.с. для 1,6-литрового двигателя !! Однако, чтобы использовать такой прирост мощности, вам нужно поддерживать кипение двигателя выше порог оборотов, поэтому требуется частое переключение передач.Как низкоскоростной крутящий момент прироста слишком мало (помните, кулачки нормального двигателя обычно служат поперек 0-6000 об/мин, при этом «медленные кулачки» двигателя VTEC еще нужно обслужить от 0 до 4500 об / мин), управляемость не будет слишком впечатляющей. Вкратце, Система смены кулачков лучше всего подходит для спортивных автомобилей.

    Хонда уже улучшил свой двухступенчатый VTEC до трехступенчатого для некоторых моделей. Конечно, чем больше у него стадии, тем более утонченным он становится. Он по-прежнему предлагает менее широкий распространение крутящего момента, как и другие бесступенчатые системы.Однако смена кулачка система остается самой мощной VVT, так как никакая другая система не может изменить Lift клапана, как это делает.

    Преимущество:

    Мощный в верхней части

    Недостаток:

    2 или только 3 ступени, непрерывные; нет большого улучшения крутящего момента; комплекс

    Кто используй это ?

    Хонда VTEC, Mitsubishi MIVEC, Nissan Neo VVL.

    Хонда новейший трехступенчатый VTEC был применен в Civic sohc двигатель в японии. Механизм имеет 3 кулачка с разной синхронизацией и профилем подъема. Обратите внимание, что размеры у них тоже разные — средний кулачок (быстрый тайминг, высокий подъем), как показано на диаграмме выше, является самым большим; правый боковой кулачок (медленно тайминг, средний подъем) среднего размера; левый боковой кулачок (медленная синхронизация, низкая лифт) самый маленький.

    Это механизм работает так:

    Ступень 1 (низкая скорость): 3 части коромысла движется самостоятельно. Поэтому левый коромысло, которое приводит в действие левый впускной клапан, приводится в действие левым кулачком с низким подъемом. Правый коромысло, которое приводит в действие правый впускной клапан, приводится в действие правым кулачком среднего подъема. Обе время кулачков относительно медленное по сравнению со средним кулачком, который не приводит в действие клапан сейчас.

    Этап 2 (средняя скорость) : гидравлическое давление (на картинке окрашены в оранжевый цвет) соединяет левое и правое коромысла вместе, оставив средний коромысло и кулачок работать сами по себе.Поскольку правый кулачок больше левого кулачка, эти соединенные коромысла на самом деле управляется правым кулачком. В результате оба впускных клапана работают медленно, но средний подъем.

    Этап 3 (высокая скорость): гидравлическое давление соединяется все 3 коромысла вместе. Поскольку средний кулачок самый большой, оба впускных клапаны фактически приводятся в действие этим быстрым кулачком. Таким образом, быстрые сроки и высокая подъем достигается в обоих клапанах.

    Очень похожа на систему Honda, но правильная и левые кулачки с таким же профилем.На малой скорости оба коромысла приводятся в движение. независимо от этих медленных, низкоподъемных правого и левого кулачков. На высоте скорости, 3 коромысла соединены вместе так, что они приводятся в движение быстродействующий средний кулачок с высоким подъемом.

    Вы может подумать, что это должна быть двухступенчатая система. Нет это не так. Начиная с Ниссан Нео ВВЛ дублирует тот же механизм в выпускном распредвале, 3 ступени могли быть получено следующим образом:

    Этап 1 (низкая скорость): впускной и выпускной клапаны работают в медленном режиме.
    Этап 2 (средняя скорость): быстро конфигурация впуска + конфигурация медленного выпуска.
    Этап 3 (высокая скорость): оба впускные и выпускные клапаны находятся в быстрой конфигурации.

     

    2) Распредвал VVT

    VVT с фазировкой кулачка — самый простой, дешевый и наиболее часто используемый механизм на данный момент. Тем не менее, его прирост производительности также наименьший, очень правда справедливо.

    В принципе, он изменяет фазы газораспределения за счет смещения фазового угла распределительных валов.Для например, на высокой скорости впускной распредвал будет проворачиваться вперед на 30 так для более раннего приема. Это движение контролируется системой управления двигателем. система в соответствии с необходимостью и приводится в действие шестернями гидравлического клапана.
     

    Обратите внимание, что VVT с фазировкой кулачков не может изменять продолжительность открытия клапана. Он просто позволяет раньше или позже открыть клапан. Ранее открытые приводит к более раннему закрытию, конечно. Он также не может изменять подъем клапана, в отличие от кулачковый VVT.Тем не менее, VVT с фазировкой кулачка является самой простой и дешевой формой VVT, потому что для каждого распределительного вала требуется только один гидравлический привод фазирования, в отличие от другие системы, использующие индивидуальный механизм для каждого цилиндра.

    Непрерывный или Дискретный

    Проще VVT с фазировкой кулачка имеет на выбор всего 2 или 3 фиксированных угла переключения, например либо 0, либо 30. Лучшая система имеет непрерывное переменное смещение, скажем, любое произвольное значение от 0 до 30 зависит от оборотов в минуту. Очевидно, что это обеспечивает наиболее подходящие фазы газораспределения на любой скорости, таким образом значительно повысить гибкость двигателя. Более того, переход настолько гладкий, что почти не заметен.

    Впуск и выхлоп

    Некоторые дизайн, такой как система BMW Double Vanos, имеет VVT с фазировкой фаз газораспределения как на впускном, так и на выпускном распределительных валах, что позволяет больше перекрываются, следовательно, более высокая эффективность. Это объясняет, почему BMW M3 3.2 (100 л.с./литр) более эффективен, чем его предшественник M3 3.0 (95 л.с./литр), чей VVT ограничивается впускными клапанами.

    В E46 3-й серии, двойной Vanos сдвиг впуска распредвала в максимальном диапазоне 40 .Распредвал выпускных клапанов 25.

     

    Преимущество:

    Дешево и простой, непрерывный VVT улучшает передачу крутящего момента на всех оборотах спектр.

    Недостаток:

    Отсутствие переменной высоты подъема и переменной продолжительности открытия клапана, таким образом, меньшая максимальная мощность чем кулачковый VVT.

    Кто используй это ?

    Большинство производители автомобилей, такие как: 

    Audi V8 — впускной, 2-х ступенчатый дискретный

    BMW Double Vanos — впускной и выпускной, сплошные

    Феррари 360 Модена — выхлоп, 2-ступенчатый, дискретный

    Фиат (Альфа) СУПЕР ОГОНЬ — вход, 2-ступенчатый, дискретный

    Ford Puma 1.7 Zetec SE — впуск, 2-ступенчатый дискретный

    Jaguar AJ-V6 и обновленный AJ-V8 — вход, проходной

    Ламборгини Диабло СВ двигатель — впускной, 2-х ступенчатый дискретный

    Porsche Variocam — впускной, 3-ступенчатый дискретный

    Рено 2. 0-литровый — вход, 2-ступенчатый, дискретный

    Тойота ВВТ-я — впускной, проходной

    Volvo 4 / 5 / 6-цилиндровый модульные двигатели — впускные, непрерывные

    По рисунку легко понять его работу. Конец распределительный вал имеет зубчатую резьбу. Резьба соединена колпачком, который может двигаться к распределительному валу и от него. Потому что резьба шестерни не в параллельно оси распределительного вала, фазовый угол сдвинется вперед, если крышка толкнул в сторону распределительного вала.Аналогично, стянув крышку с распределительного вала приводит к смещению фазового угла назад.

    ли толчок или тяга определяется гидравлическим давлением. Есть 2 камеры рядом с крышкой и заполнены жидкостью (эти камеры на картинке окрашены в зеленый и желтый цвета соответственно) Тонкий поршень отделяет эти 2 камеры, первая жестко крепится к крышке. Жидкость попадает в камеры через электромагнитные клапаны, которые контролируют гидравлическое давление воздействуя на какие камеры. Например, если система управления двигателем сигнализирует клапан в зеленой камере открыт, тогда гидравлическое давление воздействует на тонкий поршень и протолкните последний вместе с крышкой к распределительному валу, таким образом сдвиг фазового угла вперед.

    Непрерывный изменение времени легко реализуется путем размещения крышки в подходящем месте. расстояние в зависимости от оборотов двигателя.
     

     


    Макрос иллюстрация фазирующего привода  

     

    VVT-i Тойоты (Изменение фаз газораспределения — интеллектуальное) распространяется на все больше и больше его модели, от крошечного Yaris (Vitz) к Супре.Его механизм более или менее такой же, как у BMW Vanos, это также бесступенчатая конструкция.

    Однако, слово «Интегиллент» подчеркивает умный программа управления. Он не только изменяет синхронизацию в зависимости от частоты вращения двигателя, но и рассмотрите другие условия, такие как ускорение, движение вверх или вниз по склону.

     

    3) Замена кулачка + Распредвал VVT

    Комбинация VVT с переключением кулачков и VVT с фазировкой кулачков может удовлетворить требование как максимальной мощности, так и гибкости на протяжении всего оборота диапазон, но он неизбежно сложнее.На момент написания только Toyota и Porsche такие конструкции. Однако я верю, что в будущем все больше и больше спортивных автомобилей будут принять этот вид VVT.

     

     

     

     

     

     

     

     

    Тойоты ВВТЛ-и является самой сложной конструкцией VVT. Его мощные функции включают в себя:
     

      • Непрерывный регулировка фаз газораспределения
      • 2-ступенчатая переменная подъем клапана плюс продолжительность открытия клапана
      • Применимо к обоим впускные и выпускные клапаны

     
    Система может быть рассматривается как комбинация существующих VVT-i и Хонды VTEC, хотя механизм регулируемого подъема отличается от Хонда.

    Нравится VVT-i, система изменения фаз газораспределения реализована сдвиг фазы всего распределительного вала вперед или назад с помощью гидропривод прикреплен к концу распределительного вала. Время рассчитывается системой управления двигателем с частотой вращения двигателя, ускорением, подъем в гору или спуск и т.п. принимая во внимание. Более того, изменение является непрерывным в широком диапазоне до 60, поэтому переменная синхронизация сама по себе, пожалуй, самая совершенная конструкция на сегодняшний день.

    Что делает VVTL-i превосходным по сравнению с обычным VVT-i буквой «L», что означает подъем (подъем клапана). как все знают. Давайте посмотрим на следующую иллюстрацию:

    Как и VTEC, система Toyota использует один коромысло. толкатель для приведения в действие обоих впускных клапанов (или выпускных клапанов). Так же есть 2 камеры лепестки, действующие на этот толкатель коромысла, лепестки имеют различный профиль — один с более длительным профилем открытия клапана (для высокой скорости), другой с более короткая продолжительность открытия клапана (для низкой скорости). На малой скорости медленно кулачок приводит в действие толкатель коромысла через роликовый подшипник (для уменьшения трения). Высокоскоростной кулачок не оказывает никакого влияния на толкатель коромысла, потому что под его гидравлическим толкателем достаточно места.

    < Плоский крутящий момент выход (синяя кривая)

    Когда скорость увеличилась до пороговой точки, скользящий штифт толкается гидравлическое давление для заполнения пространства. Высокоскоростной кулачок становится эффективным.Обратите внимание, что быстрый кулачок обеспечивает более продолжительное открытие клапана, в то время как скользящий штифт добавляет подъем клапана. (для Honda VTEC и продолжительность, и подъемная сила равны реализуется кулачками)

    Очевидно, переменная продолжительность открытия клапана представляет собой двухступенчатую конструкцию, в отличие от непрерывной конструкции Rover VVC. Однако ВВТЛ-и предлагает регулируемый подъем, который значительно увеличивает выходную мощность на высоких скоростях. Сравнивать с Honda VTEC и аналогичными конструкциями для Mitsubishi и Nissan, система Toyota имеет бесступенчатую регулировку фазы газораспределения, что помогает ему достичь гораздо лучших низких и средних скоростей гибкость.Поэтому это несомненно лучший ВВТ на сегодняшний день. Тем не менее, это также более сложный и, вероятно, более дорогой в строительстве.

     

    Преимущество:

    Непрерывный VVT улучшает передачу крутящего момента во всем диапазоне оборотов; Переменный подъем и продолжительность подъема высокая мощность оборотов.

    Недостаток:

    Подробнее сложный и дорогой

    Кто используй это ?

    Тойота Селика GT-S

     

    Variocam Plus использует гидравлический фазирующий привод и регулируемые толкатели

    Variocam модели 911 Carrera

    использует цепь привода ГРМ для

    Фазировка кулачка.

     
    Porsches Variocam Plus, как говорят, был разработан на основе Variocam, который обслуживает Carrera. и Бокстер. Однако я нашел их механизмы практически ничем не делятся. Variocam был первым представлен на модели 968 в 1991 году. В нем использовалась синхронизирующая цепь для изменения фазового угла распределительного вала, таким образом обеспечивается 3-ступенчатая регулировка фаз газораспределения. 996 Каррера и Boxster также используют ту же систему. Этот дизайн уникален и запатентован, но фактически уступает гидроприводу, предпочитаемому другими автопроизводителями, тем более не позволяет столько же изменений фазового угла.

    Следовательно, наконец, Variocam Plus, используемый в новом 911 Turbo Follow использует популярный гидравлический привод вместо цепи. Один известный Эксперт Porsche назвал изменение фаз газораспределения непрерывным, но, похоже, противоречащее официальному заявлению, сделанному ранее, в котором раскрывалась система имеет 2-ступенчатые фазы газораспределения.

    Однако, самым влиятельным изменением «Плюса» является добавление регулируемый подъем клапана. Это реализуется с помощью регулируемых гидрокомпенсаторов.Так как как показано на рисунке, каждый клапан обслуживается тремя кулачками — центральный имеет явно меньший подъем (всего 3 мм) и более короткая продолжительность открытия клапана. В Другими словами, это «медленная» камера. Два внешних кулачка точно такой же, с быстрым таймингом и высоким подъемом (10 мм). Выбор камеры лепестков производится регулируемым толкателем, который на самом деле состоит из внутреннего толкатель и внешний (кольцевой) толкатель. Они могли быть сцеплены вместе штифт с гидравлическим приводом, проходящий через них.Таким образом, «быстро» Кулачки кулачка приводят в действие клапан, обеспечивая высокий подъем и продолжительное открытие. Если толкатели не зафиксированы вместе, клапан будет приводиться в действие «медленный» кулачок через внутренний толкатель. Внешний толкатель будет двигаться независимо от толкателя клапана.

    Как видно, механизм регулируемого подъема необычайно прост и компактен. То регулируемые толкатели лишь немного тяжелее обычных толкателей и зацепляются почти не осталось места.

    Тем не менее, на данный момент Variocam Plus предлагается только для впускные клапаны.

     

    Преимущество:

    ВВТ улучшает передачу крутящего момента на низкой/средней скорости; Переменный подъем и продолжительность поднимите высокую мощность оборотов.

    Недостаток:

    Подробнее сложный и дорогой

    Кто используй это ?

    Порше 911 Турбо

     

    4) Уникальный вездеход Система ВВК

    Rover представил собственные системные вызовы VVC (Variable Valve Control) в MGF. в 1995 году.Многие эксперты считают его лучшим VVT, учитывая его всесторонность. способность — в отличие от VVT с переключением кулачков, он обеспечивает бесступенчатую регулировку фаз газораспределения, таким образом улучшить подачу крутящего момента на низких и средних оборотах; и в отличие от VVT с фазировкой кулачка, это может удлинить продолжительность открытия клапанов (и непрерывно), тем самым повысить власть.

    В принципе, VVC использует эксцентриковый вращающийся диск для привода впускных клапанов каждых двух цилиндр. Поскольку эксцентричная форма создает нелинейное вращение, открытие клапанов период может быть разным.Все еще не понимаете? ну любой умный механизм должен быть трудным для понимания. В противном случае Rover не будет единственным производителем автомобилей, использующим Это.

    ВВЦ есть один недостаток: поскольку каждый отдельный механизм обслуживает 2 соседних цилиндра, Для двигателя V6 нужно 4 таких механизма, а это недешево. V8 тоже нужно 4 таких механизм. V12 установить невозможно, так как недостаточно места для установите эксцентриковый диск и ведущие шестерни между цилиндрами.
     

     

     

     

    Преимущество:

    Постоянно изменяемое время и продолжительность открытия обеспечивают как управляемость, так и высокую мощность скорости.

    Недостаток:

    Нет в конечном итоге такой же мощный, как VVT с переключением кулачков, из-за отсутствия переменной поднимать; Дорого для V6 и V8; невозможно для V12.

    Кто используй это ?

    Ровер Двигатель 1.8 VVC для MGF, Caterham и Lotus Элиза 111С.

     

    EGR (Рециркуляция отработавших газов) принятая технология для снижения выбросов и повышения эффективности использования топлива. Однако это это VVT, которые действительно используют весь потенциал EGR.

    В теории, необходимо максимальное перекрытие между впускными клапанами и выпускными клапанами открывается всякий раз, когда двигатель работает на высокой скорости. Однако, когда автомобиль работает на средней скорости по шоссе, другими словами, двигатель работает на небольшая нагрузка, максимальное перекрытие может быть полезным для уменьшения расхода топлива расход и выброс. Поскольку выпускные клапаны не закрываются до тех пор, пока впускные клапаны были открыты какое-то время, часть выхлопных газов рециркулирует обратно в цилиндр одновременно с впрыскивается новая топливно-воздушная смесь.В составе топливно-воздушной смеси заменяется выхлопных газов, требуется меньше топлива. Поскольку выхлопные газы состоят в основном из негорючий газ, такой как CO2, двигатель нормально работает на обедненной топливной смеси / воздушной смеси, не препятствуя воспламенению.

     

     

    Что такое регулировка фаз газораспределения?

    Автомобили сегодня оснащены всевозможными техническими приспособлениями и волшебствами, позволяющими добиться наибольшей мощности и максимального пробега. Одна из таких технических систем называется «изменение фаз газораспределения», в которой блок управления двигателем автомобиля, или компьютер, открывает клапаны двигателя в разное время и на разное время, чтобы получить максимальную мощность и эффективность. Давайте посмотрим, как это работает.

    Основные компоненты

    Чтобы двигатель работал, ему нужны воздух, топливо и искра. Клапаны расположены в головке блока цилиндров и открываются и закрываются при каждом такте двигателя, пропуская воздух и топливо в камеру сгорания или из нее, где поршни выполняют работу по сжатию воздушно-топливной смеси и перемещению ее из двигателя.Большинство двигателей работают в четыре такта:

    • Первый такт — такт впуска: поршень движется вниз и втягивает воздух и топливо
    • Второй такт – такт сжатия: поршень движется вверх и сжимает топливно-воздушную смесь
    • Третий такт – рабочий ход: Искра свечи воспламеняет топливно-воздушную смесь и толкает поршень вниз
    • Четвертый такт – такт выпуска: поршень движется вверх и выталкивает отработавшие газы к выхлопу

    Распределительные валы, расположенные в верхней части головки цилиндров, чем открывать и закрывать клапаны. Каждый распределительный вал имеет лепесток, который фактически открывается клапан. Изменяя время открытия и закрытия клапанов, топливно-воздушная смесь может быть оптимизирован для создания наилучшей мощности и эффективности двигателя.

    ВТЕК

    Самый простой способ описать систему изменения фаз газораспределения — объяснить популярную систему Honda VTEC. VTEC — это аббревиатура от «Variable Valve Timing and Lift Electronic Control», поскольку система изменяет фазы газораспределения и высоту подъема, которые контролируются электроникой.Чем выше и дольше открыт клапан, тем больше воздуха попадет в камеру сгорания. Подача большего количества воздуха в двигатель может обеспечить подачу большего количества топлива в двигатель, что соответствует большей мощности.

    Итак, при чем здесь VTEC? Когда двигатель при более низких оборотах требуется меньше воздуха и топлива, а при работе при более высоких оборотах в камеру сгорания может быть помещено больше воздуха и топлива.

    В двигателе VTEC на распределительных валах три кулачка; два поменьше и один побольше.В более низком диапазоне оборотов две лепестки меньшего размера открывают и закрывают клапаны и пропускают меньше воздуха, но с большей скоростью, что приводит к более эффективному сгоранию.

    Когда вы сильнее нажимаете на педаль акселератора и достигаете более высокого диапазона оборотов (обычно выше 5500 об/мин), больший лепесток берет верх и открывает клапаны больше, позволяя поступать большему количеству воздуха и обеспечивая большую мощность. Таким образом, VTEC (или любая другая система изменения фаз газораспределения) позволяет использовать два двигателя в одном: он более экономичен при более низких оборотах и ​​более мощный при более высоких оборотах.

    Он есть и на других автомобилях

    Другие производители, такие как Ferrari, BMW, Toyota и Nissan, имеют свои собственные версии системы изменения фаз газораспределения, и все они разработаны для работы с двигателями различных размеров и конфигураций, которые они используют.

    В настоящее время, благодаря широкому использованию турбонаддува, автопроизводители могут экспериментировать с изменением фаз газораспределения и нагнетать воздух в двигатель, делая его более мощным и эффективным.Что они придумают дальше? Нам просто нужно подождать и посмотреть.

    Объяснение механизма изменения фаз газораспределения

    Фаза газораспределения является важной частью процесса внутреннего сгорания, поскольку она регулирует подачу топлива и воздуха в камеру сгорания и выпуск отработавших газов — это часть двигателя, в которой поршни сжимают топливо и воздух. для сжигания.

    Традиционные двигатели имеют впускные и выпускные клапаны, которые управляются распределительным валом и открываются и закрываются синхронно с поршнями.Проблема заключается в том, что количество топлива и воздуха, поступающих в двигатель и выходящих из него, постоянно для заданной частоты вращения двигателя, что может ограничивать мощность, когда это необходимо, или потреблять слишком много топлива, когда это не так.

    Таким образом, большинство современных двигателей открывают и закрывают клапаны по-разному, позволяя большему или меньшему количеству газов входить и выходить для повышения производительности и экономичности, а также для снижения выбросов в зависимости от условий вождения.

    Как показано в приведенном выше видео CNET, изменение фаз газораспределения и высоты подъема может изменить точку открытия и закрытия клапанов (время), как долго клапаны остаются открытыми (длительность) и насколько широко они открываются (подъем).

    3

    Управляется центральным электронным процессором, который постоянно меняет синхронизацию для обеспечения наилучшей производительности и минимального уровня выбросов в зависимости от того, насколько интенсивно работает двигатель.

    При низких оборотах двигателя клапаны открываются и закрываются в заданных точках, обеспечивая плавный холостой ход и низкий уровень выбросов, однако при более высоких оборотах поток газов изменяется, и синхронизация может быть изменена соответствующим образом.

    Путем изменения точки, в которой клапаны открываются и закрываются, эффект потока воздуха в цилиндр и выхлопных газов, выходящих с высокой скоростью, можно использовать для нагнетания большего количества воздуха и топлива аналогично турбонаддуву.

    Это называется опережением клапана, запаздыванием и перекрытием, и в результате получается больше мощности, когда двигатель работает на высоких оборотах, без ущерба для плавности и эффективности на низких оборотах.

    Существует множество различных способов физического контроля фаз газораспределения, в том числе несколько смещенных от центра лепестков распределительного вала, распределительные валы, которые частично вращаются независимо от поршней, или шестерни на конце распределительных валов для опережения или замедления фаз газораспределения.

    Система изменения фаз газораспределения сейчас очень распространена, отсюда и некоторые причудливые названия, данные таким двигателям, как Honda VTEC, Mazda S-VT, Fiat (и Jeep) MultiAir и Toyota VVT-I.

    Изменение фаз газораспределения становится реальностью

    Изменение фаз газораспределения — не новая идея. Идея увеличения крутящего момента двигателя на низких и высоких оборотах за счет автоматического опережения и замедления существует уже довольно давно.

    В 1960-х годах вы могли получить шестерню с регулируемым распределением фаз газораспределения с торсионной пружиной, которая замедляла фазы газораспределения в ответ на увеличение крутящего момента, необходимого для поворота кулачкового вала на более высоких оборотах двигателя.Теоретически вы могли бы пользоваться преимуществами крутящего момента на низких оборотах и ​​лошадиных сил на высоких оборотах, но на практике это, похоже, не работало из-за зависимости от крутящего момента.

    В настоящее время историческое обсуждение различных инженерных подходов к изменению фаз газораспределения могло бы заполнить целую энциклопедию. Но компьютеризированные системы управления двигателем сделали изменение фаз газораспределения практически реальностью для большинства автомобилей.

    Я оставлю более уникальные конструкции VVT на страницах истории, а электронные фазы газораспределения — на страницах будущего.А пока давайте рассмотрим основы того, как VVT влияет на производительность двигателя, как он может выйти из строя, а затем дадим несколько советов по устранению подозрительных систем VVT.

    Клапан и распределительный вал
    Изменяемая синхронизация «клапана», которую большинство из нас видит в наших магазинах, на самом деле является изменяемой синхронизацией «распредвала», которая улучшает крутящий момент на низких и высоких скоростях за счет опережения или замедления фазы газораспределения на одном верхнем распределительном валу ( SOHC) приложений двигателя.

    Напротив, некоторые приложения с двойным верхним распределительным валом (DOHC) выполняют те же функции, отдельно опережая или замедляя впускной и выпускной распределительные валы.

    Полностью регулируемая фаза газораспределения может быть достигнута только при использовании управляемых компьютером соленоидов для точного управления событиями открытия и закрытия впускного и выпускного клапанов. Хотя различные комбинации событий фаз газораспределения теоретически бесконечны в системе с электронным управлением, ее применение ограничено из-за проблем стоимости и, в некоторых случаях, надежности.

    Теоретически….
    Эффективная фаза газораспределения сильно зависит от скорости всасываемого воздуха, проходящего через впускные отверстия двигателя, и скорости выхлопных газов, выходящих из выпускных отверстий двигателя.

    Когда всасываемый воздух движется медленно при более низких оборотах двигателя, впускной клапан должен закрываться раньше, чтобы поршень не проталкивал всасываемый воздух обратно во впускное отверстие и коллектор.

    Но когда скорость всасываемого воздуха увеличивается с увеличением оборотов двигателя, впускной клапан должен закрываться позже, чтобы помочь наполнить цилиндр большим количеством воздуха. Теоретически большинство конструкций VVT начинают изменять синхронизацию впускных клапанов, когда скорость впускного воздуха начинает резко увеличиваться при 2500–3500 об/мин. Конечно, фактическая стратегия работы PCM во многом зависит от конструкции двигателя и ограничений скорости двигателя.

    Хотя синхронизация выпускных клапанов не так критична для производительности двигателя, как синхронизация впускных клапанов, теоретически она может быть увеличена для приложений DOHC для увеличения перекрытия фаз газораспределения на более высоких оборотах двигателя и замедлена для уменьшения перекрытия клапанов при более низких оборотах двигателя.

    Перекрытие фаз газораспределения желательно при более высоких оборотах двигателя. Одновременное удерживание впускного и выпускного клапанов открытыми, когда двигатель переходит от такта выпуска к такту впуска, позволяет двигателю использовать небольшое отрицательное давление, создаваемое выхлопными газами, выходящими из выпускного отверстия, чтобы помочь втянуть всасываемый заряд в цилиндр.

    Но при более низких оборотах двигателя и скорости газа большое перекрытие клапанов приводит к скачкообразным холостым оборотам из-за того, что выхлопные газы возвращаются во впускной коллектор, а также снижает компрессию двигателя при работе. Имейте также в виду, что изменение фаз газораспределения выпускных клапанов может создать эффект «EGR», который помогает уменьшить выбросы оксида азота (NO) в некоторых случаях.

    Конструкция кулачков распределительного вала
    Кстати, полезно понять основы конструкции кулачков распределительного вала. Чтобы предотвратить чрезмерную нагрузку на клапанный механизм, кулачок кулачка должен быть рассчитан на постепенное ускорение массы подъемника, толкателя, коромысла и клапана.Конструкция верхнего распределительного вала снижает нагрузку на клапанный механизм за счет замены этих компонентов простым толкателем кулачка.

    К сожалению, для механических распределительных валов изменения зазоров клапанов вызывают небольшие изменения фаз газораспределения. Поскольку распределительные валы с гидравлической регулировкой не требуют зазора, фазы газораспределения остаются очень постоянными.
    В любом случае кулачок кулачка должен быть рассчитан на постепенное замедление клапанного механизма, чтобы предотвратить отскок клапанов от седла клапана при пиковых оборотах двигателя.В то время как лепестки распределительного вала могут быть отшлифованы для увеличения потока воздуха за счет увеличения подъема клапана, увеличенный подъем клапана увеличивает нагрузку на клапанный механизм, а также вероятность взаимодействия поршня с клапаном.

    Phasers Ready
    Изменение фаз газораспределения на ранних двигателях с одним верхним распределительным валом (SOHC) было достигнуто за счет использования «фазера» распределительного вала, состоящего из подпружиненного гидравлического поршня, прижимающего коническую ведущую шестерню к аналогичной конической ведущей шестерне, установленной на распределительный вал.

    Точная синхронизация распределительного вала может быть достигнута с помощью модуля управления силовым агрегатом (PCM), который подает давление масла на поршень путем подачи импульсов на клапан управления маслом. Поскольку поршень имеет отверстие для стравливания давления масла, синхронизацию кулачка можно изменить, увеличив ширину импульса, подаваемого на клапан управления подачей масла.

    Если электроника выходит из строя, возвратная пружина фазера толкает поршень в исходное положение синхронизации. PCM также будет контролировать положение распределительного вала, сравнивая относительные положения датчика положения распределительного вала (CMP) и датчика положения коленчатого вала (CKP).Если эти положения не соответствуют запрограммированным данным, PCM должен установить код неисправности серии P0010 или серии P0340.

    Некоторые конструкции VVT также включают отдельный датчик фаз газораспределения (VTS) для обеспечения более точной обратной связи по фазам газораспределения с PCM. В то время как в большинстве современных конструкций VVT используются более компактные фазовращатели лопастного типа для регулировки фаз газораспределения, они по-прежнему используют то же базовое расположение датчиков и механизмов контроля давления масла, чтобы обеспечить компьютерное управление.

    Неисправности VVT
    Как вы могли уже догадаться, диагностика VVT очень специфична для приложения, поскольку она зависит не только от того, является ли двигатель рядным или V-образным блоком, или конфигурацией SOHC или DOHC, но также и от конфигурация фазовращателя и системной электроники.

    Кроме того, существуют буквально десятки «глобальных» кодов неисправностей серий P0010 и P0340, не говоря уже о кодах серии P1000, специфичных для производителя, которые могут быть сохранены из-за проблемы с синхронизацией клапанов.
    Но, применяя основные принципы работы, можно диагностировать большинство отказов VVT, независимо от конфигурации.

    Очевидно, что большинство отказов VVT приводят к потере крутящего момента двигателя на низких или высоких оборотах и ​​влияют на вакуум во впускном коллекторе. Когда распределительный вал не реагирует на положения, заданные PCM, PCM должен сохранить связанный с распределительным валом код ошибки серии P0340. На двигателях с V-образным расположением цилиндров ошибка синхронизации распредвала на одном ряду также может привести к появлению кодов пропусков зажигания серии P0300 для всех цилиндров на этом ряду.

    Кроме того, помните, что фазы газораспределения и перекрытие клапанов влияют на компрессию в цилиндре. При отказе одного ряда на двигателе с V-образным блоком компрессия при проворачивании коленчатого вала должна различаться, как и числа корректировки подачи топлива между рядами.

    Кроме того, имейте в виду, что с повторным введением стальных цепей привода ГРМ одиночная ослабленная цепь или изношенный натяжитель или направляющая цепи на одном ряду могут замедлить синхронизацию кулачка и, возможно, повлиять на характеристики холодного пуска и ходовые качества.

    Вязкость моторного масла, а также пропускная способность масляного фильтра могут определенно повлиять на способность фазовращателя фаз управления фазами газораспределения, а также на срок службы масла.

    Во многих случаях масло, не одобренное производителем оригинального оборудования, в сочетании с масляным фильтром малой пропускной способности может вызвать образование шлама или лакокрасочного покрытия, в результате чего фазовращатели кулачков застревают в переднем или замедленном положении.

    Это также может привести к забиванию шламом или загрязнению металлической стружкой масляных каналов в головке блока цилиндров, масляном регулирующем клапане и фазовращателях.Даже при использовании оригинальных масел или масел, одобренных оригинальными производителями, имейте в виду, что моторное масло необходимо менять через рекомендуемые интервалы времени.

    И последнее, но не менее важное: многие опытные специалисты по диагностике регулярно собирают в лабораторных условиях образцы заведомо исправных сигналов датчиков CMP и CKP для будущего сравнения с сигналами, полученными аналогичной моделью с подозрением на проблемы с фазами газораспределения.

     

    Лаборатория автомобильной электроники Clemson: Электронный контроль фаз газораспределения

    Электронный регулятор фаз газораспределения

    Основное описание

    Клапаны в двигателе внутреннего сгорания открываются и закрываются, чтобы топливно-воздушная смесь могла попасть в цилиндр до сгорания, а выхлопные газы могли выйти из цилиндра после сгорания. В большинстве двигателей клапаны открываются кулачками, соединенными с распределительным валом. Форма этих лепестков определяет подъем, время и продолжительность открытия каждого клапана. В двигателе с фиксированными фазами газораспределения синхронизация не является оптимальной для всех частот вращения двигателя. Например, если распределительный вал предназначен для управления клапанами для оптимальной синхронизации при низких оборотах, то при более высоких оборотах каждый цилиндр будет лишен достаточного количества топливно-воздушной смеси, что ограничивает выходную мощность двигателя. И наоборот, если бы автомобиль был оптимизирован для высоких оборотов, на холостом ходу автомобиль работал бы неровно на низких оборотах.Существует несколько методов изменения фаз газораспределения, таких как использование нескольких распределительных валов или полное исключение распределительного вала, изменение фаз газораспределения впускных клапанов и управление фазами газораспределения с помощью электронных, гидравлических или пневматических приводов. Изменение фаз газораспределения может значительно увеличить как мощность, так и топливную экономичность двигателя внутреннего сгорания.

    Системы электронного управления клапанами (EVC) пытаются оптимизировать фазы газораспределения во всем диапазоне возможных оборотов двигателя.Большинство существующих систем управляют фазами газораспределения с помощью управляемого компьютером привода, прикрепленного к распределительному валу. Иногда используются два распределительных вала, один для управления впускными клапанами, а другой для управления выпускными клапанами. Распределительный вал может иметь два набора кулачков, один из которых предназначен для низких, а другой для высоких оборотов. Когда распределительный вал вращается, кулачки толкают подпружиненные клапаны, которые затем закрываются под действием пружин. Электронный блок управления (ECU) выбирает, какой набор лепестков использовать, в зависимости от частоты вращения двигателя.Другой подход к изменению фаз газораспределения использует механизм фазирования кулачка для контроля и регулировки вращения распределительного вала относительно вращения коленчатого вала.

    Существуют и другие механические/электрические методы, которые на один шаг приближают к полному исключению распределительного вала. Тремя из этих методов являются электропневматические клапаны (EPV), электрогидравлические клапаны (EHV) и электромагнитные клапаны (EMV). EPV и EHV используют электрические соленоиды для управления потоком сжатого воздуха или гидравлической жидкости к клапанам в нужное время.Существующие системы EPV и EHV обычно исключают пружинный механизм, но по-прежнему используют кулачок. Системы EPV обычно используются в двигателях Формулы-1, а системы EHV используются в двигателях автомобилей BMW. Электромагнитные клапаны управляют открытием клапана непосредственно с помощью соленоида, исключая распределительные валы и многие другие связанные компоненты, такие как толкатели и цепи привода ГРМ. Двигатели этой конструкции в настоящее время находятся в стадии разработки и не прошли стадию прототипа. Они еще не вышли на рынок из-за стоимости, а также мощности, необходимой для работы привода. Системы EMV допускают почти бесконечные комбинации продолжительности, подъема и фазы как впускных, так и выпускных клапанов. Это позволяет значительно улучшить контроль над рабочими характеристиками двигателя, способствуя снижению выбросов, увеличению крутящего момента на низких оборотах и ​​увеличению пиковой мощности.

    Датчики
    Датчик положения коленчатого вала, датчик положения дроссельной заслонки, датчик давления жидкости
    Приводы
    Гидравлический, пневматический или электромагнитный привод клапана, пьезоэлектрический привод клапана, привод штифта положения распределительного вала
    Передача данных
    Связь с блоком управления: Обычно шина сети управления (CAN)
    Производители
    БМВ, БоргВарнер, Шевроле, Дельфи, Denso, FEV, Hitachi, Honda, Jacobs Vehicle Systems, LaunchPoint Technologies, Mechadyne, Mitsubishi, Sturman Industries, Subaru
    Для получения дополнительной информации
    [1] Система изменения фаз газораспределения, Википедия.
    [2] Как работают распределительные валы, регулировка фаз газораспределения, Карим Найс, Howstuffworks.com, 13 декабря 2000 г.
    [3] Технология изменения фаз газораспределения BorgWarner Morse TEC с приводом от крутящего момента (CTA), YouTube, 24 июля 2009 г.
    [4] Camless Engine Capstone Project WVU, YouTube, 4 мая 2010 г.
    [5] Система фазирования кулачка iVTEC VTC серии K — подробно, YouTube, 10 августа 2010 г.
    [6] Преимущества регулируемых фаз газораспределения, CarsDirect, Feb.17, 2012.
    [7] Будущее двигателя внутреннего сгорания — /Inside Koenigsegg, YouTube, 19 февраля 2013 г.
    [8] Электромеханический привод клапана для регулирования фаз газораспределения, YouTube, 25 марта 2013 г.
    [9] Как работает система изменения фаз газораспределения, Дэвид Трейси, Jalopnik, 3 июня 2013 г.
    [10] The Camless Engine, Джон Коксон, High Power Media, 20 августа 2013 г.
    [11] Car Tech 101: объяснение изменения фаз газораспределения, YouTube, апрель.

    Добавить комментарий

    Ваш адрес email не будет опубликован.