Почему серийная «Лада XRAY» не похожа на концепт-кар 2012 года
Концепт был лучше! АвтоВАЗ всё испортил! Подобными комментариями несколько лет назад встретили предсерийный вариант хэтчбека «Лада XRAY». Почему серийная модель оказалась не похожа на эффектный концепт образца 2012 года и могло ли получиться иначе?
Современные модели «Лада Веста» и «Лада XRAY» вполне по праву находятся на верхних строчках хит-парада продаж в России. Создатели пошли по пути ведущих мировых производителей: связали разные модели общей дизайнерской стилистикой, под которую скоро «причешут» и «Гранту». И начинался этот процесс с концепт-каров, сначала поисковых, «общих», а потом и предсерийных.
Так что же представляют из себя эти красочные машины за традиционной стеклянной оградой и почему всё-таки стоит изучить информацию о концепте, а не включать «синдром Хатико» и страдать по «обманутым ожиданиям»?
Концепт-кар Lada XRAY, 2012 год
Задача этой машины — продемонстрировать общую стилистику будущих моделей, о чём сам Маттин говорил в интервью. Не выкатить перспективную серийную машину, а показать, в каком ключе будут развиваться «Лады»! Ну а кроме того, концепт позволил АвтоВАЗу закрепить за собой первенство с икс-образным дизайном передка, ведь уехавший из Тольятти в Mitsubishi дизайнер примерно в то же время корпел над «апгрейдом» визуального языка японской марки в том же ключе.
Естественно, представить новые дизайнерские идеи нужно в лучшем свете, и концепт с этим прекрасно справился.
Замысловатые формы, сложный рисунок светодиодной светотехники, дорогие материалы отделки салона и многое другое. Никак не хуже, чем у других. Да и создавался макет по тем же технологиям, что и концепты Honda, Subaru, Kia, Hyundai, Porsche. И делали выставочный образец те же люди — специалисты итальянской студии Vercamodel Saro.Сотрудники компании Vercamodel Saro у концепт-кара Lada XRAY, 2014 год
Если при взгляде на концепт кажется, что это почти готовая машина, просто «принаряженная» к выставке, значит, обман удался. Конструкция здесь совсем другая. Начинается всё с пенопластовой болванки на тележке с простым каркасом. От неё, как от заготовки скульптуры, отсекают всё лишнее… нет, не скульпторы, а точные пятикоординатные станки.
Потом вырезаются внутренние полости, включая пространство салона, в котором появляются сиденья на каркасе серийных, но заново обитые поролоном и кожей, а также передняя панель и обивки из модельной пены, обтянутые «притворяющейся» пластиком плёнкой. Стёкла на поверку совсем не стёкла, а плексиглас, да и внешние кузовные панели с металлом не знакомы: они выполнены из стеклопластика. Диски в буквальном смысле «слепили из того, что было»: у обычного диска срезают лишние части, а сверху лепят новый дизайн из модельного полимера.
Интерьер концепта Lada XRAY, 2012 год
А фары-то какое загляденье! Только это и не фары вовсе, а декоративные фонарики из светодиодов и матового пластика, созданные только для того, чтобы красиво светиться, но ни в коем случае не светить. Тем, кто хотя бы время от времени заглядывал в школу, понятно, что такая конструкция по определению не способна дать правильную светотеневую границу, а просто светит равномерно во все стороны.
Имитация фар на концепте
А как оно ездит? Да примерно так же, как светят «фары». По силовому агрегату здесь тоже сплошная унификация: маломощный электромотор в компании с механической коробкой да свинцово-кислотные аккумуляторы. Всё это нужно только для того, чтобы не пришлось каждый раз таскать макет руками.
Подвески в привычном понимании вообще нет, то есть здесь отсутствуют упругие элементы. Спереди, правда, есть телескопический элемент, похожий на амортизатор, но предназначен он всего лишь для изменения клиренса, чтобы можно было и спорткар сымитировать, и кроссовер. Сзади тем же самым заведуют пластины с прорезями и болты. «Фольксвагены» да «Шкоды», говорите, нынче жёсткие? Это вы ещё на концепт-карах не ездили.
Если бы концепт Lada XRAY 2012 года предназначался к выходу в серию с неизменным дизайном, автомобиль не потерялся бы на фоне лучших образцов мирового автопрома. Но ему такой судьбы изначально не готовили, не желая даже задумываться (а тем более объявлять) о том, с какой платформой можно его «подружить», какими моторами оснастить и когда запускать. В то время АвтоВАЗ считали производителем очень простых и, соответственно, дешёвых машин с качеством комплектующих в режиме свободного плавания, и столь резкий скачок в плане класса и цены без вариантов остался бы непонятым. Машина бы воспринималась как очередные «Жигули», но в другой оболочке, и просто не разошлась бы тем тиражом, который необходим для рентабельности производства. К тому же, это был трёхдверный «зализанный» хэтчбек, что ещё больше ограничивало возможную целевую аудиторию. И что делать? Идти вверх постепенно! И начать это движение предстояло двум будущим серийным автомобилям, наделённым новой дизайнерской ДНК…
По плану, пойти в серийное производство они должны были в сентябре 2015 года и феврале 2016 года. Но в августе 2014 года проходил очередной Московский автомобильный салон, и на нём вазовцы решили показать новые модели, ведь на 2015 год крупных выставок не планировалось. И, так как до конвейера машинам было ещё далеко, а показывать собранные по обходным технологиям полуфабрикаты себе дороже, к публике вышли предсерийные концепты Vesta и… XRAY (XRAY Concept 2, если точнее).
И тут у многих, что называется, сломался мозг: мол, как это так, два года назад показывали совсем другое. «Упрощение!» «Обман!» «Да я уже деньги накопил, чтобы тот купить!» А интервью, пресс-релизы и официальные ролики читать и смотреть, конечно же, никто не стал. Ну или про них забыли. Самое главное — название одинаковое, а что там официальные лица говорили, неважно.
Концепт-кар Lada XRAY, 2014 год
В этот раз выставлялись автомобили, изначально и предназначенные для серийного производства. «Веста» — «главное блюдо», абсолютно новая конструкция на своей собственной платформе Lada B, выросшей из прототипа ВАЗ-2116 (проект С). XRAY — ещё один «ребёнок» глобальной платформы В0, а точнее, переработка хэтчбека Sandero Stepway. Но это всё было впереди.
А под софитами выставки оказались ближайшие родственники концепта XRAY 2012 года, сделанные в той же мастерской Vercamodel по той же технологии, но по внешности практически идентичные будущим товарным экземплярам, за исключением тех же поправок: огромные диски и красивые гирлянды вместо рабочей светотехники. Именно поэтому вопросы «а где взять такую оптику?» и «почему они такие жадные, что не пустили эти фары в серию?» могут вызвать только улыбку.
В итоге, как мы знаем, обе модели успешно стартовали и хорошо продаются. И всё-таки, если бы серийному хэтчбеку подобрали другое название вместо имени XRAY, это помогло бы избежать синдрома Хатико?
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Амортизатор ВАЗ LADA X-Ray задний 1шт. АвтоВАЗ |
Код товара: 586678 Амортизатор ВАЗ LADA X-Ray задний 1шт. АвтоВАЗАртикул: 562109913R Производитель АвтоВАЗ 562109913R |
|||||||||||||
Код товара: 582367 Балка моста заднего ВАЗ LADA X-RAY АвтоВАЗАртикул: 8450022202 Производитель АвтоВАЗ 8450022202 |
||||||||||||||
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Бампер ВАЗ LADA X-Ray задний некраш. под окраску АвтоВАЗ |
Код товара: 478252 Бампер ВАЗ LADA X-Ray задний некраш. под окраску АвтоВАЗАртикул: 850220699R Производитель АвтоВАЗ 850220699R |
|||||||||||||
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Бампер ВАЗ LADA X-Ray передний некраш. под окраску АвтоВАЗ |
Код товара: 561804 Бампер ВАЗ LADA X-Ray передний некраш. под окраску АвтоВАЗАртикул: 620228136R Производитель АвтоВАЗ 620228136R |
|||||||||||||
Код товара: 471540 Бачок расширительный ВАЗ LADA Largus,X-Ray дв. ВАЗ АвтоВАЗАртикул: 8450009504 Производитель АвтоВАЗ 8450009504 |
||||||||||||||
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Бачок расширительный ВАЗ LADA Vesta,X-Ray АвтоВАЗ
|
Код товара: 475904 Бачок расширительный ВАЗ LADA Vesta,X-Ray АвтоВАЗАртикул: 8450006450 Производитель АвтоВАЗ 8450006450 |
Интернет: нет в наличии |
||||||||||||
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Бачок расширительный ВАЗ LADA Vesta,X-Ray Пластик
|
Код товара: 575717 Бачок расширительный ВАЗ LADA Vesta,X-Ray ПластикАртикул: 8450006450 Производитель Пластик ОАО г.Сызрань 8450006450* |
org/Offer»> | ||||||||||||
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Буфер ВАЗ LADA X-Ray капота, задней двери АвтоВАЗ |
Код товара: 585168 Буфер ВАЗ LADA X-Ray капота, задней двери АвтоВАЗАртикул: 908783861R Производитель АвтоВАЗ 908783861R |
|||||||||||||
Код товара: 587650 Вал коленчатый ВАЗ-21177 Vesta, X-Ray двиг-1,8 АвтоВАЗАртикул: 211771005020 Производитель АвтоВАЗ 21177-1005020-00 |
||||||||||||||
Код товара: 585565 Вкладыши ВАЗ-2180 LADA Vesta, X-Ray коренные d+0. 0 (двиг.21179,21129)Артикул: 21179-1000102-01 Производитель АвтоВАЗ 21179-1000102-01 |
||||||||||||||
Код товара: 585569 Вкладыши ВАЗ-2180 LADA Vesta, X-Ray коренные d+0.25 (двиг.21179,21129)Артикул: 21179-1000102-10 Производитель АвтоВАЗ 21179-1000102-10 |
||||||||||||||
Код товара: 585564 Вкладыши ВАЗ-2180 LADA Vesta, X-Ray коренные d+0.5 (двиг.21179,21129)Артикул: 21179-1000102-20 Производитель АвтоВАЗ 21179-1000102-20 |
org/Offer»> | |||||||||||||
Код товара: 519608 Вкладыши ВАЗ-2180 LADA Vesta, X-Ray шатунные d+0.00 (двиг.21179,21129)Артикул: 21179-1000104-01 Производитель АвтоВАЗ 21179-1000104-01 |
||||||||||||||
Код товара: 585570 Вкладыши ВАЗ-2180 LADA Vesta, X-Ray шатунные d+0.25 (двиг.21179,21129)Артикул: 21179-1000104-10 Производитель АвтоВАЗ 21179-1000104-10 |
||||||||||||||
Код товара: 585571 Вкладыши ВАЗ-2180 LADA Vesta, X-Ray шатунные d+0. 5 (двиг.21179,21129)Артикул: 21179-1000104-20 Производитель АвтоВАЗ 21179-1000104-20 |
||||||||||||||
Код товара: 573170 Датчик кислорода RENAULT Logan2,Duster,NISSAN Almera(G15),ВАЗ LADA X-Ray,Vesta (дв.21179)Артикул: POS057 Производитель PATRON POS-057 |
Интернет: нет в наличии |
|||||||||||||
Код товара: 515886 Датчик кислорода RENAULT Logan2,Duster,NISSAN Almera(G15),ВАЗ LADA X-Ray,Vesta (дв.21179) OEMАртикул: 226901841R(226A41772R) Производитель RENAULT 226901841R |
org/Offer»> | |||||||||||||
Код товара: 592057 Датчик кислорода RENAULT Logan2,Duster,NISSAN Almera(G15),ВАЗ LADA X-Ray,Vesta (дв.21179) OEMАртикул: 226906393R (226901841R/226A41772R) Производитель RENAULT 226906393R |
||||||||||||||
посмотреть в Автокаталоге
посмотреть в Автокаталоге: Держатель ВАЗ LADA Vesta, X-Ray козырька АвтоВАЗ
|
Код товара: 583272 Держатель ВАЗ LADA Vesta, X-Ray козырька АвтоВАЗАртикул: 8450008061 Производитель АвтоВАЗ 8450008061 |
org/Offer»> | ||||||||||||
Код товара: 581220 Диск тормозной ВАЗ LADA VESTA X-Ray задний АвтоВАЗ 1штАртикул: 8450031131 Производитель АвтоВАЗ 8450031131 |
плюсы и минусы ВАЗ Lada XRAY
Итак, после 8 месяцев эксплуатации решил наконец написать свой отзыв.Краткая предыстория.За 16 лет стажа я сменил много машин. Начинал, как многие, с отечественного ВАЗа, потом были иномарки (новые и б/у). В последнее время предпочитаю автомат, т.к. для городской езды гораздо комфортнее. При приобретении автомобиля были следующие задачи:1) АКПП, т.к. и мне привычнее, а жена вообще на РКПП ездила только в автошколе2) Высокая посадка, т.к. иногда приходится заезжать на паребрики или ездить в лес за грибами-ягодами (это не самый главный критерий, но очень уж привыкли)3) Возраст а/м не старше 5-6 лет, что бы не ломалась через день на третий4) Бюджет — чем дешевле, тем лучше, но в пределах разумногоИсходя из поставленных задач начал поиск. После нескольких дней просмотра б/у авто понял, что за более менее приличный вариант надо выложить полмиллиона. Причём а/м будет не первой свежести, а надёжность никто не гарантирует. Тогда и взяло сомнение, что стоит посмотреть новый а/м. Вариантов было немного. Из всего просмотренного наиболее оптимальным по соотношению цена-качество показался X-Ray. Жену сперва в известность не ставил в виду её предвзятого отношения к отечественному автопрому. Съездил в один из автосалонов посмотреть самостоятельно. В салоне был только белый вариант в максимальной комплектации, и тот «уже продан». Ждать под заказ примерно месяца 2… Тем не менее авто посмотреть и «пощупать» удалось. Салон и внешний вид приятно порадовали. Робот изначально не пугал, т.к. опыт езды на роботе уже был. Убедившись, что а/м стоящий решил плавно подготовить жену к покупке. В итоге убедил её съездить посмотреть. Для осмотра выбрали уже другой автосалон. Там тоже для осмотра был только белый вариант в максимальной комплектации. Жене а/м понравился и начались переговоры по комплектации. Нам могли предложить только 2, либо базову, либо максимальную. Ни то ни другое не радовало. Базовая — откровенно пустая! Установить туда дополнительные опции дороже, чем сразу взять среднюю. А люксовая, на мой взгляд, неоправданно дорога, а дополнительные опции лично мне не особо нужны. Что кондей, что климат всё едино, полного привода всё равно нет, камера заднего вида интересно, но не за 50 же тысяч… Тут в игру вступили консультанты, которые стали нас убеждать, что других машин в городе нет и не будет, и только у них «случайно» осталось всего 2 а/м в базовой комплектации, а среднюю комплектацию мы всё равно не найдём… и т.д. и т.п. Машинкой загорелись, решили попробовать. Внесли предоплату и подали заявку на кредит. Пока ждали одобрения, на следующий день, жена решила посмотреть других дилеров. И, кто ищет, тот всегда найдёт, ей повезло. Ещё у одного дилера нашёлся Х-Ray в средней комплектации, да ещё и не белого, а красного цвета (этот цвет нам обоим понравился больше всего). Съездили, посмотрели и решили переиграть на этот вариант.В итоге взяли красный X-Ray в комплектации, которую и хотели. Дополнительно установил защиту двигателя, заказал коврики в салон и маркировку стёкол (от угона бывает помогает). больше ничего не делал.Из салона уехал с приключениями, т.к. до бензоколонки не дотянул. Бензина хватило на 300 метров. Позвонил в салон и консультант пришёл с бутылкой пластиковой и литром бензина. В бак бензин не долить, т.к. там стоит защита. Пришлось скрутить с крыши антену, ею отодвинуть защиту и заправить а/м.До заправки кое-как в итоге добрался, заправился и поехал дальше. По началу расстроил робот. До этого опыт общения с роботом был на Опеле Корса. Там он мне вполне понравился. Здесь всё оказалось иначе. На первых 3-х передачах переключение шло с рывком. При сильном нажатии на педаль газа передача «залипала»; на первой (чего на опеле не случалось) и, главное, не выходила из «бешеного режима»; до почти полной остановки и сброса оборотов до 1000 (примерно). Первые несколько дней было откровенно неприятно. Жена сев за руль вообще сказала, что она на этой машине ездить не сможет! Но ко всему привыкает человек. Через несколько дней мы с роботом адаптировались друг к другу. Нет, он не стал работать лучше, просто я понял принцип его работы и научился понимать последствия своих действий. Жена ездила меньше, потому привыкала дольше. Но тоже привыкла. На данный момент робот никаких проблем не доставляет. Работает прекрасно! Привыкли. Чуть тупит на старте и разгоне, но зная это просто спокойно рассчитываем свои действия. Зато и расход топлива ниже, чем при АКПП.В остальном машинка радует. В морозы греется достаточно быстро, в салоне тепло (и даже жарко). В жару кондиционер работает нормально (хотя я его и не люблю использовать, доводилось простужаться летом под кондеем). Бортовая электроника в норме. Не хватает только 2-х датчиков: температуры охлаждающей жидкости (о чём не писал только ленивый) и бачка омывателя. К счастью, у меня есть опыт эксплуатации Тойоты Рав4 во 2-м кузове. Там тоже датчика на бачок омывателя не было. Даже хуже, омывайка до последнего лила в полную силу, и никаких способой понять, что пора доливать, кроме открытия капота, не было. Так что не привыкать.В морозы свыше -20 замерзал бортовой компьютер. Начинал работать только после прогрева салона. Норма это или нет — не знаю… подозреваю, что нет, но особо не заморачиваюсь… 5 минут и в машине тепло.Проходимость хорошая, паребрики и сугробы проблем не доставляли не смотря на то, что привод только передний, хотя по бездорожью я и не экспериментировал.Попосадке машина удобная, хотя на дальние расстояния не ездили, но для перемещения по городу и поездок за город — самое то.Управляемость хорошая, руля слушается, разгон набирает бодро. Тормозит корректно. На дороге ведёт себя предсказуемо. Штатная летняя резина порадовала, хорошо держит дорогу даже при попадании в колею с водой во время ливня.Багажник вместительный. Есть ниша в запасном колесе и много места под фальш-полом.По посадке сзади немного тесновато, но у нас там ездят дети — им в самый раз. Ещё и ногами дрыгают :)В общем и целом достойное сочетание цены и качества. Отличный городской кроссовер (вполне на уровне Ниссана Кашкай, Рено Дастера). Правда, сделаю оговорку, машинка сборки времён Бу Андерсена. Он следил за качеством запчастей, на сколько я знаю.Так что для тех кто ищет спокойный семейный автомобиль с высокой посадкой, вместительным багажником, множеством опций и за разумные деньги — это достойный вариант.Если хотите рвать с места, соревноваться в скорости, ездить по бездорожью в снег и слякоть — тогда это не Ваш вариант :)Удачи на дорогах.
Dima V. • 19 января 2017
LADA XRAY | официальный дилер Лада Х Рей (Икс Рей) в Санкт-Петербурге
Новый LADA XRAY – компактный кроссовер, обеспечивающий максимальный комфорт от вождения, высокий уровень безопасности и уверенность при маневрировании. Он адаптирован к любым дорожным условиям и суровому климату. Концепцию модели нового поколения полностью отражает её название: «X» – кроссовер, «R» – отдых, «A» – активность, «Y» – молодость.
Модельный ряд LADA XRAY 2020-2021 года представлен базовой моделью и версией Cross с расширенными возможностями. Каждая модификация кроссовера создана для активного ритма жизни, для смелых и решительных людей, для покорения бескрайних просторов нашей страны.
Официальный дилер «ЛАДА-ЦЕНТР» предоставляет возможность купить автомобили XRAY в кредит, в лизинг и по системе «трейд-ин» на максимально выгодных условиях. Кроме того, мы осуществляем техническое и сервисное обслуживание, предлагаем индивидуальные программы кредитования и страхования, скидки и подарки в рамках действующих акций, а также широкий ассортимент оригинальных аксессуаров и дополнительного оборудования.
Записаться на тест-драйв кроссовера, уточнить варианты комплектации и цены на LADA XRAY 2020-2021 года в Санкт-Петербурге в наличии или задать любой другой интересующий вопрос можно, позвонив специалистам отдела продаж по многоканальному телефону или лично посетив один из наших дилерских центров.
XRAY в наличии
Спецпредложения
Салонов в России
Положительных отзывов
Авто в наличии
Page not found — автомануал заказ автокниг с доставкой в любую точку мира
НАШИ ПАРТНЕРЫ:
Любой современный легковой или грузовой автомобиль можно обслуживать и ремонтировать самостоятельно, в обычном гараже. Все что для этого потребуется – набор инструмента и заводское руководство по ремонту с подробным (пошаговым) описанием выполнения операций. Такое руководство должно содержать типы применяемых эксплуатационных жидкостей, масел и смазок, а самое главное – моменты затяжки всех резьбовых соединений деталей узлов и агрегатов автомобиля. Итальянские автомобили – Fiat (Фиат) Alfa Romeo (Альфа Ромео) Lancia (Лянча) Ferrari (Феррари) Mazerati (Мазерати) имеют свои конструктивные особенности. Также в особую группу можно выделить все французские машины – Peugout (Пежо), Renault (Рено) и Citroen (Ситроен). Немецкие машины сложные. Особенно это относится к Mercedes Benz (Мерседес Бенц), BMW (БМВ), Audi (Ауди) и Porsche (Порш), в чуть меньшей — к Volkswagen (Фольксваген) и Opel (Опель). Следующую большую группу, обособленную по конструктивным признакам составляют американские производители- Chrysler, Jeep, Plymouth, Dodge, Eagle, Chevrolet, GMC, Cadillac, Pontiac, Oldsmobile, Ford, Mercury, Lincoln. Из Корейских фирм следует отметить Hyundai/Kia, GM-DAT (Daewoo), SsangYong.
Совсем недавно японские машины отличались относительно низкой первоначальной стоимостью и доступными ценами на запасные части, но в последнее время они догнали по этим показателям престижные европейские марки. Причем это относится практически в одинаковой степени ко всем маркам автомобилей из страны восходящего солнца – Toyota (Тойота), Mitsubishi (Мицубиси), Subaru (Субару), Isuzu (Исудзу), Honda (Хонда), Mazda (Мазда или как говорили раньше Мацуда), Suzuki (Сузуки), Daihatsu (Дайхатсу), Nissan (Ниссан). Ну, а машины, выпущенные под японо-американскими брендами Lexus (Лексус), Scion (Сцион), Infinity (Инфинити), Acura (Акура) с самого начала были недешевыми.
Отечественные автомобили также сильно изменились с введением норм евро-3. лада калина, лада приора и даже лада нива 4х4 теперь значительно сложнее в обслуживании и ремонте.
что делать если машина не заводится, как зарядить аккумулятор, как завести машину в мороз. ответы на эти вопросы можно найти на страницах сайта и книг. представленных здесь же
Автомануал — от англ. manual — руководство. Пособие по ремонту автомобиля или мотоцикла. различают заводские руководства и книги , выпущенные специализированными автомобильными издательствами.
Cайт Автомануал не несет никакой ответственности за возможные повреждения техники или несчастные случаи, связанные с использованием размещенной информации.
Сверхвысокая эффективность FRET NaGdF4: Tb3 + -Роза Бенгальский биосовместимый нанокомпозит для применения в фотодинамической терапии с возбуждением рентгеновскими лучами
Механизм, опосредованный реактивными формами кислорода (ROS), является основной причиной эффективности фотодинамической терапии (PDT). Процедура PDT основана на каскаде синергетических эффектов между светом, фотосенсибилизатором (PS) и кислородом, что в значительной степени способствует пространственно-временному контролю лечения. Однако эта процедура также вызвала несколько нерешенных проблем на разных уровнях, особенно ограниченную глубину проникновения света, которая ограничивает традиционную ФДТ только поверхностными опухолями [[1], [2], [3]].Несмотря на использование ПС, возбуждаемого БИК [[4], [5], [6], [7]], или комбинации наночастиц с повышающим преобразованием (UCNP) с ПС [8,9] для активации препарата на более глубоких глубинах, свет может перемещаться в тканях менее чем на 1 см [10,11], чтобы сохранить достаточно энергии для терапии. Фотодинамическая терапия, индуцированная микроволновым излучением, была альтернативным способом лечения глубоко укоренившейся опухоли с помощью теплового эффекта и генерации синглетного кислорода для уничтожения раковых клеток с помощью тщательно подобранной микроволновой частоты и мощности, чтобы избежать теплового повреждения тканей, которое не вызывает радиационного повреждения организма [12, 13].В качестве альтернативы, новый метод ФДТ, называемый фотодинамической терапией с рентгеновским возбуждением (X-PDT), был описан Ченом и соавторами в 2006 году, чтобы преодолеть ледниковый барьер проникновения света и сделать возможной эффективную ФДТ при глубоко расположенных опухолях или опухолях большого объема [14 ]. Для реализации высокоэффективной рентгеновской ФДТ были введены люминесцентные наночастицы, возбуждаемые рентгеновским излучением (XLNP), в качестве среды для передачи энергии рентгеновского излучения на фотосенсибилизатор, поскольку используемый в клинических условиях PS не может эффективно поглощать рентгеновские лучи.
Различные нанокомпозиты XLNP и PS, такие как ZnS: Cu, Co [15], наночастицы фторида / оксида, легированные лантаноидами [[16], [17], [18], [19], [20], [ 21], [22], [23]] и SrAl 2 O 4 : Eu 2+ [10,24] в сочетании с псораленом [19], розовым бенгальским (RB) [16,17] , MC 540 [24] и протопорфирин IX (PPIX) [25], были исследованы для приложений X-PDT.Тем не менее, высокая доза рентгеновского излучения является основной проблемой, ограничивающей их дальнейшее применение in vivo и в клинической практике X-PDT. Для достижения умеренного эффекта от лечения ФДТ доза облучения, описанная в литературе, обычно составляла от 2 до 8 Гр [15,16,18,21, [24], [25], [26], [27], [28]] , что сопоставимо с тем, что используется для клинической лучевой терапии. Это неизбежно привело к серьезным побочным эффектам, таким как миелосупрессия, поражение зачатка селезенки и атрофия клубочков. Среди этих подходов высоколюминесцентный материал SrAl 2 O 4 : Eu 2+ в сочетании с MC540 показывает самую низкую дозу облучения 0.5 Гр для достижения умеренной противоопухолевой эффективности 60,2 ± 6,9% [24], что исключает многообещающие перспективы для малодозной Х-ФДТ. Однако такой нанокомпозит диаметром 407,4 — 152,5 нм дает низкую эффективность флуоресцентного резонансного переноса энергии (FRET) из-за низкого количества полистирола, сопряженного на поверхности покрытия, вызванного малым отношением площади к объему. Для высокоэффективного X-PDT можно использовать XLNP уменьшенного размера, чтобы максимизировать загрузку PS. Высокоэффективные и биосовместимые нанокомпозиты, которые можно возбуждать более низкой дозой рентгеновского излучения, необходимы для исследования in vivo X-PDT.
Для достижения высокоэффективной и безопасной X-PDT необходимо управлять следующими факторами: (a) высокая эффективность квантового выхода XLNP при рентгеновском излучении в диапазоне поглощения фотосенсибилизатора, который зависит от состава частиц, кристалла структура и морфология, (б) большое количество конъюгации PS на поверхности XLNP и эффективная передача энергии от XLNP к PS через процесс FRET. Кроме того, (c) для приложений in vivo такой нанокомпозит должен быть нецитотоксичным и диспергируемым в воде.
Tb 3+ и широко используемый PS под названием Rose Bengal (RB) являются классической парой в исследовании X-PDT из-за скорости перекрытия спектра bravo и сверхвысокого коэффициента экстинкции 10 5 M -1 см -1 при 549 нм RB [16,17,20,23,29]. Tang et al. продемонстрировали наносистему X-PDT с использованием LaF 3 : Tb 3+ в сочетании с RB, с высокой эффективностью FRET до 85% [17]. Для люминесцентных применений, возбуждаемых рентгеновскими лучами, гадолиний, который имеет высокий коэффициент поглощения рентгеновских лучей по массе, считается сенсибилизатором рентгеновских лучей для эмиттеров лантаноидов [30,31].В частности, НП на основе фторида гадолиния менее 10 нм NaGdF 4 : Ln 3+ (Ln = лантаноидные элементы) считались одними из самых эффективных люминесцентных люминофоров из-за низкой энергии фотонов и ширины запрещенной зоны 9– 10 эВ, что может минимизировать вероятность безызлучательной релаксации и максимизировать квантовый выход люминесценции по сравнению с LaF 3 [32,33]. Учитывая превосходную химическую стабильность, биосовместимость, однородную морфологию и распределение по размерам NaGdF 4 : Ln 3+ , наносистема, которая синтезирует β-NaGdF 4 : Tb 3+ НЧ с RB, будет хорошим кандидатом для высокоэффективный X-PDT.
Основываясь на научных данных, установленных выше, в этой статье мы предложили простой и эффективный нанокомпозит с использованием β-NaGdF 4 : Tb 3+ сферических НЧ с загрузкой RB для приложения X-PDT (Схема 1) . Новые наночастицы β-NaGdF 4 : Tb 3+ размером менее 10 нм были синтезированы с помощью процесса соосаждения и сначала использовались для применения X-PDT. Сильная люминесценция, сверхмалый размер, монодисперсность и очень однородная морфология были охарактеризованы с помощью HR-TEM, EDX и XRD. При возбуждении рентгеновскими лучами наблюдалась оптимизированная интенсивная зеленая люминесценция, соответствующая переходу 5 D 4 → 7 F 5 Tb 3+ , которая идеально согласовывалась со спектром поглощения RB при 549 нм. После модификации поверхности NP 2-аминоэтилфосфоновой кислотой (AEP) для водной дисперсии и биосовместимости RB был ковалентно конъюгирован на поверхности NP, чтобы минимизировать расстояние передачи энергии и максимизировать эффективность FRET. Систематическое исследование 1 O 2 эффективности генерации, цитотоксичности, эндоцитозов, in vitro и in vivo X-PDT показало, что эффективное лечение может быть достигнуто путем возбуждения предложенного β-NaGdF 4 : Tb Нанокомпозит 3+ -RB.
Малоугловое рассеяние рентгеновских лучей и FRET-спектроскопия одиночных молекул дают сильно расходящиеся представления о развернутом состоянии с низкой денатурантностью что химически развернутые полипептиды неизменно коллапсируют из расширенной случайной спирали до более компактных размеров по мере того, как концентрация денатуранта уменьшается. Напротив, исследования малоуглового рассеяния рентгеновских лучей (SAXS) показывают, что, по крайней мере, для однодоменных белков при ненулевых концентрациях денатуранта такое уплотнение может быть редким.Здесь мы исследуем это несоответствие, изучая белок L, белок, ранее изученный методом SAXS (при 5 ° C), который предложил фиксированные размеры в развернутом состоянии от 1,4 до 5 M гидрохлорида гуанидина (GuHCl), и с помощью smFRET (при 25 ° C). ), что предполагает, что, напротив, цепь сжимается на 15–30% в том же диапазоне денатуранта. Повторяя более раннее исследование SAXS при тех же условиях, которые использовались в исследованиях smFRET, мы наблюдаем мало, если вообще наблюдаем, свидетельств того, что развернутое состояние белка L сокращается по мере снижения концентрации GuHCl.Например, профили рассеяния (и, следовательно, форма и размеры), собранные в течение ~ 4 мс после разбавления до 0,67 М GuHCl, практически неотличимы от профилей, наблюдаемых в равновесии при более высоком денатуранте.
Таким образом, наши результаты доказывают, что несоответствие между SAXS и smFRET статистически значимо и что экспериментальные данные в пользу коллапса облигатного полипептида при низком денатуранте пока нельзя считать окончательными.Графический реферат
Основные моменты
► Результаты smFRET предполагают, что развернутое состояние схлопывается при низком денатуранте.► SAXS предполагает, что развернутые состояния с низким и высоким денатурантом неразличимы. ► Недостаточное совпадение наборов данных исторически скрывает значимость этого несоответствия. ► Параллельные исследования одного белка при одном наборе условий подтверждают несоответствие.
Сокращения
smFRETодномолекулярный резонансный перенос энергии Фёрстера
SAXSМалоугловое рассеяние рентгеновских лучей
GuHClгидрохлорид гуанидина
APSКлючевые слова
CHESSCornell High Energy Synchrotron Source
гидрофобный коллапс
неспецифический
клубок-глобула
Рекомендуемые статьи Цитирующие статьи (0)
Полный текстCopyright © 2012 Elsevier Ltd.Все права защищены.
Рекомендуемые статьи
Цитирующие статьи
Динамическая настройка FRET в биосенсоре зеленого флуоресцентного белка
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Кристаллическая структура Twitch-2B
Мы решили структуру с разрешением 2,5 Å (таблица S1A). Асимметричный блок состоит из двух мономеров (рис. S1A). Они представляют идентичные конформации отдельных доменов [среднеквадратичные отклонения (RMSDs) ниже 0,2 Å] и несколько иную междоменную конформацию (RMSD 0.992 Å), по-видимому, не собираясь как симметричный гомодимер. Их интерфейс (рис. S1B), покрывающий 630 Å 2 ( 11 ), на самом деле значительно меньше, чем интерфейс стабильного димера ( 12 ). Кроме того, данные малоуглового рентгеновского рассеяния (МУРР) показывают, что в растворе Twitch-2B является мономерным (рис. S2). Поэтому мы сфокусируем наше описание здесь на мономере A. Кристаллическая структура показывает расположение донора и акцептора относительно минимального кальций-связывающего домена TnC, а также структуру оптимизированных линкеров (рис.1). Структура кальций-связывающего домена очень похожа на C-концевой глобулярный домен куриного TnC (RMSD 0,84 Å) ( 13 ), на структуру ЯМР, решенную ранее ( 8 ), и на структуру кальмодулина. (RMSD 1,08 Å) ( 14 ). Главные оси двух бочкообразных β-доменов флуоресцентного белка ориентированы почти под перпендикулярным углом друг к другу. Стволы β практически не контактируют друг с другом (рис. 2A) с очень маленькой общей границей раздела (150 Å 2 ).Интерфейсы минимального кальций-связывающего домена с mCerulean3 и cpVenus cd также относительно малы, покрывая только 257 и 351 Å 2 соответственно (см. Ниже). Взаимодействия в основном носят гидрофильный характер (рис. 2А).
Рис. 2 Структурные детали Twitch-2B.( A ) Полярные взаимодействия между остатками минимального домена TnC, mCerulean3 и cpVenus cd показаны пунктирными линиями. Остатки показаны в виде палочек.( B ) Полярные взаимодействия, опосредованные остатками (показаны в виде палочек) от линкеров между mCerulean3 и кальций-связывающим доменом (у лосося), а также взаимодействия между cpVenus cd и кальций-связывающим доменом (пурпурный) . ( C ) Гидрофобные взаимодействия между остатками (показаны в виде палочек) линкеров между mCerulean3 и кальций-связывающим доменом (у лосося), а также линкером между cpVenus cd и кальций-связывающим доменом (пурпурный) с остатками (выделены серым цветом) из ядра минимального домена TnC.( D и E ) Крупный план области вокруг N532 Twitch-2B и мутанта N532F Twitch-2B (Twitch-6).
Линкер между mCerulean3 и кальций-связывающим доменом (V 232 ADA) образует спираль 3 10 , которая прочно удерживается на месте водородными связями основной цепи от V232 и S236 в mCerulean3 до E301 и E239 кальция. -связывающий домен (рис. 2Б). Далее линкер между кальций-связывающим доменом и cpVenus cd (P 305 IYPEL) образует полтора α-спиральных витка (рис.2, B и C), карбонилы основной цепи E309 и L310 образуют водородные связи с боковой цепью R551 (рис. 2B) cpVenus cd . Боковая цепь E309 также образует водородную связь с Y152 mCerulean3, плотно связывая три домена вместе. Остатки I306, Y307 и L310 этой короткой спирали участвуют в сети гидрофобных контактов (рис. 2C). Очевидно, что скрининг оптимальных линкеров ( 8 ) привел к последовательностям со спиральными элементами, очень хорошо интегрирующимися в структуру минимального домена TnC, в то время как эти линкеры удерживают на месте донорный и акцепторный домены в основном за счет полярных взаимодействий.
Расчет эффективности FRET на основе структуры
Структура предоставила важную информацию для расчетов FRET. Во-первых, расстояние между центрами масс флуорофоров составляет 3,65 нм (рис. 1B). Затем внутри структуры флуорофоры mCerulean3 и cpVenus cd выровнены в конфигурации «голова к голове». Таким образом, мы могли точно определить относительную ориентацию дипольных моментов флуорофоров (рис. 1C; см. Материалы и методы), которые доступны из расчетов теории функционала плотности ( 15 ).Используя эту объединенную информацию, мы вычислили коэффициент ориентации κ 2 , равный 1,98 (уравнение 1; Материалы и методы), и расстояние Ферстера, R 0 , 6,9 нм для mCerulean3 / cpVenus cd Пара FRET (уравнение 3; материалы и методы). С этими параметрами, используя уравнение Фёрстера, E = R06 / (R06 + r6), теоретическая эффективность FRET, E , Twitch-2B была определена как 0,98. Эффективность FRET, экспериментально определенная с помощью деканшинга донора, равна 0.78 (рис. S3A), что значительно ниже, чем полученное из кристаллической структуры.
Два мономера Twitch-2B в асимметричном блоке (рис. S1A) не только имеют очень похожую конформацию (RMSD основной цепи 0,992 Å), но также образуют очень похожие контакты упаковки кристаллов (рис. S1C). Таким образом, мы заключаем, что ориентация доменов в мономере сама по себе не ограничивается кристаллической упаковкой, а в основном внутримономерными взаимодействиями, описанными выше (рис. 2А), и, скорее всего, выбрана из пула уже существующих конформаций в растворе.Поскольку междоменные интерфейсы в мономере Twitch-2B относительно малы (рис. 2A), высокая гибкость решения может быть причиной наблюдаемого снижения эффективности FRET. Чтобы исследовать эту гипотезу, мы затем обратили внимание на передовые методы ЯМР.
ЯМР-исследование динамики биосенсора
Чтобы получить представление о возможной динамике, мы использовали парамагнитный ЯМР ( 16 ) с образцом Twitch-2B, где два сайта связывания кальция TnC были загружены диспрозием (Dy).Анизотропная магнитная восприимчивость комплекса TnC-Dy 2 индуцирует парамагнитный тензор выравнивания, который может быть определен из структуры ( 17 ) (см. Материалы и методы). Мы использовали спектрометры на 900 МГц и 1,1 ГГц, поскольку тензор юстировки квадратично зависит от магнитного поля. Если данный флуоресцентный белок является жестким по отношению к TnC, то тензор выравнивания, который он испытывает, идентичен TnC. Если, однако, флуоресцентный белок является динамическим по отношению к TnC, то это движение уменьшит тензор выравнивания первого ( 16 , 18 ).Это позволяет количественно оценить динамику флуоресцентных белков по отношению к TnC. В то время как диполярные связи усредняются в изотропном растворе из-за случайного изотропного переворачивания, парамагнитно-индуцированные тензоры выравнивания приводят к анизотропному распределению ориентации TnC и, следовательно, прикрепленных зеленых флуоресцентных белков в растворе, что приводит к неполному усреднению диполярного муфты, позволяющие наблюдать остаточные диполярные связи (RDC). Мы определили RDC метильных групп парамагнитно выровненного Twitch-2B ( 19 ) (см. Материалы и методы).Наблюдаемый диапазон RDC достаточен для измерения размера тензора выравнивания ( 20 ), так что отнесение метильных групп не было необходимым.
Мы обнаружили, что диапазон значений RDC и, таким образом, тензор выравнивания, испытываемый флуоресцентными белками, в 10 раз меньше, чем рассчитанные по жесткой рентгеновской структуре (рис. 3; см. Материалы и методы). Таким образом, динамика должна быть причиной несоответствия между расчетной и экспериментальной эффективностями FRET.Кристаллическая структура может быть только частью динамического конформационного ансамбля в растворе.
Рис. 3 Гистограммы парамагнитных данных RDC.Прогнозирование RDC метильных групп в двух доменах флуоресцентного белка и TnC с использованием рентгеновской структуры (выделено пурпурным цветом). Тензор выравнивания, индуцированный двумя ионами диспрозия, связанными с TnC, является результатом трансляции тензора, полученного из кальмодулина (см. Материалы и методы). Экспериментальные RDC от парамагнитного ЯМР Twitch-2B (зеленый) и Twitch-6 (пурпурный).Дальность действия уменьшается в 10 и 5 раз для Twitch-2B и Twitch-6 соответственно.
Конструирование мутанта на основе структуры с улучшенной эффективностью FRET
Предполагая структурную целостность отдельных доменов, мы предположили, что линкерные области являются стержнем этой динамики. На границах раздела между доменом TnC и донорным и акцепторным доменами преобладают полярные взаимодействия (рис. 2А). Мы предположили, что замена этих взаимодействий гидрофобными контактами сделает линкеры жесткими и увеличит экспериментальную эффективность FRET.С этой целью мы разработали мутацию N532F (рис. 2, D и E) на поверхности cpVenus cd , создавая новое взаимодействие с F249 кальций-связывающего домена (рис. 2D). Как и ожидалось, эта мутация вызвала существенное увеличение максимального изменения отношения FRET с 800 до 1100% in vitro (рис. S4). В кристаллической структуре этого мутанта (Twitch-6; таблица S2) боковая цепь F532 действительно связывается в гидрофобный карман, образованный боковыми цепями F249, Asp262 и Y338 (рис. 2E).В остальном структуры Twitch-6 и Twitch-2B очень похожи (RMSD 0,25 Å), что приводит к почти идентичной теоретической эффективности FRET (см. Дополнительные материалы). Благодаря этой конструкции экспериментальная эффективность FRET Twitch-6 увеличилась до 0,90, с 0,78 для Twitch-2B (рис. S3B), а диапазон RDC, измеренных с Twitch-6, удвоился по сравнению с Twitch-2B (рис. 3). . Это указывает на сужение интерфейса между доменом TnC и cpVenus cd , и, таким образом, снижение динамики между доменами является причиной увеличения FRET.
Конформационные ансамбли в решении
Определив динамику как причину снижения эффективности FRET Twitch-2B в решении, мы хотели получить представление о конформационном пространстве, возникающем в результате этой динамики. Для этой цели мы выбрали конформационные ансамбли, исследующие динамику скелета исключительно на динамических линкерных областях между доменами флуоресцентного белка и доменом TnC (см. Материалы и методы), оценивая более 1 миллиона шестичленных ансамблей в сравнении с наблюдаемыми RDC и эффективностью FRET (Таблица 1, рис.4 и Материалы и методы). Среди всех возможных ансамблей мы выбрали тот, который лучше всего воспроизводит как экспериментальную эффективность FRET, так и диапазон RDC (Таблица 1). Этот ансамбль полностью объясняет, как гибкость неупорядоченных остатков линкерных областей приводит к наблюдаемому снижению эффективности FRET и диапазона RDC.
Таблица 1 Результаты выбора ансамбля. Рис. 4 Ансамбли белков Twitch, согласующиеся с измеренными эффективностями RDC и FRET.Ансамбли для Twitch-2B (слева) и Twitch-6 (справа) содержат по шесть структур каждый, причем самые большие отклоняющиеся структуры показаны зеленым и красным.Состояния, которые не являются этими крайними конформациями, прозрачны.
Влияние на улучшенную конструкцию датчика FRET
Таким образом, мы получили кристаллическую структуру флуоресцентного кальциевого биосенсора Twitch-2B и вместе с динамикой линкеров, определенной с помощью парамагнитного ЯМР, мы количественно оценили эффективность FRET. Поскольку динамика ограничивала эффективность FRET, мы успешно сконструировали ригидифицированный мутант с увеличенным FRET. Таким образом, структурные и динамические характеристики ратиометрических датчиков FRET обеспечили принципы проектирования, которые могут быть применимы к другим системам, в которых эффекты FRET используются для восприятия сигналов.
МАТЕРИАЛЫ И МЕТОДЫ
Клонирование, экспрессия и очистка Twitch-2B и Twitch-6
Конструкция Twitch-2B была описана ранее ( 8 ). Для настоящего исследования кодирующую последовательность трехдоменного слитого белка клонировали в модифицированный вектор pET16b, кодирующий слитый белок с N-концевой меткой His 7 и расщепляющей последовательностью, распознающей вирус травления табака (TEV). Мутант Twitch-2B N532F (Twitch-6) был создан с использованием набора для сайт-направленного мутагенеза QuikChange (Agilent).Экспрессионные конструкции pET16bTEV-Twitch-2B и pET16bTEV-Twitch-6 трансформировали в штамм Escherichia coli BL21 (DE3). Экспрессию белка проводили при 303 К индукцией 0,5 мМ изопропил-β-d-1-тиогалактопиранозидом. Клетки собирали через 7 часов после индукции. Меченный селенометионином белок Twitch-2B был сверхэкспрессирован в метионин-ауксотрофном штамме B834 E. coli в минимальной среде с добавлением (+) — l-селенометионина в соответствии с группой по экспрессии белка EMBL (Европейская лаборатория молекулярной биологии) (www.embl.de).
Осадок клеток из 1 литра встряхиваемой культуры ресуспендировали в 60 мл лизирующего буфера [20 мМ трис-HCl (pH 7,9), 300 мМ NaCl, 20 мМ имидазол, 0,5 мМ фенилметилсульфонилфторид, с одной таблеткой полного количества ЭДТА- свободных ингибиторов (Roche) на 100 мл лизисного буфера]. Клетки лизировали ультразвуком с последующим центрифугированием при 27000 g и 277 К. Из супернатанта рекомбинантный белок очищали с помощью аффинной хроматографии с иммобилизованным металлом на 3 мл агарозной смолы Ni-нитрилотриуксусной кислоты (NTA) (Qiagen).Слитую метку His 7 отщепляли протеазой TEV и удаляли инкубацией с 1 мл Ni-NTA агарозной смолы. Белок диализовали против 20 мМ трис (pH 7,0) и 150 мМ NaCl. После доведения концентрации сульфата аммония в растворе белка до 1 М белок дополнительно очищали хроматографией на гидрофобном взаимодействии на колонке с фенилсефарозой объемом 10 мл (GE Healthcare). Белок элюировали с этой колонки 50-мл градиентом от 1 до 0 М сульфата аммония.Фракции, содержащие белок, объединяли и концентрировали до объема 2,5 мл с помощью концентратора для ультрафильтрации с MWCO (пороговая молекулярная масса) 30 кДа (Vivascience). Наконец, белок очищали эксклюзионной хроматографией на гель-фильтрационной колонке HiLoad 26/60 Superdex 200 мкг. Фракции пика объединяли, диализовали против 20 мМ трис-HCl (pH 7,0), 100 мМ NaCl и 5 мМ CaCl 2 , и концентрацию белка доводили до 20 мг / мл.
Флуоресцентная спектроскопия
Для спектроскопии рекомбинантного Twitch-2B in vitro белок был очищен от E.coli с использованием смолы Ni-NTA, как описано ( 6 ). Спектроскопию выполняли на спектрофотометре Cary Eclipse (Varian). Донорское расщепление Twitch-2B проводили путем переваривания Twitch-2B в связанном с кальцием состоянии в течение ночи при комнатной температуре с химотрипсином (70 Ед / мл; Sigma-Aldrich) при записи FRET. Небольшое оставшееся излучение cpVenus cd после переваривания химотрипсина было избирательно фотообесцвечено (5 мин) с помощью матрицы из шести светодиодов Luxeon Lumiled с пиком на длине волны 530 нм, с общей рассеиваемой мощностью 14.7 Вт и 870 люмен. Для защиты mCerulean3 от обесцвечивания использовали LP (длиннопроходный) фильтр с длиной волны 500 нм. Связанный с кальцием Twitch-6 был очень устойчив к расщеплению протеазой. Следовательно, EGTA (конечная концентрация, 5 мМ) добавляли во время переваривания химотрипсина, чтобы получить спектр деквенированного mCerulean3.
Кристаллизация, сбор данных и определение структуры
Кристаллы Twitch-2B и Twitch-6 были получены путем диффузионного смешивания паров 1 мкл раствора белка с 1 мкл раствора для лунок [0.2 M Na-формиат (pH 7,0), 5 мМ CaCl 2 и 18-20% полиэтиленгликоля 3350]. Кристаллы были подвергнуты криозащите, перенеся их в хорошо раствор с добавлением от 16 до 18% глицерина на 1 мин и быстро охладив, погрузив их в жидкий азот.
Сбор данных производился в PXII, SLS, Швейцария, с использованием детектора PILATUS 6M (Dectris). Собственные данные собирали при 100 К на длине волны 1 Å. Данные по производному селенометионина были измерены при 0,98 Å. Все данные были обработаны с помощью программного обеспечения рентгеновского детектора (XDS) ( 21 ) и масштабированы с помощью SADABS (Bruker AXS).Определение пространственной группы и статистический анализ выполняли с использованием XPREP (Bruker AXS). Фазирование выполнялось с помощью AutoSol ( 22 ).
Первоначальная модель была построена с помощью AutoBuild и дважды уточнена с помощью phenix.refine ( 23 ) с промежуточным ручным построением модели с помощью Coot ( 24 ). Окончательная модель была получена путем комбинированного ручного отслеживания (Coot) и уточнения с использованием Refmac5 ( 25 ). На графике Рамачандрана 96,69% остатков располагались в предпочтительной области 2.72% в разрешенной области и 0,58% остатков были выбросами. Кристаллическая структура Twitch-6 была решена с помощью PHASER ( 26 ), используя PDB (Protein Data Bank) запись 6GEL в качестве модели поиска. Построение и уточнение модели выполнялись, как описано для Twitch-2B. Для этого мутанта 96,68% остатков попали в предпочтительную область графика Рамачандрана, 2,83% попали в разрешенную область и 0,49% были выбросами.
Расчет FRET
Фактор ориентации κ 2 может быть извлечен из структурной информации следующим образом: κ2 = (cos θT — 3 cos θD cos θA) 2 (1) где θ T — угол между переходами излучения диполь донора и диполь перехода поглощения акцептора; θ D и θ A — углы между этими диполями и вектором r , соединяющим донорный и акцепторный флуорофоры ( 27 ).Ориентация дипольных моментов перехода относительно вектора связи C → O (ω) в градусах ωD = 73 ° ωA = 76 ° была взята из Ansbacher et al. ( 15 ), а угловые параметры были извлечены из кристаллографических координат в угловых единицах θT = 152,95 ° θD = 149,17 ° θA = 26,79 °
Подробные вычисления объяснены в файле данных S1. Интеграл перекрытия J (λ) был рассчитан из экспериментальных спектров поглощения и излучения изолированных доменов cpVenus и mCerulean3 соответственно (рис.S5) со сценарием Python, включенным в качестве дополнительной информации. J (λ) было определено как 2,052 × 10 15 M −1 см −1 нм 4 , как следует: J (λ) = ∫0∞FD (λ) εA (λ) λ4dλ = ∫0∞FD (λ) εA (λ) λ4dλ∫0∞FD (λ) dλ (2) где F D (λ) — нормированная интенсивность флуоресценции донора в диапазоне длин волн от λ до λ + Δλ. ε A (λ) — коэффициент экстинкции акцептора при λ.
Расстояние Ферстера, R 0 , можно рассчитать на основе ранее полученных экспериментальных параметров R0 = 0.211 (κ2n − 4QDJ (λ)) 1/6 (3) где Q D (0,87) — квантовый выход донора в отсутствие акцептора ( 4 ) и n , (1,33) показатель преломления водной среды.
Наконец, эффективность передачи энергии, E , может быть рассчитана как отношение скорости передачи к общей скорости распада донора в присутствии акцептора E = R06R06 + r6 (4)
После этой процедуры, эффективность FRET была определена как E = 0. 979, из кристаллографической структуры Twitch-2B. Эквивалентный расчет, выполненный со структурой мутанта Twitch-6, дает E = 0,983 (см. Файлы данных S1 и S2).
ЯМР-спектроскопия
Мы экспрессировали белки Twitch-2B и Twitch-6 в минимальной среде Toronto, приготовленной из 100% D 2 O и пердейтерированной d-глюкозы и дополненной предшественниками аминокислот α-кетомасляной кислотой (метил-13C , 3,3-D2) и α-кетоизовалериановой кислоты (3-метил-13C, 3,4,4,4-D4), таким образом, селективно мечение атомами 13 C и 1 H только метильных групп остатки валина, лейцина и изолейцина, сохраняя при этом остальные атомы C как 12 C и протоны как 2 H ( 19 ).
Сначала были получены спектры изотропных образцов в буфере А [20 мМ Mops (pH 7,0), 100 мМ NaCl и 5 мМ CaCl 2 в 100% D 2 O]. Затем белки диализовали против буфера B [20 мМ Mops (pH 7,0), 100 мМ NaCl и 10 мМ EDTA] с последующим диализом против буфера C [20 мМ Mops (pH 7,0) и 100 мМ NaCl] и, наконец, заменяли на буфер С, приготовленный в 100% D 2 O, содержащем три эквивалента диспрозия, перед измерениями ЯМР. Концентрация белка в образцах была примерно 0.5 мМ.
Образцы были протестированы с помощью экспериментов с метил-TROSY ( 19 , 28 ) (рис. S7) на частотах 900 МГц и 1,1 ГГц, а связи J, и J + RDC были определены с использованием J -модулированного Эксперимент с метил-TROSY ( 29 ), изображенный на рис. S6 в виде матриц 2048 × 128 комплексных точек данных с 96 переходными процессами на ( t 1 ) приращение. Общие использованные задержки модуляции J были следующими: 4, 6, 8, 10, 12, 14, 16, 18 и 20 мс (рис.S8). ЯМР-эксперименты проводились с использованием 5-мм TCI (криозонда тройного резонанса с инверсным детектированием) на спектрометре 900 МГц и 3-мм криозонда TCI на спектрометре 1,1 ГГц, оба оснащены консолями NEO (Bruker). Интенсивности (максимальная амплитуда) сигналов были извлечены с помощью CARA (компьютерное определение резонанса) ( 30 ) в экспериментах с обработкой NMRPipe ( 31 ) и проанализированы с помощью скриптов Python (рис. S8), следуя Pederson et al. ( 29 ).
Расчет парамагнитного тензора
Мы взяли парамагнитный тензор из комплекса кальмодулин-IQ, связанного с диспрозием, из ( 18 ) и рассчитали полный тензор дважды занятого кальцийсвязывающего домена TnC. Сайт связывания кальция 1 TnC перекрывается с сайтом связывания лантанидов кальмодулина (CaM N60D). Мы повернули матрицу выравнивания с сайта связывания кальция из CaM на второй сайт связывания кальция TnC и добавили его к тензору сайта связывания кальция 1, таким образом получив общий тензор TnC.Затем этот тензор использовался для расчета RDC из парамагнитных белков Twitch ACaM = (1,05 10−31−1,92 10−322,04 10−31−1,92 10−32−1,22 10−316,46 10−322,04 10−316,46 10−321,67 10−32 ) ATwitch = (1,46 10-318,39 10-323,46 10-318,39 10-32-1,06 10-312,26 10-323,46 10-312,26 10-32-3,92 10-32)
Тензоры даны в м 3 M −1 .
Генерация ансамбля
Сначала мы индивидуально смоделировали все возможные двугранные углы основной цепи (ϕ и ψ; выборка с шагом 60 °) линкерных остатков (от Arg 229 до Gln 231 для mCerulean3 и Met 311 для Gly 313 для cpVenus), что не привело к стерическому конфликту между одним из модифицированных доменов флуоресцентного белка и доменом TnC.Каждую из двух линкерных областей моделировали независимо. Из всех возможных комбинаций ϕ, ψ (117 649) вращение mCerulean3 привело к 477 возможным конформациям, в то время как cpVenus допустил 84 конформации, обеспечивая в целом 40 086 возможных конформаций.
Во-вторых, мы случайным образом объединили возможные структуры для mCerulean-TnC и TnC-cpVenus в ансамбли из шести членов. Мы произвольно отобрали 1 миллион шестичленных ансамблей из 40 068 возможных ϕ, ψ комбинаций линкеров между mCerulean и TnC и между TnC и cpVenus, чтобы гарантировать правильное исследование конформационного пространства Twitch.
В-третьих, мы рассчитали диапазон RDC (используя тензор, полученный, как описано выше) и FRET ансамблей и сравнили их с экспериментальными значениями, определив коэффициент качества ансамбля Qens = ∑i = 1i = 6 (RDCi − RDCeRDCe) 2+ (FRETi-FRETeFRETe) 2, где RDC i — диапазоны распределения, субиндекс e указывает экспериментальное значение, а i указывает значение из члена ансамбля. Такое значение добротности отличается от 0, если совпадения предсказанных откликов RDC и FRET от ансамбля отклоняются от экспериментальных данных, и 0 в случае полного совпадения.Наконец, ансамбли были отсортированы по их Q Ens , и был выбран самый низкий из них.
Измерения SAXS
Данные SAXS были собраны на канале BM29 Европейского центра синхротронного излучения (ESRF) в Гренобле, Франция, с использованием автоматического устройства смены образцов ( 32 ). Белок подвергали диализу либо против буфера A [20 мМ Mops (pH 7,0), 100 мМ NaCl и 5 мМ CaCl 2 ] (связанное с кальцием состояние), либо против буфера B [20 мМ Mops (pH 7,0), 100 мМ NaCl и 10 мМ ЭДТА] (без кальция).Перед измерением белок центрифугировали для удаления более крупных частиц. Образцы измеряли при концентрациях 2,5, 10 и 20 мг / мл. Буфер для диализа использовали для коррекции эталонного буфера. Данные собирали при 293 К с использованием длины волны 0,995 Å и расстояния от образца до детектора 2,867 м. Загружали сто микролитров каждой концентрации образца, собирали и объединяли 10 кадров. Образцы непрерывно подавались в кювету, чтобы свести к минимуму эффекты радиационного повреждения.Изображения детектора были объединены и преобразованы в одномерные кривые рассеяния, а вклады буфера в рассеяние были вычтены с использованием программного обеспечения BsxCuBE. Дальнейшая обработка данных выполнялась автоматически с использованием онлайн-конвейера EDNA ( 33 ) для оценки качества образца и эффектов радиационного повреждения. Агрегации белков или радиационного повреждения не наблюдалось.
Данные были дополнительно проанализированы с помощью программного пакета ATSAS ( 34 ). Вкратце, первичная обработка и анализ данных проводились с использованием программ PRIMUS ( 35 ) и GNOM ( 36 ).
Теоретическое рассеяние от кристаллической структуры было рассчитано с использованием программы CRYSOL ( 37 ) (рис. S2), а молекулярные массы рассчитаны с использованием образца бычьего сывороточного альбумина в качестве стандарта.
Благодарности: Мы благодарим персонал компании SLS, X10SA за поддержку при сборе рентгеновских данных и ESRF, BM29 за поддержку при сборе данных SAXS. Мы благодарим M. Paulat, C. Schwiegk и A. Moritz за техническую помощь в производстве белка и K.Оверкамп для масс-спектров электроспрея. С. благодарит T. Gruene и G. Sheldrick за советы по уточнению кристаллической структуры и структурному анализу. К.Г. и П.Т.-М. поблагодарить R. Kuemmerle (Bruker Biospin) за измерения ЯМР на частоте 1,1 ГГц. Источник: Эта работа была поддержана Обществом Макса Планка и DFG SFB 870 (O.G.). П.Т.-М. был поддержан докторской стипендией Гумбольдта. Вклад авторов: P.T.-M. выполнен ЯМР. П.Т.-М. и К.Г. разработал парамагнитный метод ЯМР.П.Т.-М. рассчитаны структурные ансамбли. П.Т.-М. и С. выполнены измерения SAXS. К.Г. рассчитал FRET по рентгеновским структурам. T.T. и O.G. определили экспериментальные эффективности FRET. С. кристаллизовал Twitch-2B и Twitch-6 и решил кристаллические структуры. Рукопись написана всеми авторами. С. разработал проект. Конкурирующие интересы: Авторы заявляют, что у них нет конкурирующих интересов. Доступность данных и материалов: Структуры депонированы с кодом 6GEL для биосенсора Twitch-2B и 6GEZ для мутанта Twitch-2B N532F (Twitch-6).Все данные, необходимые для оценки выводов в статье, представлены в документе и / или дополнительных материалах. Дополнительные данные, относящиеся к этой статье, могут быть запрошены у авторов.
Анализ флуоресцентного резонансного переноса энергии (FRET)
Анализ флуоресцентного резонансного переноса энергии (FRET)
Мембранные белки составляют 1 / 4–1 / 3 от общего числа 30000 белков, кодируемых геномом человека.Мембранные белки играют важную роль в различных сложных и уникальных клеточных процессах, включая транспортировку материалов, распознавание клеток, иммунный ответ, передачу и регуляцию сигналов, а также передачу энергии, et.al . Почти 70% известных или исследуемых мишеней для лекарств — это мембранные белки. По-прежнему остается сложной задачей определение структур и выполнение функциональных анализов мембранных белков.
Creative Biostructure создал отличную сервисную платформу для преобразования генов мембранных белков в структуру, созданную группой опытных профессионалов.Наши услуги по предоставлению полного набора мембранных белков, включая экспрессию и очистку, кристаллизацию и определение, а также различные функциональные анализы как in vivo, и in vitro, , продвигают ваши научные исследования в ускоряющемся и динамичном темпе. Creative Biostructure может спроектировать и предоставить индивидуальный анализ Mempro ™ флуоресцентного резонансного переноса энергии (FRET) или анализ FRET для функционального исследования взаимодействий мембранных белков.
Белковые взаимодействия имеют решающее значение для сигнальных сетей мембранных белков.Однако резонансный перенос энергии флуоресценции может иметь место только в том случае, если расстояние донор-акцептор не превышает 10 нм, что делает его очень мощным инструментом для обнаружения и определения взаимодействий с мембранными белками.
Анализ флуоресцентного резонансного переноса энергии ( FRET ), один из наших наиболее передовых и желаемых методов с широким диапазоном применения, выполняет анализы для прямого определения состояния олигомеризации и степени олигомеризации мембранных белков в их естественной среде.FRET — это зависящее от расстояния взаимодействие между флуоресцентными донорно-акцепторными парами в непосредственной близости, при котором энергия флуоресценции передается от возбужденного донора к подходящей молекуле акцептора без излучения. Эффективность FRET сильно зависит от расстояния донор-акцептор и от спектров перекрытия донорного излучения и возбуждения акцептора.
Рисунок 1. Схематический график фотофизического процесса FRET (Molecules, 2012)
FRET может иметь место только в том случае, если расстояние донор-акцептор не превышает 10 нм, что делает его очень мощным инструментом для обнаружения и определения взаимодействий с мембранными белками.Creative Biostructure может предоставить платформу Mempro ™ FRET для выполнения специального структурного и функционального анализа мембранных белков.
• Mempro ™ FRET с индивидуальной парой донор-акцепторПринимая во внимание большое влияние расстояния Форстера на FRET, Creative Biostructure может помочь вам выбрать оптимальную флуоресцентную пару донор-акцептор в соответствии с вашими особенностями требование исследования мембранного белка.
Таблица 1.Популярные донорно-акцепторные пары FRET и их фотофизические свойства.
Оптимальные условия для FRET:
1. Донорно-акцепторная пара должна находиться на близком расстоянии (обычно 1–10 нм).
2. Перекрытие спектра поглощения акцептора и спектра излучения донора.
3. Ориентация донора и акцептора должна быть примерно параллельна.
FRET может обеспечить не только качественные измерения, но и количественные данные в исследованиях функции мембраны. Creative Biostructure разработала полный набор методов FRET , таких как 1) Upconversion FRET , 2) Photochromic FRET , 3) Single-Molecule-FRET , и 4) FRET Frustration et. al . Creative Biostructure — ваш компетентный и профессиональный партнер в области научных исследований для выполнения всех видов FRET-приложений мембранных белков, включая :
1. Структура и конформация мембранных белков,
2.Пространственное распределение мембранных белков,
3. Олигомеризация мембранных белковых комплексов,
4. Мембранный белок участвует во взаимодействиях рецептор / лиганд,
5. Взаимодействие между мембранными липидами и мембранными белками.
Рисунок 2. Внутримолекулярный и межмолекулярный FRET (Current Opinion in Structural Biology, 2001)
Рисунок 3. Применение сигломолекулярного FRET (J. Am. Chem. Soc., 2013)
Рисунок 4. Измерение взаимодействия между мембранами белков, липидов и лигандов по FRET (PNAS, 2013)
• Mempro ™ FRET с индивидуальными подходами к визуализации Компания Creative Biostructure разработала ряд методов для определения FRET.Обычно мы предлагаем три индивидуальных подхода, которые оказались особенно полезными, исходя из практических соображений:
1. Фотообесцвечивание донора и акцептора
FRET можно создать путем доступа к скорости обесцвечивания донора с присутствием акцептора и без него. Основными двумя преимуществами этого подхода являются: относительно простота и легкость выполнения. Требуются соответствующие комплекты фильтров и мощный источник света, позволяющий отбеливать акцептор.
2. Сенсибилизированная эмиссия
Сенсибилизированная эмиссия — это самый простой метод обнаружения FRET, и наиболее идеальным условием для этого метода является полное разделение каналов донора и акцептора и отсутствие перекрестных помех между ними.
3. Флуоресцентная микроскопия для визуализации времени жизни
Флуоресцентная микроскопия для визуализации времени жизни, также называемая FLIM, может использоваться для картирования пространственного распределения времен жизни флуорохромов как в микроскопических изображениях, так и в живых клетках. Creative Biostructure может определять точное пространственное расположение или распределение мембранных белков с высоким разрешением и специфичностью в живых клетках.
Creative Biostructure также предоставляет ряд услуг по функциональному анализу Mempro ™. Пожалуйста, свяжитесь с нами для получения подробного предложения.
Ссылки:
H. C. Ishikawa-Ankerhold, et al . (2012). Передовые методы флуоресцентной микроскопии — FRAP, FLIP, FLAP, FRET и FLIM. Молекулы , 1 7 (3): 4047-4132.
К. Чыонг и М. Икура. (2001). Использование микроскопии изображений FRET для обнаружения белок-белковых взаимодействий и изменений конформации белков in vivo. Текущее мнение в структурной биологии , 11 : 573-578.
W. Bae, и др. . (2013). Наблюдение в реальном времени за образованием множественных белков с помощью одномолекулярного FRET. J. Am. Chem. Soc ., 135 (28): 10254-10257.
C. Matsushita, и др. . (2013). Ориентация трансмембранной спирали влияет на связывание с мембраной внутриклеточного юкстамембранного домена в пептидах рецептора Neu. Proc. Natl. Акад. Sci. США, 110 (5): 1646–1651.
Только для исследовательских целей. Не предназначен для диагностического, терапевтического или какого-либо клинического использования.
Обычно используемые флуорофоры FRET способствуют коллапсу неупорядоченного белка
Значимость
Белки принимают неупорядоченные ансамбли до сворачивания, а иногда и как часть своей функции. Моделирование и исследования FRET часто описывают неупорядоченные конформации как более компактные, чем состояния случайных клубков, наблюдаемые при высоком денатуранте, тогда как малоугловое рассеяние рентгеновских лучей (SAXS) указывает, что эти конформации остаются расширенными. Устранение этого несоответствия улучшает наше понимание свойств белков, например, является ли вода достаточно плохим растворителем, чтобы вызвать неспецифический коллапс. Мы достигаем согласования, показывая, что добавление флуорофоров FRET уменьшает размеры неупорядоченного белка.Подробный анализ FRET и SAXS, наряду с учетом сокращения, индуцированного флуорофором, демонстрирует, что неупорядоченные и развернутые белки часто остаются сольватированными и расширенными без денатуранта, свойства, которые минимизируют неправильную укладку и агрегацию.
Abstract
Размеры, которые развернутые белки, включая внутренне неупорядоченные белки (IDP), принимают в отсутствие денатуранта, остаются спорными. Мы разработали процедуру анализа профилей малоуглового рассеяния рентгеновских лучей (SAXS) и использовали ее, чтобы продемонстрировать, что даже относительно гидрофобные IDP остаются почти такими же расширенными в воде, как и при высоких концентрациях денатуранта.Напротив, как показано здесь, большинство измерений резонансного переноса энергии флуоресценции (FRET) показали, что относительно гидрофобные IDP значительно сокращаются в отсутствие денатуранта. Мы используем два независимых подхода для дальнейшего изучения этого противоречия. Во-первых, с помощью SAXS мы показываем, что флуорофоры, используемые в FRET, могут вносить вклад в наблюдаемое несоответствие. В частности, мы обнаружили, что добавление Alexa-488 к нормально расширенному IDP вызывает сокращение еще на 15%, что вполне соответствует сокращению, о котором сообщалось в исследованиях на основе FRET.Во-вторых, используя нашу процедуру моделирования и анализа для точного извлечения радиуса инерции (R g ) и расстояния от конца до конца (R ee ) из профилей SAXS, мы проверили недавнее предположение, что результаты FRET и SAXS могут можно согласовать, если R g и R ee являются «несвязанными» (т. е. больше не просто пропорциональными), в отличие от случая для гомополимеров случайного блуждания. Однако мы обнаружили, что даже для развернутых белков эти две меры измерений развернутого состояния остаются пропорциональными.Вместе эти результаты предполагают, что улучшенные процедуры анализа и коррекция значительных взаимодействий, управляемых флуорофором, достаточны для согласования предыдущих исследований SAXS и FRET, обеспечивая тем самым единую картину природы развернутых полипептидных цепей в отсутствие денатурирующего агента.
Белковые нарушения являются важным компонентом разнообразных клеточных процессов (1-4). В отличие от хорошо свернутых белков, которые населяют четко определенное функциональное состояние, развернутые и внутренне неупорядоченные белки (IDP) образуют широкий набор быстро взаимопревращающихся конформаций (3⇓⇓⇓⇓ – 8) с ошибками, которые плохо изучены и трудно измерить. .Особый интерес представляет степень, в которой ВПЛ заключают контракты в физиологических условиях (т. Е. В отсутствие денатурирующих агентов). Такое сокращение может иметь широкое значение для нашего понимания сворачивания белков, взаимодействий и стабильности, а также действия денатурирующих веществ. Более того, понимание степени сжатия неупорядоченных ансамблей имеет глубокие последствия для разработки реалистичных симуляций складчатости и интерпретации малоуглового рассеяния рентгеновских лучей (SAXS) и измерений FRET (9, 10).
Наше понимание физико-химических принципов, лежащих в основе того, будет ли полипептидная цепь складываться, принимать неупорядоченный, но, тем не менее, относительно компактный ансамбль или вести себя как расширенное, полностью сольватированное, самоизбегающее случайное блуждание (SARW), недостаточно для объяснения существующих данных. Большая часть этого понимания получена из исследований белков, разворачиваемых высокими концентрациями денатурирующих веществ, таких как мочевина и гидрохлорид гуанидина (Gdn). В этих условиях все согласны с тем, что белки ведут себя как SARW с показателем Флори (ν), равным 0. 60 в соотношении R г ∝ N ν (N = длина цепи). Напротив, нет единого мнения относительно поведения ВПЛ при более низком уровне денатуранта или его отсутствии. В частности, в то время как многочисленные FRET (11⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓ – 25) и вычислительные исследования (11, 14, 18, 23, 26⇓⇓ – 29) утверждали, что расширенный неупорядоченный ансамбль обнаруживает при высоком денатуранте сокращается значительно [обычно 25–50% при переходе на низкий денатурант или без него (ν <0,5)] (11, 14, 18, 23, 26⇓ – 28, 30⇓⇓⇓⇓ – 35), аналогичное число исследований SAXS сообщают о незначительном сокращении или его отсутствии при тех же условиях (10, 36–41).
Разнообразные недавние исследования пытались примирить это несоответствие (Fig. 1 A ), которое имеет глубокие последствия для физики сворачивания белков. Применение более реалистичных симуляций и аналитических моделей привело к тому, что расстояния, полученные с помощью FRET, имеют меньшую денатурирующую зависимость (Рис. 1 A , Bottom ) (40, 42⇓ – 44). Параллельно улучшены данные и анализ SAXS, включая использование безразмерного графика Кратки, чтобы подчеркнуть изменения ν, а не R г (что важно, так как добавление флуорофоров на концах цепи увеличит R г из-за их массы), также свидетельствовали о незначительном сокращении ниже 2 M Gdn (рис.1 A , снизу ) (45, 46). Тем не менее, значительные расхождения сохраняются и в отсутствие денатуранта, даже когда одни и те же подходы используются для анализа одного и того же белка в идентичных условиях (рис. 1, SI, приложение , рис. S1 и S2, и Movie S1). Недавние исследования показали, что это несоответствие может быть устранено с помощью целостного анализа (42, 43), подчеркивая разделение между обычно фиксированной, пропорциональной зависимостью между R g (определено из измерений SAXS) и R ee (определено из Измерения FRET) без необходимости вызывать возмущение из-за присутствия флуорофоров (42).
Рис. 1.Улучшенные процедуры анализа не устраняют расхождения между измерениями IDP, полученными с помощью SAXS и FRET. ( A ) Данные R17 SAXS и FRET (из ссылки 43). ( A , Top ) Сравнение результатов, полученных при подборе данных FRET в предположении гауссовой цепи и данных SAXS с использованием приближения Гинье. ( A , Bottom ) Данные SAXS и FRET подходят с использованием нашего метода анализа MFF и аналогичного подхода (45). Черная линия лучше всего подходит гиперболической линии тренда; серые линии — 95% доверительные интервалы.( B ) Профили SAXS для R17 ( слева, , данные из ссылки 43) и N98 ( справа, , данные из ссылки 42), согласованные с MFF, значительно отличаются от ожидаемого поведения с использованием значений ν, взятых из аналогичный анализ данных FRET. Сплошные линии обозначают область, используемую в процедуре подгонки; пунктирные линии представляют экстраполяцию к более высоким значениям q. Хотя подходило ~ 500 точек на кривую рассеяния (серый цвет), большинство показанных данных были объединены только для целей презентации (черные точки).Повороты или изгибы данных при более высоких значениях qR g , скорее всего, связаны с ошибками при вычитании буфера, что более сложно при высоком q, низкой концентрации образца и / или пониженном контрасте рассеяния (например, при высоком денатуранте, см. Материалы и методы ). ( C ) Тенденции гидрофобности (Kyte – Doolittle) в зависимости от ν в отсутствие денатуранта, полученного из SAXS, путем применения MFF к опубликованным данным, собранным из последовательностей складываемых белков (42, 45, 67⇓⇓⇓⇓⇓⇓⇓⇓⇓ № – 82).Также показаны результаты исследований FRET, рассчитанные как в исх. 20 для опубликованных данных (20, 42). Красная линия тренда для данных FRET из исх. 20. Черная линия тренда лучше всего соответствует показанным результатам SAXS. ( C , Top ) Гистограмма гидрофобности репрезентативных белков в PDB (набор данных из ссылки 45). ( D ) Кумулятивные распределения ν для репрезентативных белков из PDB, выведенные из линий тренда, показанных в C .
Чтобы всесторонне сравнить результаты исследований SAXS и FRET, мы собрали опубликованные наборы данных для различных ВПЛ (рис.1 C и D и SI Приложение , Таблица S3). При анализе с использованием нашего моделирования и молекулярного форм-фактора (MFF) исследования SAXS неизменно находят ν> 0,53 (среднее значение = 0,55), тогда как ν, полученное из исследований FRET, обычно падает ниже 0,50 (среднее значение = 0,46). Это расхождение 0,09 является существенным по отношению ко всему диапазону ν, который варьируется только от 0,6 (для SARW) до 0,5 (где внутрицепочечные взаимодействия одинаково благоприятны для взаимодействий растворитель-цепь) до 0,33 (для уплотнения в сферу; это несколько выше для несферических компактных состояний).В целом результаты SAXS предполагают, что конформационные ансамбли большинства развернутых белков и IDP с белковоподобным составом последовательностей сильно расширены (ν> 0,5) и вода является хорошим растворителем, тогда как FRET предполагает иное (рис. 1 D ). ).
Приведенные выше и другие результаты привели нас и других к поиску факторов, которые могут способствовать стойкому несоответствию между представлениями измерений IDP на основе SAXS и FRET (9, 29, 39, 42, 43, 47⇓⇓ – 50 ). Одна альтернатива, обозначенная здесь «гипотеза разделения гетерополимера», утверждает, что гетерополимерная природа белков приводит к изменению во взаимосвязи между R g и R ee , взаимосвязь, которая является фиксированной (т.е.е., независимо от длины цепи) в соотношении 6,3 для гомополимера SARW. Недавнее моделирование предполагает, что это соотношение не может быть зафиксировано для развернутых белков, которые более сложны, чем гомополимеры (29, 39, 42, 43). Эта «развязка» предлагает возможное объяснение несоответствия между SAXS (который чувствителен к R g ) и FRET (который чувствителен к R ee ). Напротив, вторая гипотеза, обозначенная здесь «гипотеза взаимодействия флуорофора», предполагает, что в отсутствие денатуранта флуорофоры FRET взаимодействуют друг с другом и / или с полипептидной цепью, вызывая конформационный ансамбль конструкций, модифицированных флуорофором, к сокращаются больше, чем в отсутствие этих флуорофоров (9, 45, 47, 50, 51).
Здесь мы обращаемся как к гипотезе разделения, так и к гипотезе взаимодействия флуорофоров. Мы использовали SAXS, чтобы охарактеризовать радиус вращения IDP до и после добавления обычно используемого флуорофора. Мы обнаружили, что такая модификация флуорофора изменяет конформационный ансамбль в отсутствие денатуранта, уменьшая его размеры, измеренные методом SAXS, на 10–20%. В сочетании с улучшенными процедурами анализа с использованием реалистичных смоделированных ансамблей как для SAXS, так и для FRET, этого индуцированного флуорофором коллапса достаточно для согласования результатов исследований SAXS и FRET.Параллельно с этим мы представляем измерения SAXS на полиэтиленгликоле (PEG), подтверждающие предыдущие сообщения о том, что добавление флуорофоров также вызывает сжатие этого полимера SARW (9), открытие, которое недавно было подвергнуто сомнению (42). Кроме того, мы показываем, что SAXS может извлекать R g , ν и R ee с точностью выше 97% при анализе с использованием нового MFF, разработанного для гетерополимеров. Эти модели достаточно точны, чтобы воспроизвести данные рассеяния без необходимости выбора только подансамбля конформаций, как это обычно используется в других процедурах подбора данных.Наконец, мы демонстрируем степень, в которой можно использовать небольшие отклонения от идеальности в данных SAXS, чтобы сделать вывод о смещениях внутри гетерополимерного конформационного ансамбля.
Результаты
Флуорофорная маркировка вызывает коллапс.
Чтобы напрямую проверить гипотезу взаимодействия флуорофора, мы измерили профили SAXS немодифицированного IDP и того же самого IDP, сайт-специфически модифицированного одной или двумя копиями обычно используемого флуорофора FRET Alexa-488. Мы выбрали этот флуорофор, потому что он относительно небольшой и гидрофильный, что снижает вероятность образования взаимодействий, которые могут изменить развернутый ансамбль, по сравнению с большинством других флуорофоров FRET (43).В качестве тестового белка мы использовали PNt, IDP с хорошим поведением, содержащий 334 аминоконцевых остатка пертактина (52). Для получения PNt, модифицированного моно- и двойным флуорофором, мы использовали тиол-реактивный Alexa-488 для модификации остатков цистеина в положении 117 (PNtC-Alexa488) или положениях 29 и 117 (PNtCC-Alexa488). В качестве контроля мы использовали немодифицированный родительский белок (PNt) и алкилирование для получения конструкций без флуорофоров (PNtC-Alkd и PNtCC-Alkd).
Добавление Alexa-488 снижает размеры PNt, измеренные методом SAXS, как в отсутствие Gdm, так и при промежуточных концентрациях (рис.2 A и SI Приложение , Таблица S1). В частности, при переходе от 4 к 0 M Gdn, R g и ν уменьшаются почти вдвое больше для модифицированного флуорофором PNtCC-Alexa488, чем для PNtCC-Alkd или PNt (рис.2 B и SI Приложение ). , Таблица S1). Эти данные указывают на то, что присутствие Alexa-488 приводит к сокращению конформационного ансамбля PNt. Следует отметить, что в то время как 2 M Gdn является хорошим растворителем (ν> 0,50) для немеченого белка, мечение флуорофором приводит к измеримым внутримолекулярным взаимодействиям даже при этой относительно высокой концентрации денатуранта (рис.2 B , Правый ). В соответствии с общим происхождением эффекта, величина этого зависящего от денатуранта расширения качественно аналогична наблюдаемой FRET для множества других белков (Fig. 1 B ) (42, 43). Мы также наблюдали зависимое от флуорофора уменьшение среднего R g и ν для конструкции с одной меткой PNtC-Alexa488 (рис. 2), что указывает на то, что, помимо предполагаемых взаимодействий флуорофор-флуорофор, взаимодействия флуорофор-белок также вносят вклад в наблюдаемое сокращение.
Рис. 2.Добавление Alexa-488 изменяет рассеяние PNt. ( A ) Безразмерные графики Кратки для PNt дикого типа (серый), PNtCC-алкилированного (черный), PNtC-Alexa488 (одиночная метка, синий) и PNtCC-Alexa488 (двойная метка, красный) в 0,15 M KCl, 2 M Gdn и 4 M Gdn. Планки погрешностей представляют собой распространенную ошибку из SD, рассчитанного с учетом статистики подсчета (Пуассона), где σ = √counts. Данные были подогнаны и отображены в соответствии с процедурой, описанной на рис. 1 (см. Также Материалы и методы ).Результаты для алкилированного PNt неотличимы от PNt дикого типа, но существуют значительные различия для PNt, меченного флуорофором Alexa-488. ( B ) R g и ν как функция концентрации Gdn. Данные серых кривых из исх. 45.
Следует отметить, что это сокращение происходит, несмотря на установившиеся значения анизотропии флуоресценции для PNtCC-Alexa488, равные 0,11 и 0,08 в 0 и 2 M денатуранте, соответственно ( SI, приложение , таблица S2), ниже порогового значения, которое обычно рассматривается в качестве доказательства. свободного вращения прикрепленных к белкам флуорофоров (42, 53).Из этих результатов мы заключаем, что добавление даже одного из более мелких, более гидрофильных флуорофоров, обычно используемых для измерений FRET, может значительно уменьшить размеры неупорядоченной полипептидной цепи (42, 43, 53), наблюдение, которое помогает согласовать SAXS – FRET несоответствие.
Размеры ПЭГ, полученные методом SAXS, не зависят от концентрации полимера.
В более раннем исследовании мы сообщили, что добавление Alexa-488/594 к PEG приводило к денатурант-зависимому изменению FRET (9), аналогичному тому, которое наблюдается в развернутых белках.Однако сжатия не наблюдалось, когда эквивалентный немеченый полимер исследовали с помощью малоуглового рассеяния нейтронов. Было высказано предположение, что высокие (3 мМ) концентрации ПЭГ, использованные в этом исследовании рассеяния, маскируют то, что в противном случае было бы зависимым от денатуранта изменением R g (42). Чтобы проверить это, мы измерили профили SAXS в диапазоне концентраций ПЭГ и денатуранта и не обнаружили никаких доказательств значительного изменения размеров этого высокогидрофильного полимера (рис.3). Аналогичным образом, во всех условиях мы наблюдали показатель Флори, равный 0,60, что дополнительно подтверждает, что ПЭГ ведет себя как SARW независимо от концентрации денатуранта. Эффекты флуорофора, а не сокращение цепи, таким образом, остаются простейшей интерпретацией денатурант-зависимых изменений FRET, ранее наблюдавшихся для меченных флуорофором вариантов этого полимера (9).
Рис. 3. ПрофилиSAXS ПЭГ не зависят от денатуранта. ( A ) Безразмерные графики Кратки для ПЭГ 24 кДа при 0.5 мМ и 0,05 мМ в 0,15 M KCl, 2 M Gdn и 4 M Gdn. Нормализованный профиль рассеяния PEG 24 кДа не изменяется от 0 до 4 M Gdn в широком диапазоне концентраций PEG. Для ясности профили рассеяния смещены по вертикали. Данные были подогнаны и отображены с использованием процедуры, описанной на фиг. 1. ( B ) R g и ν как функции концентрации Gdn для 0,5 мМ и 0,05 мМ PEG. Открытые и закрытые точки смещены по горизонтали для ясности.
Проверка гипотезы о разделении гетерополимеров.
Взятые вместе, вышеупомянутые наблюдения показывают, что флуорофоры, добавленные к IDP, приводят к значительному сокращению, что способствует различным выводам, сделанным из предыдущих исследований SAXS и FRET. Эти наблюдения, однако, не исключают возможность того, что, как утверждалось ранее (42), разделение гетерополимера (т. Е. Связь между R ee и R g , отклоняющаяся от фиксированной пропорциональности, наблюдаемой для гомополимеров) также может вносить свой вклад. к расхождению SAXS – FRET.
Чтобы исследовать, приводит ли конформационный ансамбль реалистичного гетерополимера к значительной непропорциональности между R ee и R g , мы использовали Upside, наши модели Cβ-уровня (54, 55), чтобы смоделировать рассеяние для развернутых ансамблей. 50 белков из 250–650 остатков, случайно выбранных из банка данных по белкам (PDB). В своей простейшей версии Upside представляет собой каркас полипептида с шестью атомами на остаток (N, Cα, C, H, O и Cβ) и использует зависимые от соседей карты Рамачандрана, полученные из библиотеки катушек (56).Такие модели способны воспроизводить R g и NH остаточные диполярные связи (RDC), наблюдаемые в развернутых белках; эти два параметра чувствительны к глобальным и локальным свойствам магистрали соответственно (57, 58). Для создания ансамблей гетерополимеров мы отнесли каждый Cβ как гидрофобный, так и полярный (H / P). Благоприятные профили взаимодействия (форма, показанная в ссылке 45, SI, приложение , рис. S3 A ) вводятся только между атомами Cβ гидрофобных остатков, а самопереключение распространяется на все атомы.Для каждой из 50 последовательностей мы использовали 30 различных сил взаимодействия Cβ. После создания этих 1500 ансамблей H / P конформаций скелета мы добавили явные боковые цепи (59), а затем рассчитали профили рассеяния гидратированных версий белков (60).
Для этих 1500 ансамблей мы сравнили истинные значения R g , ν и R ee , рассчитанные непосредственно из атомных координат, со значениями, полученными путем аппроксимации имитационного рассеяния (с добавлением реалистичных случайных ошибок) с использованием нашего оригинального MFF, разработанного для гомополимеров (45).Как и в случае гомополимеров, мы находим, что значения R ee и R g , наблюдаемые в этих симуляциях, пропорциональны (т.е. остаются связанными) с коэффициентом корреляции R 2 = 0,99 (рис. 4 А ). Затем мы аппроксимируем смоделированные профили рассеяния, чтобы определить: R g соответствует , ν соответствует и R ee соответствует , причем последнее получено с использованием соотношения (R ee / R g ) 2 = G (ν), где G (ν) была откалибрована с использованием наших исходных моделей гомополимеров ( SI Приложение , рис.S1 D ). Мы обнаружили среднее абсолютное отклонение всего 1,3 Å, 0,011 и 4,2 Å соответственно, что представляет собой среднюю абсолютную ошибку 3%, 2% и 4% для R g , ν и R ee ( SI Приложение , рис. S3). Наибольшие отклонения наблюдаются для более компактных конструкций; для более протяженных конформаций (ν> 0,54) ошибка составляет ∼2%. Корреляция R g fit и R ee fit осталась высокой, R 2 > 0.99.
Рис. 4. Моделированиеобнаруживает сильную связь между R g и R ee , а профили SAXS являются надежным показателем R g , ν и R ee , а также дают информацию о степени неоднородности. ( A ) Связывание между R g и R ee , полученное из смоделированных ансамблей с использованием модели H / P (черный) или нашего потенциала, используемого для сворачивания белков (красный). ( B — D ) Сравнение R g , ν и R ee , рассчитанных на основе координат смоделированных ансамблей, со значениями, полученными при подгонке с нашим MFF het (R g , ν), с SAXS профили ансамблей со случайно добавленными экспериментальными ошибками.( E ) Отклонения в ν на концах наблюдаются для гетерополимеров с менее хорошо смешанными H / P-паттернами (полученными с помощью аппроксимации наклона зависимости внутрицепочечного расстояния R | i — j | от разделение последовательностей, | i — j |, где | i — j |> N / 2). ( F ) Эффекты Δν end при различных значениях ν. ( G ) Соответствие экспериментальных данных MFF (R g , ν, Δν конец ) демонстрирует, что мечение флуорофора и образование петли через дисульфидные связи в PNt вызывает значительные и измеримые отклонения.
Чтобы еще больше уменьшить небольшую ошибку, связанную с применением нашего MFF, полученного из гомополимеров, к рассеянию гетерополимеров, мы создали новый молекулярный форм-фактор, MFF het , используя моделирование H / P, описанное выше, и ту же общую процедуру. как описано в исх. 45. Применение этого слегка модифицированного MFF het снижает ошибки в подогнанных R g , ν и R ee до 0,5, 0,005 и 2,7 Å, соответственно, что составляет 1%, 1% и 2% среднего значения. абсолютная погрешность (рис.4 B — D ). Эти результаты демонстрируют, что наша процедура анализа на основе MFF возвращает точные значения для R g и R ee , которые остаются пропорциональными (т. Е. Связанными) даже для гетерополимеров.
Далее мы рассмотрели, насколько наши выводы чувствительны к деталям нашей модели или энергетической функции. Чтобы проверить это, мы провели дополнительное моделирование с использованием более подробной версии алгоритма Upside, который способен сворачивать de novo белки с <100 остатками (54, 55).В этой версии каждая из 20 боковых цепей представлена многопозиционным эксцентриковым валиком, который позволяет детально упаковать сердечник. Энергетическая функция включает водородные связи, взаимодействия боковая цепь-боковая цепь и боковая цепь-основная цепь, аминокислотно-зависимые потенциалы двугранного угла и член десольватации. Используя эту модель, мы сгенерировали 30 ансамблей для каждого из шести белков (PNt и пять других белков, случайно выбранных из 50, описанных выше), используя короткие симуляции, которые выбирают только развернутое состояние.Мы получили ансамбли, выполнив моделирование обмена репликами в диапазоне температур от 280 до 320 К, как описано ранее (54, 55). Значения ν, полученные из этих ансамблей, находились в диапазоне от 0,4 до 0,6 в зависимости от температуры моделирования. Примечательно, что значения R ee , R g и ν, полученные непосредственно из этих более реалистичных ансамблей, находятся в хорошем согласии со значениями, определенными после подгонки с нашим MFF het , с почти такой же точностью, что и для более простого H / P-ансамбли (рис.4 A — C , красные точки). Кроме того, непосредственно вычисленные значения для R g и R ee для ансамблей остаются пропорциональными с коэффициентом корреляции R 2 = 0,99. Следовательно, наш вывод, что R g и R ee остаются связанными даже для гетерополимеров, устойчив к деталям нашего моделирования.
Измерение отклонений от идеальности в гетерополимерах.
MFF het точно отражает общие размеры неупорядоченных гетерополимеров для белковоподобных последовательностей H / P и может использоваться в большинстве случаев.Тем не менее, небольшие, но измеримые отклонения наблюдаются для белков в нашем тестовом наборе с менее хорошо смешанными паттернами H / P ( SI, приложение , рис. S4). Эти различия можно увидеть на графике распределения внутримолекулярных расстояний, где наклон на расстояниях разделения | i — j | > N / 2 может отличаться от среднего наклона, который определяет глобальное значение ν (рис. 4 D ). Определим изменение наклона как Δν конец (рис. 4 D ). Отрицательные значения Δν end коррелируют с преобладанием гидрофобных остатков на концах полипептидной последовательности (рис.4 D и SI Приложение , рис. S4 C ) и с отклонениями в G (ν) ( SI Приложение , рис. S4 A ) ( R 2 ∼ 0,84). Профиль SAXS наиболее чувствителен к Δν end при низком qR g (рис. 4 E ).
Для количественной оценки неидеальности гетерополимеров на основе данных SAXS мы создали более общий трехпараметрический форм-фактор, MFF general (R g , ν, Δν end ) (рис.4 E и F и Movie S2). Чтобы продемонстрировать его способность давать полезную информацию, мы подобрали данные из PNt, PNtCC-Alexa488 и циркулярного (с дисульфидными связями) PNtCC при 2 M Gdn (рис. 4 F ). Δν end уменьшается с ∼0 для PNt до приблизительно -0,1 для PNtCC-Alexa488 и приблизительно до -0,2 для кольцевых PNtCC, что согласуется с увеличением взаимодействий на аминоконце цепи. Менее резкие возмущения, такие как менее хорошо смешанные паттерны H / P и более короткие аминокислотные последовательности с более низким полезным диапазоном qR g , могут потребовать более высокого отношения сигнал / шум для измерения Δν end .Тем не менее, эти данные демонстрируют потенциал SAXS для выявления для неупорядоченных полимеров зависимых от последовательности отклонений от поведения гомополимера (рис. 4 E и F ), при этом все еще точно измеряя R g и ν (рис. 4 ). А — С ).
В пределе бесконечной длины цепи масштабный показатель Флори ν имеет значения 0,33, 0,50 и 0,60, соответствующие глобулам, случайным блужданиям и SARW, соответственно. Тем не менее, мы и другие придерживаемся прагматического подхода и позволяем ν принимать промежуточные значения; е.g., как получено из наклона графиков масштабирования g RR в зависимости от длины цепи или ij RR в зависимости от | i — j | ( SI Приложение , рис. S6). В поддержку этого подхода можно наблюдать при увеличении силы внутрицепочечного взаимодействия уменьшение как I (q) при высоком q, так и наклона графиков масштабирования для белков из 100-1000 остатков (Fig. 4). Соответственно, мы считаем, что использование значений ν, выходящих за рамки трех канонических значений, обеспечивает законный и практичный подход для сравнения качества растворителей для систем разного размера и классификации, является ли вода хорошим или плохим растворителем для полимеров конечной длины.
Обсуждение
В то время как измерения SAXS указывают на то, что вода является хорошим растворителем (ν> 0,5) для развернутых полипептидов, исследования на основе FRET обычно сообщают об обратном (ν <0,5). Однако мы обнаруживаем, что сочетание улучшенных процедур анализа и более тщательного рассмотрения взаимодействий флуорофор-флуорофор и / или флуорофор-цепь достаточно для объяснения этого несоответствия. Эти находки приводят к единой картине, в которой развернутое состояние белков представляет собой SARW при высоком денатуранте и сжимается лишь незначительно (намного меньше, чем ранее сообщалось в литературе FRET) в отсутствие денатуранта.В частности, мы обнаружили, что мечение с помощью Alexa-488, обычно используемого флуорофора FRET, может изменить конформационный ансамбль IDP, уменьшая R g и ν даже при низкой анизотропии флуоресценции относительно принятых пределов для свободного вращения флуорофора ( 42, 53). В сочетании с предыдущими исследованиями (9) аналогичные выводы можно сделать для PEG, известного SARW. Эти результаты, наряду с нашим предыдущим результатом о том, что неупорядоченные цепи претерпевают умеренное расширение денатуранта (45), и улучшенные методы извлечения значений R g из данных FRET (40, 42–44), теперь обеспечивают достаточную основу для устранения несоответствий. между SAXS и FRET по размерам неупорядоченных белков.Фундаментальный и важный вывод полученной единой картины состоит в том, что даже в отсутствие денатурирующего агента вода остается хорошим растворителем для большинства развернутых белков.
Наши данные об эффектах, вызванных флуорофором, согласуются с предыдущими выводами о том, что молекулярные размеры, выведенные из FRET, могут зависеть от используемой пары флуорофоров, при этом более гидрофобные флуорофоры приводят к большему сокращению (43). МД-моделирование с парой флуорофоров Alexa-488/594, например, привело к 10% сокращению IDP даже в 1 М мочевины (61).Аналогичным образом, недавнее исследование показало, что сигналы одномолекулярного FRET (smFRET) как от ДНК, так и от PEG зависят от условий растворителя, при которых размеры цепей, как ожидается, будут инвариантными (51). Однако, явно не согласившись с нашими данными, Fuertes et al. (42) провели измерения SAXS на пяти IDP с и без Alexa-488/594 и пришли к выводу, что в среднем изменения, наблюдаемые при добавлении флуорофоров, были минимальными. Однако при рассмотрении каждого белка в отдельности различия кажутся значительными по сравнению с узким диапазоном возможных значений.В частности, для пяти белков, охарактеризованных в этом исследовании, ν без метки — ν с меткой = 0,08, 0,03, 0,03, -0,02 и -0,04 (или 0,09, 0,06, 0,03, -0,02 и -0,08 при анализе с использованием наши процедуры; SI Приложение , рис. S5). Хотя Fuertes et al. (49) утверждают, что только один белок (NLS) демонстрирует индуцированное флуорофором сокращение, на самом деле четыре из пяти протестированных белков имели статистически значимые индуцированные флуорофором изменения в ν, причем более половины из них демонстрировали сокращение, индуцированное флуорофором (42). по величине, аналогичной сокращению, которое мы наблюдали для меченного флуорофором PNt в воде (45) ( SI Приложение , рис.S5). Вместе эти данные подтверждают последовательную картину возмущений, вызванных флуорофором, которые вносят свой вклад в различия в величине и денатурирующей зависимости R g , полученные с помощью SAXS и FRET.
Другой фактор, который, как предполагалось, способствовал расхождению между результатами SAXS и FRET, — это отклонения от пропорциональной зависимости между R g и R ee , которые могут возникнуть при анализе гетерополимеров по сравнению с гомополимерами (42). В основе этой точки зрения лежит наблюдение, что если переоценить ансамбль (т.е., рассчитывает R g с использованием только подмножества конформаций), многие возможные значения R ee согласуются с любым заданным R g (и наоборот). Вместо того, чтобы выбирать подансамбль конформаций для соответствия паре параметров, мы выбрали альтернативный подход (45). С самого начала мы генерируем физически правдоподобные ансамбли, создаем MFF, используя все эти ансамбли, и проверяем, соответствует ли он данным в целом. Мы обнаружили, что наша MFF точно соответствует всему профилю рассеяния (а не только R g ), что обеспечивает надежную поддержку нашей процедуры.Поскольку мы можем вычислить значения R g и R ee непосредственно из базовых ансамблей, у нас есть процедура для получения этих двух параметров путем подгонки данных SAXS с нашим MFF. Мы обнаружили, что для реалистичных денатурированных ансамблей складываемых последовательностей моделируемые пары R g и R ee , а также их аналоги, определенные из профилей рассеяния, пропорциональны ( R 2 > 0,99). Это оставляет красители как источник остающегося несоответствия между SAXS и FRET.
Используемый нами MFF несовершенен в том смысле, что несколько разные ансамбли могут быть подобраны с использованием одних и тех же параметров R g и ν. Но для этих двух параметров ошибка очень мала по сравнению с их истинными значениями (Рис. 4 A — C ). Учет эффектов гетерополимера не меняет этого вывода. Из этих результатов мы заключаем, что SAXS хорошо подходит для извлечения как R g , так и R ee для неупорядоченных гетерополимеров, избегая при этом потенциальных артефактов из-за взаимодействий флуорофора с полипептидными цепями.Этот вывод не отрицает возможности FRET для измерения динамики, связывания и конформационных изменений; Однако в нем подчеркивается, что следует проявлять осторожность при использовании FRET для определения количественных расстояний в исходной немеченой биомолекуле.
Почти дюжина наборов данных IDP SAXS, представленных здесь, и ранее (45), как было показано, хорошо подходят для нашего общего MFF ( SI, приложение , таблицы S1 и S3). Это открытие предполагает, что взаимодействия, приводящие к сокращению цепи, распространяются по белковым последовательностям.Водорастворимые, хорошо уложенные белковые последовательности обычно представляют собой хорошо перемешанные гетерополимеры с относительно небольшими участками последовательных гидрофобных остатков (62). Эти хорошо перемешанные последовательности имеют тенденцию вести себя как гомополимеры при измерении глобальными методами с низким разрешением, такими как SAXS. Действительно, мы продемонстрировали, что при достаточном качестве данных плохо смешанные последовательности можно идентифицировать по их отклонению от нашего MFF (Рис. 4 D — F ). Большие отклонения могут возникать у некоторых IDP, особенно с частичным сворачиванием, необычным формированием паттерна последовательности (например.g., блок-сополимеры) и / или в условиях тесноты, которые могут выполнять определенные функции (63, 64).
Представленная здесь унифицированная картина, касающаяся исследований SAXS и FRET развернутого состояния в отсутствие денатуранта, укрепляет мнение о том, что вода является хорошим растворителем для большинства развернутых полипептидов, свойство, которое должно уменьшать неправильную укладку и агрегацию, одновременно облегчая синтез и транспорт. То, что большинство белков, тем не менее, легко сворачивается в воде, предполагает, что взаимодействия, управляющие сворачиванием, являются более стабилизирующими, т.е.е. преодолеть способность воды сольватировать развернутое состояние — чем те, которые способствуют неспецифическому коллапсу. Действительно, наблюдение, что, несмотря на минимальные доказательства значительного сокращения развернутого состояния даже при полном отсутствии денатуранта, некоторые белки остаются стабильно свернутыми до 6 M Gdn (41, 65), предполагает, что нативные взаимодействия гораздо более благоприятны, чем любые другие. неспецифические взаимодействия, связанные с коллапсом. Однако, учитывая высокоспецифический характер взаимодействий, образующихся в нативных белках, их способность преодолевать сольватацию развернутой цепи, возможно, не удивительна.
Материалы и методы
PNtCC и PNtC были экспрессированы в Escherichia coli BL21 (DE3) pLysS и очищены от телец включения, как описано ранее (45, 52, 66), со следующими модификациями. После солюбилизации телец включения конструкции PNt повторно укладывали в 50 мМ Tris pH 7,2 с 50 мМ β-меркаптоэтанола (βME). Перед заключительной стадией эксклюзионной хроматографии к исходному белковому раствору добавляли 20 мМ βМЕ.
Дополнительную информацию об алкилировании белков и маркировке Alexa-488, а также измерениях стационарной анизотропии, анализе данных SAXS и моделировании можно найти в приложении SI .
Примечание добавлено в Proof.
Во время обзора было опубликовано исследование, в котором флуорофоры участвовали в усилении аффинности связывания между двумя IDP (83).
Благодарности
Мы благодарим Шриниваса Чакраварти и М. Чемпиона за их помощь в области SAXS и масс-спектрометрии соответственно; и О. Бильсель, Х. С. Чан, С. Такахаши, Р. Бест, Р. Паппу, Д. Тирумалай, Ю. Бай, А. Холхаус, Э. Мартин и Б. Шулер за полезные обсуждения. Работа поддержана грантом NIH Grants GM055694 (Т.R.S.) и GM130122 (для T.R.S. и P.L.C.), Фонд W. M. Keck Foundation (P.L.C.) и Национальный научный фонд гранты GRF DGE-1144082 (для J.A.R.) и MCB 1516959 (для C.R. Matthews, который финансировал периодические встречи между нашими лабораториями). Использование Усовершенствованного источника фотонов, пользовательского объекта Управления науки, находящегося в ведении Управления науки Министерства энергетики (DOE) Аргоннской национальной лабораторией, поддерживалось Министерством энергетики в рамках контракта DEAC02-06Ch21357. Этот проект поддержали NIH 2P41RR008630-18 и 9 P41 GM103622-18.
Сноски
Вклад авторов: J.A.R., M.A.B., K.W.P., P.L.C. и T.R.S. спланированное исследование; J.A.R., M.A.B., A.M.Z., P.L.C. и T.R.S. проведенное исследование; J.A.R., M.A.B., P.L.C. и T.R.S. внесены новые реагенты / аналитические инструменты; J.A.R., M.A.B., P.L.C. и T.R.S. проанализированные данные; и J.A.R., M.A.B., K.W.P., P.L.C. и T.R.S. написал газету.
Авторы заявляют об отсутствии конфликта интересов.
Эта статья представляет собой прямое представление PNAS.
Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813038116/-/DCSupplemental.
Сверхвысокая эффективность FRET NaGdF4: Tb3 + -Роза Бенгальский биосовместимый нанокомпозит для применения в фотодинамической терапии с возбуждением рентгеновскими лучами, биоматериалы
Ограничение глубины проникновения света делает недействительным применение фотодинамической терапии при глубоко расположенных опухолях.Фотодинамическая терапия с возбуждением рентгеновскими лучами (X-PDT), которая основана на возбужденных рентгеновскими лучами люминесцентных наночастицах (XLNP), обеспечивает новую стратегию для PDT в глубоких тканях. Однако используемая высокая доза рентгеновского излучения и неспецифическая цитотоксичность нанокомпозита наночастицы-фотосенсибилизатор (NPs-PS) затрудняют применение in-vivo X-PDT. Для решения этих проблем был разработан простой и эффективный нанокомпозит NPs-PS с использованием наночастиц β-NaGdF 4 : Tb 3+ и широко применяемого PS под названием Rose Bengal (RB).Благодаря идеально согласованному спектру излучения НЧ и поглощения РБ при возбуждении рентгеновскими лучами и ковалентного сопряжения большого количества РБ на поверхности НЧ для минимизации расстояния передачи энергии, система продемонстрировала сверхвысокую эффективность FRET до 99,739%, что приводит к максимальное производство синглетного кислорода для ФДТ со значительно повышенной противоопухолевой эффективностью. Посредством модификации поверхности НЧ 2-аминоэтилфосфоновой кислотой превосходная биосовместимость была достигнута даже при высокой концентрации 1 мг / мл.Было обнаружено, что эффективность in vivo X-PDT составляет около 90% от ингибирования роста опухоли HepG2 с дозой рентгеновского излучения всего 1,5 Гр, что показывает лучшую противоопухолевую эффективность при том же уровне дозы рентгеновского излучения, о котором сообщалось до сих пор. Настоящая работа обеспечивает перспективную платформу для in vivo X-PDT в глубоких опухолях.
中文 翻译 :
超高 FRET 效率 NaGdF 4 : Tb 3+ — 红 生物相容性 纳米 复合 用于 X 射线 激发 光 动力 疗法 的 应用
深度 的 限制 光 动力 疗法 部 肿瘤 中 的 应用 无效。 基于 X 的 发光 纳米 子 (XLNP) 的 X 射线 激发 动力 (X-PDT) 为 深 部 组织 中的 策略。 然而 , 的 高 X 射线 剂量 纳米 颗粒 光敏剂 纳米 复合 (NPs-PS) 的 非 特异性 细胞 毒性 阻碍 阻碍 了 体内 X-PDT。 为了 一个 的 , Β-NaGdF 的 NP-PS 纳米 复合 材料 4 : Tb 的 3+ 纳米 颗粒 和 被 使用 的 称为 孟加拉 (RB) PS 在 X 激发 下 , NPs , RB 的 光谱 完全 , 并 在 NP 价 结合 了 大量 RB 以 最小 化 能量 转移 距离 , 该 系统 出 高达 99.739 的 实现 抗 肿瘤 1 мг / mL 的 高 浓度 的 生物相容性 的 生物相容性. X 射线 具有 的 抗 肿瘤 功效 的 工作 为 深 部 肿瘤 的 体内 X-PDT 一个 希望 的 平台。
Флуоресцентная микроскопия с резонансным переносом энергии (FRET) — вводные понятия
Вводные понятия
Точное расположение и природа взаимодействий между конкретными молекулярными видами в живых клетках представляет большой интерес во многих областях биологических исследований, но исследованиям часто мешает ограниченное разрешение инструментов, используемых для изучения этих явлений.Обычная широкопольная флуоресцентная микроскопия позволяет локализовать флуоресцентно меченые молекулы в пределах оптического пространственного разрешения, определяемого критерием Рэлея, примерно 200 нанометров (0,2 микрометра). Однако для понимания физических взаимодействий между белками-партнерами, участвующими в типичном биомолекулярном процессе, относительная близость молекул должна быть определена более точно, чем позволяют традиционные методы оптической визуализации с дифракционным ограничением. Метод резонансной передачи энергии флуоресценции (чаще обозначаемый аббревиатурой FRET ) в применении к оптической микроскопии позволяет определять сближение двух молекул в пределах нескольких нанометров (см. Рисунок 1), расстояние, достаточно близкое для происходить молекулярные взаимодействия.
Типичные методы флуоресцентной микроскопии основаны на поглощении флуорофором света на одной длине волны (возбуждение) с последующим испусканием вторичной флуоресценции на более длинной длине волны. Длины волн возбуждения и излучения часто отделены друг от друга на десятки и сотни нанометров. Маркировка клеточных компонентов, таких как ядра, митохондрии, цитоскелет, аппарат Гольджи и мембраны, специфическими флуорофорами позволяет их локализовать в фиксированных и живых препаратах.Путем одновременного мечения нескольких субклеточных структур отдельными флуорофорами, имеющими отдельные спектры возбуждения и испускания, можно использовать специальные комбинации флуоресцентных фильтров для изучения близости меченых молекул в пределах одной клетки или участка ткани. С помощью этого метода молекулы, которые расположены ближе друг к другу, чем предел оптического разрешения, кажутся совпадающими, и эта очевидная пространственная близость подразумевает, что молекулярная ассоциация возможна. В большинстве случаев, однако, нормального разрешения флуоресцентного микроскопа с ограничением дифракции недостаточно, чтобы определить, действительно ли имеет место взаимодействие между биомолекулами.Флуоресцентный резонансный перенос энергии — это процесс, при котором происходит безызлучательная передача энергии от флуорофора в возбужденном состоянии ко второму хромофору в непосредственной близости. Поскольку диапазон, в котором может происходить передача энергии, ограничен приблизительно 10 нанометрами (100 ангстрем), а эффективность передачи чрезвычайно чувствительна к расстоянию между флуорофорами, измерения резонансной передачи энергии могут быть ценным инструментом для исследования молекулярных взаимодействий. .
Механизм резонансной передачи энергии флуоресценции включает в себя донорный флуорофор в возбужденном электронном состоянии, который может передавать свою энергию возбуждения соседнему акцептору хромофору без излучения посредством диполь-дипольных взаимодействий на большие расстояния. Теория, поддерживающая передачу энергии, основана на концепции рассмотрения возбужденного флуорофора как колеблющегося диполя, который может подвергаться обмену энергией со вторым диполем, имеющим аналогичную резонансную частоту.В этом отношении резонансная передача энергии аналогична поведению связанных осцилляторов, таких как пара камертонов, колеблющихся на одной и той же частоте. Напротив, радиационная передача энергии требует испускания и повторного поглощения фотона и зависит от физических размеров и оптических свойств образца, а также от геометрии контейнера и путей волнового фронта. В отличие от радиационных механизмов, резонансный перенос энергии может дать значительный объем структурной информации о донорно-акцепторной паре.
Резонансная передача энергии нечувствительна к окружающей оболочке растворителя флуорофора и, таким образом, дает молекулярную информацию, уникальную по сравнению с той, которая выявляется с помощью зависящих от растворителя событий, таких как гашение флуоресценции, реакции возбужденного состояния, релаксация растворителя или измерения анизотропии. Основное влияние растворителя на флуорофоры, участвующие в резонансном переносе энергии, — это влияние на спектральные свойства донора и акцептора. Безызлучательный перенос энергии происходит на гораздо больших расстояниях, чем эффекты растворителя на коротком расстоянии, и диэлектрическая природа компонентов (растворителя и макромолекулы хозяина), расположенных между задействованными флуорофорами, очень мало влияет на эффективность резонансной передачи энергии, которая зависит в первую очередь от расстояние между донорным и акцепторным флуорофором.
Явление резонансной передачи энергии флуоресценции не опосредовано излучением фотонов и, кроме того, даже не требует, чтобы акцепторный хромофор был флуоресцентным. Однако в большинстве приложений и донор, и акцептор являются флуоресцентными, и возникновение передачи энергии проявляется в тушении донорной флуоресценции и уменьшении времени жизни флуоресценции, сопровождаемом также увеличением эмиссии флуоресценции акцептора. Эффективность процесса передачи энергии изменяется пропорционально обратной шестой степени расстояния, разделяющего молекулы донора и акцептора.Следовательно, измерения FRET можно использовать в качестве эффективной молекулярной линейки для определения расстояний между биомолекулами, помеченными соответствующим донорным и акцепторным флуорохромом, когда они находятся в пределах 10 нанометров друг от друга.
Гипотетический пример резонансного переноса энергии флуоресценции между двумя флуорохромами, прикрепленными к противоположным концам одного и того же макромолекулярного белка, представлен на рисунке 1. В нативной конформации (рисунок 1 (a)) два флуорофоров разделены расстоянием приблизительно 12 нанометров, слишком далеко для передачи энергии внутримолекулярного резонанса между флуорохромами.Однако, когда белок подвергается конформационному изменению (рис. 1 (b)), два флуорохрома сближаются гораздо ближе и теперь могут участвовать в молекулярных взаимодействиях FRET. На рисунке возбуждение донорного флуорохрома показано синим свечением вокруг желтой трехъядерной ароматической молекулы, в то время как соответствующая акцепторная эмиссия (рисунок 1 (b)) представлена зеленым свечением, окружающим второй гетероциклический флуорохром справа. -ручная сторона белка.Измерения передачи энергии часто используются для оценки расстояний между участками макромолекулы и влияния конформационных изменений на эти расстояния. В этом типе экспериментов степень передачи энергии используется для расчета расстояния между донором и акцептором и получения структурной информации о макромолекуле.
Хотя флуоресцентный резонансный перенос энергии часто используется для исследования межмолекулярных и внутримолекулярных структурных и функциональных модификаций белков и липидов, основным препятствием для реализации методов FRET-микроскопии в живых клетках является отсутствие подходящих методов мечения конкретных внутриклеточных белки с соответствующими флуорофорами.Клонирование зеленого флуоресцентного белка медузы ( GFP ) и его экспрессия в широком спектре типов клеток стали критическим ключом к разработке маркеров как для экспрессии генов, так и для структурной локализации белка в живых клетках. Было разработано несколько вариантов мутаций этого белка, различающихся по спектру, включая флуоресцентный белок, излучающий синий свет ( синий флуоресцентный белок , BFP ). Спектры возбуждения и излучения для нативных мутантов GFP и BFP достаточно разделены по длинам волн, чтобы быть совместимыми с подходом FRET.Рисунок 2 иллюстрирует стратегию обнаружения белок-белковых взаимодействий с использованием флуоресцентного резонансного переноса энергии и мутантных флуоресцентных белков. Если два белка, один из которых помечен BFP (донор), а другой — GFP (акцептор), физически взаимодействуют, то при возбуждении комплекса при максимальной длине волны поглощения будет наблюдаться повышенная интенсивность в максимуме эмиссии акцептора (510 нанометров). (380 нм) донора. Неспособность белков образовать комплекс не приводит к эмиссии акцептора (GFP) флуоресценции.
В сочетании с достижениями в области импульсных лазеров, микроскопической оптики и компьютерных технологий визуализации разработка методов маркировки, в которых донорные и акцепторные флуорофоры фактически являются частью самих биомолекул, позволила визуализировать динамические взаимодействия белков в живых клетках. В дополнение к исследованию взаимодействий белков-партнеров, недавние применения флуоресцентного резонансного переноса энергии включают исследования активности протеаз, изменений потенциалов мембранного напряжения, метаболизма кальция и проведение высокопроизводительных скрининговых анализов, таких как количественная оценка экспрессии генов в одиночные живые клетки.
Принципы передачи энергии резонанса флуоресценции
Процесс резонансной передачи энергии ( RET ) может происходить, когда донорный флуорофор в электронно возбужденном состоянии передает свою энергию возбуждения соседнему хромофору, акцептору. В принципе, если спектр излучения флуоресценции молекулы-донора перекрывает спектр поглощения молекулы-акцептора и они находятся в пределах минимального пространственного радиуса, донор может напрямую передавать свою энергию возбуждения акцептору через диполь-дипольные межмолекулярные соединения на большие расстояния. связь.Теория, предложенная Теодором Фёрстером в конце 1940-х годов, первоначально описывала молекулярные взаимодействия, участвующие в резонансной передаче энергии, и Фёрстер также разработал формальное уравнение, определяющее взаимосвязь между скоростью передачи, межхромофорным расстоянием и спектральными свойствами задействованных хромофоров.
Резонансный перенос энергии — это безызлучательный квантово-механический процесс, который не требует столкновения и не требует выделения тепла. Когда происходит передача энергии, молекула-акцептор гасит флуоресценцию молекулы-донора, и если акцептор сам является флуорохромом, наблюдается повышенное или сенсибилизированное излучение флуоресценции (см. Рисунок 3).Это явление можно наблюдать, возбуждая образец, содержащий как донорные, так и акцепторные молекулы, светом с длинами волн, соответствующими максимуму поглощения донорного флуорофора, и детектируя свет, излучаемый с длинами волн с центром вблизи максимума излучения акцептора. Альтернативный метод обнаружения, быстро набирающий популярность, заключается в измерении времени жизни флуоресценции донорного флуорофора в присутствии и в отсутствие акцептора.
На рисунке 3 представлена диаграмма Яблонского, иллюстрирующая связанные переходы между испусканием донора и поглощением акцептора при резонансном переносе энергии флуоресценции.Абсорбционные и эмиссионные переходы представлены прямыми вертикальными стрелками (зелеными и красными соответственно), а колебательная релаксация — волнистыми желтыми стрелками. Связанные переходы показаны пунктирными линиями, что указывает на их правильное расположение на диаграмме Яблонского, если они возникли в результате опосредованных фотонами электронных переходов. В присутствии подходящего акцептора донорный флуорофор может передавать энергию возбужденного состояния непосредственно акцептору, не испуская фотон (показано синей стрелкой на рисунке 3).Получающееся в результате сенсибилизированное флуоресцентное излучение имеет характеристики, аналогичные спектру излучения акцептора.
Чтобы произошла резонансная передача энергии, должны быть выполнены несколько критериев. В дополнение к перекрывающимся спектрам излучения и поглощения донорных и акцепторных молекул, два задействованных флуорофора должны располагаться на расстоянии от 1 до 10 нанометров друг от друга. Как описано в уравнениях, выведенных Фёрстером (и обсуждаемых ниже), эффективность передачи энергии между донорными и акцепторными молекулами уменьшается в шестой степени расстояния, разделяющего их.Следовательно, способность донорного флуорофора передавать свою энергию возбуждения акцептору за счет безызлучательного взаимодействия резко снижается с увеличением расстояния между молекулами, ограничивая явление FRET максимальным радиусом разделения донор-акцептор, составляющим приблизительно 10 нанометров. На расстояниях менее 1 нанометра возможны несколько других режимов передачи энергии и / или электронов. Зависимость процесса резонансной передачи энергии от расстояния является основной основой его полезности при исследовании молекулярных взаимодействий.В исследованиях живых клеток с участием молекул, меченных донорными и акцепторными флуорофорами, резонансная передача энергии будет происходить только между молекулами, которые находятся достаточно близко, чтобы биологически взаимодействовать друг с другом.
Дополнительным требованием для резонансной передачи энергии является то, что время жизни флуоресценции донорной молекулы должно быть достаточным для того, чтобы событие могло произойти. Как скорость ( K (T) ), так и эффективность ( E (T) ) передачи энергии напрямую связаны со временем жизни донорного флуорофора в присутствии и в отсутствие акцептора.Согласно теории Фёрстера и подтвержденной экспериментально, скорость передачи энергии определяется уравнением:
KT = (1 / τD) • [R0 / r] 6
, где R (0) — критическое значение Фёрстера. расстояние , τ (D) — время жизни донора в отсутствие акцептора, а r — расстояние, разделяющее донорные и акцепторные хромофоры. Критическое расстояние Фёрстера ( R (0) ) определяется как радиус разделения акцептор-донор, для которого скорость передачи равна скорости распада донора (снятия возбуждения) в отсутствие акцептора.Другими словами, когда радиус донора и акцептора ( r ) равен расстоянию Ферстера, эффективность переноса составляет 50 процентов. На этом радиусе разделения половина энергии возбуждения донора передается акцептору посредством резонансной передачи энергии, а другая половина рассеивается посредством комбинации всех других доступных процессов, включая излучение флуоресценции.
Концептуально критическое расстояние Фёрстера — это максимальная длина разделения между донорными и акцепторными молекулами, при которой все еще будет происходить резонансная передача энергии.Значение критического расстояния обычно находится в диапазоне от 2 до 6 нанометров, что, к счастью, порядка многих размеров молекул белка. Кроме того, диапазон критических расстояний также соответствует нескольким другим биологически значимым параметрам, таким как толщина клеточной мембраны и расстояние, разделяющее сайты на белках, имеющих несколько субъединиц. Значение R (0) (в нанометрах) можно рассчитать из следующего выражения:
R0 = 2,11 × 10-2 • [
κ2 • J (λ) • η-4 • QD] 1/6
, в котором κ -квадрат — коэффициент, описывающий относительную ориентацию в пространстве между переходными диполями донора и акцептора, Дж (λ) — интеграл перекрытия в области излучения донора. и спектры поглощения акцептора (с длиной волны, выраженной в нанометрах), η представляет собой показатель преломления среды, а Q (D) представляет собой квантовый выход донора.
Эффективность передачи энергии, E (T) , является мерой доли фотонов, поглощенных донором, которые передаются акцептору, и связана с расстоянием разделения донора и акцептора, r , соотношением уравнение:
r = R0 • [(1 / ET) — 1] 1/6
и E (T) вычисляется как:
ET = 1 — (τDA / τD)
, где τ (DA) — время жизни донора в присутствии акцептора, а τ (D) — время жизни донора в отсутствие акцептора.Следовательно, измеряя время жизни донорной флуоресценции в присутствии и в отсутствие акцептора (что указывает на степень тушения донора из-за акцептора), можно определить расстояние, разделяющее молекулы донора и акцептора. Во многих обычно применяемых методах эффективность передачи энергии определяется путем измерения в установившемся режиме относительной средней интенсивности флуоресценции донора в присутствии и в отсутствие акцептора (а не путем измерения времени жизни).
Таким образом, скорость передачи энергии зависит от степени перекрытия спектров между спектрами излучения донора и поглощения акцептора (см. Рисунок 4), квантового выхода донора, относительной ориентации дипольных моментов перехода донора и акцептора, и расстояние, разделяющее молекулы донора и акцептора. Любое событие или процесс, которые влияют на расстояние между донором и акцептором, будут влиять на скорость резонансной передачи энергии, что позволяет количественно оценить явление при условии, что артефакты можно контролировать или устранять.
На рисунке 4 представлены спектры поглощения и излучения голубого флуоресцентного белка ( CFP , донор) и красного флуоресцентного белка ( RFP или DsRed , акцептор) в сравнении с их потенциальным применением в качестве пара резонансного переноса энергии флуоресценции. Спектры поглощения обоих биологических пептидов показаны красными кривыми, а спектры испускания представлены синими кривыми. Область перекрытия спектров излучения донора и поглощения акцептора представлена серой областью у основания кривых.Всякий раз, когда спектральное перекрытие молекул слишком сильно увеличивается, возникает явление, известное как спектральное просачивание или кроссовер , в котором сигнал от возбужденного акцептора (возникающий из возбуждающего освещения донора) и излучение донора обнаруживаются в акцепторный канал излучения. Результатом является высокий фоновый сигнал, который необходимо выделить из излучения слабой флуоресценции акцептора.
Основная теория безызлучательного переноса энергии напрямую применима к паре донор-акцептор, разделенной фиксированным расстоянием, и в этом случае скорость передачи энергии является функцией расстояния Ферстера, R (0) , которое в свою очередь зависит от κ -квадрат, J (λ) , η и Q (D) .Если эти факторы известны, можно рассчитать расстояние между донором и акцептором. Для описания таких ситуаций, как множественные акцепторные хромофоры и распределения расстояний, требуются более сложные формулировки. В таблице 1 представлена серия экспериментально измеренных критических расстояний Фёрстера, которые были установлены из спектрального перекрытия нескольких популярных пар донорно-акцепторных флуорофоров. Поскольку переменная включает выход донорного кванта и степень спектрального перекрытия, оба из которых зависят от локализованных условий окружающей среды, значения расстояния Ферстера должны определяться в тех же экспериментальных условиях, что и те, которые используются для исследования резонансного переноса энергии.
Показатель преломления среды передачи энергии обычно известен из состава растворителя или может быть оценен для конкретной макромолекулы и обычно принимается равным 1,4 в водном растворе. Квантовый выход донора определяется путем сравнения со стандартными флуорофорами с известным квантовым выходом. Поскольку Q (D) появляется как шестой корень при вычислении R (0) , небольшие ошибки или неточности в значении Q (D) не имеют большого влияния на расчет расстояния Ферстера.Также из-за зависимости от корня шестой степени, R (0) не сильно зависит от изменений в J (λ) , но интеграл перекрытия все равно должен оцениваться для каждой пары донор-акцептор. В общем, более высокая степень перекрытия между спектром излучения донора и спектром поглощения акцептора дает более высокие значения критического расстояния Ферстера.
Критическое расстояние Фёрстера для обычных пар донор-акцептор RET
Донор | Акцептор | Расстояние Ферстера (нанометры) |
---|---|---|
Триптофан | Дансил | 2.1 |
ИАЭДАНЫ (1) | ДДПМ (2) | 2,5 — 2,9 |
BFP | DsRFP | 3,1 — 3,3 |
Дансил | FITC | 3,3 — 4,1 |
Дансил | Октадецилродамин | 4.3 |
CFP | GFP | 4.7 — 4,9 |
CF (3) | Техасский красный | 5.1 |
Флуоресцеин | Тетраметилродамин | 4,9 — 5,5 |
Cy3 | Cy5 | > 5,0 |
GFP | YFP | 5,5 — 5,7 |
BODIPY FL (4) | BODIPY FL (4) | 5.7 |
Родамин 6G | Малахитовый зеленый | 6.1 |
FITC | Эозин тиосемикарбазид | 6,1 — 6,4 |
B-фикоэритрин | Cy5 | 7.2 |
Cy5 | Cy5.5 | > 8,0 |
(1) 5- (2-иодацетиламиноэтил) аминонафталин-1-сульфоновая кислота
(2) N- (4-диметиламино-3,5-динитрофенил) малеимид
(3) карбоксифлуоресцеинсукцинимидиловый эфир
(4) 4,4-дифтор-4-бора-3a, 4a-диаза-s-индацен
Таблица 1
Неопределенность в оценке фактора ориентации ( κ -квадрат) широко обсуждалась в литературе, и, несмотря на экспериментальные доказательства того, что теория Фёрстера действительна и применима к измерению расстояний, эта переменная продолжала оставаться в силе. несколько спорным.Важно понимать, что расстояния Ферстера обычно приводятся для предполагаемого значения κ -квадрат, обычно это динамически усредненное значение 2/3 (0,67). Это предполагаемое значение является результатом рандомизации ориентации донора и акцептора посредством вращательной диффузии до передачи энергии. Фактор ориентации зависит от относительной ориентации в пространстве диполя излучения донора и диполя поглощения акцептора и может находиться в диапазоне от нуля до 4. Значение 1 соответствует параллельным диполям перехода, а значение 4 соответствует диполям, которые оба являются параллельные и коллинеарные.
Из-за связи корня шестой степени с расстоянием Ферстера, изменение коэффициента ориентации от 1 до 4 приводит только к 26-процентному изменению рассчитанного расстояния, а максимальная погрешность в 35 процентов возможна, когда обычно принимаемое значение 0,67 применяется. Наиболее серьезная потенциальная ошибка возникает, если диполи ориентированы точно перпендикулярно друг другу и соответствующее значение в квадрате κ становится равным нулю. Было использовано несколько методов работы с неопределенностью, включая предположение, что существует ряд статических ориентаций, которые не изменяются в течение времени жизни флуорофора в возбужденном состоянии.Измерения анизотропии флуоресценции для донора и акцептора могут позволить определить пределы для κ -квадратного изменения. Кроме того, использование флуорофоров с низкой поляризацией флуоресценции (из-за излучения нескольких перекрывающихся переходов) снижает неопределенность фактора ориентации. Ограничение возможных значений κ -квадрат таким образом снижает потенциальную ошибку вычисления расстояния, возможно, до 10 процентов.
Во многих случаях фактор ориентации трудно, а то и невозможно определить, а точное значение переменной часто рассматривается как непреодолимая проблема.Однако некоторые свидетельства указывают на ограничение важности фактора в расчетах резонансного переноса энергии. Сравнение донорных и акцепторных расстояний с использованием методов резонансной спектроскопии переноса энергии и дифракции рентгеновских лучей в значительной степени подтверждает обоснованность принятия значения 0,67 для фактора (как предложено теорией Фёрстера), по крайней мере, для небольших пептидов и белков. Большая неопределенность существует для более крупных белков. Использование этого значения для фактора ориентации допустимо при предположении, что зонды донора и акцептора могут свободно совершать неограниченное изотропное движение.Дальнейшее обоснование получено из экспериментальных доказательств того, что для флуорофоров, прикрепленных одинарной или двойной связью к макромолекулам, сегментарные движения донора и акцептора имеют тенденцию приводить к динамически рандомизированным ориентациям.
Для слабосвязанных флуорохромов свободное вращательное движение вокруг одинарных связей должно позволить использовать среднее значение ориентации, но неограниченное движение молекул, связанных через несколько сайтов связывания, вероятно, не происходит. С другой стороны, крайние значения нуля и 4 для κ -квадрата требуют полной поляризации флуоресценции донора и акцептора, а это условие маловероятно.Статистические расчеты были представлены некоторыми исследователями, которые утверждают, что расстояния распределения донор-акцептор и их ориентация определяют наблюдаемое среднее расстояние. При условии, что наблюдается некоторое распределение наблюдаемого расстояния (и это не ограничивается слишком близким расположением донора и акцептора относительно R (0) ), можно надежно получить среднее расстояние между флуорофорами и оценить погрешность, обусловленную фактором ориентации. .
Зависимость фактора ориентации ( κ -квадрат) от относительной ориентации диполя излучения донора и диполя поглощения акцептора (показано на рисунке 5) дается уравнением:
κ2 = (cos θT — 3cos θDcos θA) 2 = (sin θD sin θAcos Φ — 2cos θDcos θA) 2
, где θ (T) — угол между диполем перехода излучения донора и диполем перехода поглощения акцептор, θ (D) и θ (A) — это углы между этими диполями и вектором, соединяющим донор и акцептор, а Φ — угол между плоскостями, содержащими два переходных диполя.
Эффективность передачи энергии наиболее чувствительна к изменениям расстояния, когда расстояние между донорами и акцепторами приближается к расстоянию Ферстера ( R (0) ) для двух молекул. Рисунок 6 иллюстрирует экспоненциальную зависимость между эффективностью переноса и расстоянием, разделяющим донор и акцептор. Эффективность быстро увеличивается до 100 процентов, когда расстояние разделения уменьшается ниже R (0) , и, наоборот, уменьшается до нуля, когда r больше, чем R (0) .Из-за сильной (шестой степени) зависимости эффективности переноса от расстояния измерения расстояния разделения донор-акцептор надежны только в том случае, если радиус донора и акцептора находится в пределах расстояния Ферстера в два раза. Когда r составляет приблизительно 50 процентов от R (0) , эффективность резонансной передачи энергии близка к максимальной, и более короткие расстояния не могут быть надежно определены. Когда расстояние донор-акцептор превышает значение R (0) на 50 процентов, наклон кривой настолько пологий, что более длинные разделительные расстояния не разрешаются.
Практическое значение критического расстояния Ферстера состоит в том, что это значение дает представление о диапазоне расстояний разделения, которые могут быть определены FRET для данной пары датчиков (см. Таблицу 1). Поскольку измерение передачи энергии очень чувствительно к изменению расстояния, когда расстояния донор-акцептор близки к расстоянию Ферстера, приблизительные размеры целевого молекулярного взаимодействия являются наиболее важным фактором при выборе пары флуоресцентных красителей.Другие факторы, которые следует учитывать, в зависимости от того, проводятся ли измерения в установившемся режиме или с временным разрешением, включают химическую стабильность, квантовый выход и время жизни распада флуорофора. Поскольку для обычных методов флуоресцентного резонансного переноса энергии не существует внутреннего эталона расстояния, расстояния, рассчитанные путем измерения эффективности переноса, относятся к расстоянию Ферстера, которое выводится из спектроскопических данных, измеренных на парах донор-акцептор.
Явление резонансной передачи энергии с помощью механизма Ферстера сложно в некоторых аспектах, но простое и надежное по своему результату.Расстояния Ферстера точно предсказываются из спектральных свойств донора и акцептора, и, поскольку никаких исключений из теории еще не выявлено, можно предположить, что резонансный перенос энергии происходит при любых условиях, при которых пара молекулы донор-акцептор находится в непосредственной близости. Сложность теории, описывающей перенос диполя, возникает не из-за самого механизма передачи, а из-за наличия распределений расстояний (включая неслучайные распределения) и диффузии молекул донора и акцептора.Когда предпринимаются шаги для усреднения зависимости передачи энергии от расстояния по диапазону геометрических форм и временных рамок, FRET представляет собой надежный метод исследования пространственного распределения между взаимодействующими молекулами.
Применение методов FRET в оптической микроскопии
Параметры конфигурации микроскопа для исследований флуоресцентного резонансного переноса энергии меняются в зависимости от требований флуорофоров, образца и режима (-ов) визуализации, но практически любой прямой или инвертированный микроскоп можно дооснастить для FRET-микроскопия (см. Рисунок 7).В общем, микроскоп должен быть оборудован охлаждаемой и усиленной системой CCD-камеры с высоким разрешением (12 бит), соединенной с качественными интерференционными фильтрами, имеющими низкие уровни перекрестных помех (минимальный уровень блокировки) и полосы пропускания, соответствующие спектрам флуорофора. Чувствительность детектора определяет, насколько узкой может быть полоса пропускания фильтра, при этом сбор данных может продолжаться с приемлемой скоростью с минимальным спектральным сквозным шумом. В большинстве случаев для получения изображений следует использовать одно дихроматическое зеркало, соединенное с колесами или ползунками фильтров возбуждения и излучения, чтобы минимизировать или исключить сдвиги изображения.
Широкопольная флуоресцентная микроскопия страдает от излучения флуорофора, возникающего выше и ниже фокальной плоскости, что дает изображения со значительным расфокусированным сигналом, который снижает контраст и приводит к ухудшению качества изображения. Эта проблема усугубляется в микроскопии FRET из-за изначально низких уровней сигнала, возникающих в результате резонансной передачи энергии. Методы цифровой деконволюции могут быть связаны с оптическим секционированием, чтобы уменьшить или исключить сигналы вдали от фокальной плоскости, но этот процесс требует больших вычислительных ресурсов и может быть недостаточно быстрым для многих экспериментов по динамической визуализации FRET.Конфокальные методы лазерного сканирования могут применяться к FRET-микроскопии для значительного улучшения латерального разрешения, позволяя собирать последовательные оптические срезы с интервалами, приближающимися к реальному времени. Основным недостатком конфокальной микроскопии является ограничение длин волн возбуждения стандартными лазерными линиями, доступными для конкретной системы, что ограничивает выбор пар флуорофора донора и акцептора в экспериментах по резонансному переносу энергии. Многофотонное возбуждение также может использоваться в сочетании с методами FRET и меньше повреждает клетки из-за задействованных более длинных волн возбуждения.Кроме того, артефакты автофлуоресценции и фотообесцвечивание образца с меньшей вероятностью возникают в ограниченном объеме возбуждения, характерном для многофотонного возбуждения.
Типичная конфигурация микроскопа, способная наблюдать живые клетки в культуре с несколькими мотивами изображения флуоресцентного резонансного переноса энергии, представлена на рисунке 7. Инвертированный микроскоп для культуры тканей оснащен стандартной вольфрам-галогенной лампой на столбе для исследования и записи Ячейки с использованием стандартного светлого поля, фазового контраста или дифференциального интерференционного контраста ( DIC ) освещения.Обратите внимание, что последние два метода усиления контраста можно использовать в сочетании с флуоресценцией, чтобы выявить пространственное расположение флуорофоров в клеточной архитектуре. К тринокулярной головке микроскопа крепится стандартная система CCD-камеры с охлаждением Пельтье, обеспечивающая широкополосную флуоресценцию и получение изображений в светлом поле.
Эксперименты по резонансной передаче энергии проводятся с использованием мультиспектрального освещения с использованием либо широкопольного освещения (дуговая разрядная лампа), либо конфокальной сканирующей приставки в реальном времени, оснащенной высокоскоростной дисковой системой Нипкова.Луч аргонно-криптонового лазера сначала фильтруется через акустооптическое устройство с перестраиваемой длиной волны для выбора конкретных длин волн возбуждения перед прохождением к конфокальной сканирующей головке. Изображения собираются с помощью двух охлаждаемых CCD-камер высокого разрешения Gen III с усиленным охлаждением, считывающих отдельные каналы, и передаются в буфер на главный компьютер. Сканирование образца в боковой ( x и y ) и осевой ( z ) плоскостях позволяет собирать оптические срезы для восстановления трехмерного изображения.Различные программы обработки изображений совместимы с проиллюстрированной конфигурацией микроскопа.
Основываясь на фундаментальных принципах этого явления, при проведении измерений резонансного переноса энергии флуоресценции с помощью оптического микроскопа следует учитывать ряд важных практических моментов:
- Необходимо тщательно контролировать концентрации донорных и акцепторных флуорофоров. Статистически самая высокая вероятность достижения резонансного переноса энергии флуоресценции происходит, когда несколько акцепторных молекул окружают одну донорную молекулу.
- Фотообесцвечивание необходимо устранить, поскольку артефакт может изменить молекулярное соотношение донора и акцептора и, следовательно, измеренное значение процесса резонансной передачи энергии.
- Спектр излучения донорной флуоресценции и спектр поглощения акцептора должны иметь значительную область перекрытия.
- Прямое возбуждение акцептора в диапазоне длин волн, используемом для возбуждения донора, должно быть минимальным. Распространенным источником ошибок в измерениях методом FRET-микроскопии в установившемся режиме является обнаружение донорной эмиссии с помощью наборов акцепторных фильтров.
- Длины волн излучения как донора, так и акцептора должны совпадать с максимальным диапазоном чувствительности детектора.
- Спектры поглощения и излучения донора должны иметь минимальное перекрытие, чтобы уменьшить возможность самопереноса от донора к донору.
- Донорная молекула должна быть флуоресцентной и иметь достаточно длительное время жизни, чтобы произошла резонансная передача энергии.
- Донор должен обладать низкой поляризационной анизотропией, чтобы минимизировать неопределенности в значении фактора ориентации (-квадрат).Этому требованию удовлетворяют доноры, испускание которых происходит в результате нескольких перекрывающихся переходов возбуждения.
- При использовании методов маркировки антител не следует изменять биологическую активность реагентов, конъюгированных с донорными и акцепторными флуорохромами. Любое снижение активности серьезно повлияет на достоверность результирующих измерений резонансного переноса энергии.
- Поскольку флуоресцентный резонансный перенос энергии требует, чтобы молекулы донора и акцептора имели соответствующее дипольное выравнивание и располагались в пределах 10 нанометров друг от друга, необходимо учитывать третичную структуру реагентов, к которым присоединены молекулы.Например, когда донорно-акцепторные молекулы могут быть прикреплены к различным структурным местоположениям (таким как карбокси или аминоконце) на белке, возможно, что FRET не будет наблюдаться, даже если белки действительно взаимодействуют, потому что молекулы донора и акцептора расположены на противоположных концах взаимодействующих молекул.
- Живые клетки, меченные зелеными флуоресцентными мутантами белка для исследований FRET, должны быть проанализированы с использованием традиционных иммуногистохимических методов, чтобы убедиться, что меченый белок принимает ту же внутриклеточную среду обитания и свойства, что и нативный аналог.
Чтобы феномен флуоресцентного резонансного переноса энергии обеспечил получение значимых данных в качестве инструмента в оптической микроскопии, необходимо оптимизировать как подготовку образца, так и параметры визуализации. Выбор подходящих донорных и акцепторных зондов и способа их использования в качестве молекулярных меток является серьезной проблемой. Кроме того, как только стратегия маркировки, которая разрешает передачу энергии, была разъяснена, для выполнения самого измерения можно использовать широкий спектр методов.Большинство количественных исследований флуоресцентной микроскопии проводится путем измерения интенсивности флуоресцентного излучения. Детектирование FRET на основе интенсивности флуоресценции обычно достигается путем отслеживания изменений относительных величин интенсивности излучения на двух длинах волн, соответствующих донорному и акцепторному хромофорам. Когда условия подходят для возникновения резонансного переноса энергии флуоресценции, увеличение эмиссии акцептора ( I (A) ) сопровождается одновременным уменьшением интенсивности эмиссии донора ( I (D) ).
Хотя изменение относительной интенсивности излучения донора или акцептора может рассматриваться как показатель резонансного переноса энергии, обычно используется отношение двух величин, I (A) / I (D) , как мера FRET. Величина отношения зависит от среднего расстояния между парами донор-акцептор и нечувствительна к различиям в длине пути и объеме, доступном для возбуждающего светового луча. Любое состояние образца, которое вызывает изменение относительного расстояния между парами молекул, приводит к изменению соотношения испускания донора и акцептора.Следовательно, FRET можно наблюдать в микроскопе путем преимущественного возбуждения донорного флуорофора и детектирования повышенного излучения взаимодействующего акцепторного флуорофора, сопровождаемого уменьшением флуоресценции донора, вызванным гашением из-за передачи энергии. Измерение FRET с использованием подхода мониторинга интенсивности называется установившимся режимом флуоресцентным резонансным переносом энергии.
Подходящие донорные и акцепторные зонды выбираются на основе их спектральных характеристик поглощения и излучения.Для максимальной резонансной передачи энергии спектр излучения донора должен существенно перекрывать спектр поглощения акцептора. Кроме того, должно быть минимальное прямое возбуждение акцепторного флуорофора в максимуме возбуждения донора, и не должно быть значительного перекрытия излучения между донором и акцептором в области длин волн, в которой происходит излучение акцептора. На практике может быть сложно идентифицировать пары донор-акцептор, удовлетворяющие этим требованиям.Ситуация часто осложняется тем фактом, что имеющиеся в продаже наборы флуоресцентных фильтров не полностью эффективны при пропускании только желаемых длин волн, и может передаваться небольшой процент света за пределами проектной полосы пропускания. Если не используются очень хорошо охарактеризованные и контролируемые системы экспрессии, может быть трудно определить точную концентрацию донорных и акцепторных флуорофоров. Дополнительные корректировки могут также потребоваться для автофлуоресценции, фотообесцвечивания и фоновой флуоресценции.
Типичное исследование внутриклеточной белковой ассоциации в живой культуре клеток проиллюстрировано на рисунке 8 для событий, связанных с апоптозом, физическим процессом гибели клеток в результате сложного каскада последовательных взаимодействий. Генные продукты, непосредственно участвующие в цепи событий, могут быть помечены слиянием с соответствующими членами семейства флуоресцентных белков (в данном случае BFP и GFP) для совместной экспрессии в одной и той же клетке, чтобы исследовать специфические ассоциации с помощью FRET.Белки, участвующие в апоптозе, взаимодействуют внутри митохондрий и демонстрируют постепенное снижение связывания по мере того, как происходит запрограммированная гибель клеток. Таким образом, изображение излучения донора (рис. 8 (a)) содержит только флуоресценцию от белков, меченных BFP, в то время как соответствующий профиль излучения акцептора (рис. 9 (b)) иллюстрирует сигналы, обусловленные белками, меченными GFP (и некоторый вклад от белков, меченных GFP). донорская эмиссия). Фильтр FRET (рис. 8 (c)), как описано ниже, выявляет флуоресценцию, полученную в результате резонансного переноса энергии между двумя белками
Среди факторов, которые могут потенциально повлиять на точность измерений резонансного переноса энергии флуоресценции в целом, некоторые из них очень специфичны. к оптическому микроскопу.Основной целью микроскопических исследований является получение изображений с высоким разрешением, и это требует особого внимания к качеству и характеристикам оптических фильтров, используемых для спектрального различения длин волн поглощения и излучения донора и акцептора. Чтобы максимизировать отношение сигнал / шум (без вредного воздействия на образец или исследуемый процесс), необходимо тщательно сбалансировать интенсивность и время воздействия возбуждающего света с концентрацией донорных и акцепторных флуорофоров и детектора. эффективность.Если концентрация донорно-акцепторных флуорофоров чрезмерна, может произойти самотушение, влияющее на точность измерений FRET. Фотообесцвечивание является проблемой всех флуорофоров и может влиять на соотношение донор-акцептор, изменяя измерения флуоресценции. Избыточная интенсивность освещения также может повредить образцы, особенно содержащие живые клетки или ткани.
Метод, известный как донорский фотообесцвечивающий резонансный перенос энергии флуоресценции ( pbFRET ), который использует процесс фотообесцвечивания для измерения FRET, часто применяется при исследовании фиксированных образцов.Основанный на попиксельном анализе, этот метод был применен для измерения отношений близости между белками клеточной поверхности, меченными моноклональными антителами, конъюгированными с флуорофором. Фотообесцвечивание FRET основано на теории, согласно которой флуорофор чувствителен к фотоповреждению только тогда, когда он находится в возбужденном состоянии. Статистически только небольшая часть молекул находится в возбужденном состоянии в любой момент времени, и поэтому флуорофоры с более длительным временем жизни флуоресценции имеют более высокую вероятность фотоповреждения и демонстрируют более высокую скорость фотообесцвечивания.
Экспериментальные доказательства, подтверждающие эту концепцию, продемонстрировали, что время фотообесцвечивания флуорофора обратно пропорционально времени его жизни в возбужденном состоянии. Возникновение резонансной передачи энергии снижает время жизни флуоресценции молекулы донора, эффективно защищая ее от фотообесцвечивания. Расчеты pbFRET основаны на уменьшении скорости фотообесцвечивания донора по сравнению с измеренной для донора в отсутствие резонансной передачи энергии. Измерение фотообесцвечивания в исследованиях FRET требует относительно длительного периода времени и поэтому наиболее применимо к образцам фиксированных клеток, в которых временные данные не важны, а влияние фотообесцвечивания на функцию клеток не является проблемой.В некоторых отношениях методика фотообесцвечивания доноров менее сложна, чем измерение сенсибилизированного излучения, хотя подгонка постоянных времени к кривым фотообесцвечивания, включающим несколько компонентов, представляет некоторые дополнительные трудности.
Эффективность передачи энергии также может быть определена с помощью методов фотообесцвечивания акцептора , в которых изменение тушения излучения донора измеряется путем сравнения значения до и после селективного фотообесцвечивания молекулы акцептора.Анализ изменения интенсивности флуоресценции донора в одних и тех же областях образца до и после удаления акцептора имеет то преимущество, что требует подготовки только одного образца, и напрямую связывает эффективность передачи энергии с флуоресценцией как донора, так и акцептора.
Точное измерение резонансного переноса энергии флуоресценции в микроскопе требует компенсации всех потенциальных источников ошибок. Был разработан простой метод корректировки обнаружения донорной флуоресценции с помощью фильтра эмиссии акцептора и флуоресценции акцептора с фильтром эмиссии донора (из-за кроссовера или спектрального просвечивания).Метод также корректирует зависимость FRET от концентраций донорных и акцепторных флуорофоров. Стратегия измерения, которая требует минимум спектральной информации, использует комбинацию из трех наборов фильтров и может быть легко реализована. Наборы фильтров донора, FRET и акцептора предназначены для выделения и максимизации трех конкретных сигналов: флуоресценции донора, флуоресценции акцептора, относящейся к FRET, и флуоресценции непосредственно возбужденного акцептора, соответственно. На практике три разных образца, содержащие только донор, только акцептор, и донор, и акцептор, исследуются с каждым из трех наборов фильтров, и полученные данные обрабатываются арифметически для корректировки кроссовера и неконтролируемых изменений концентраций донор-акцептор.
На Рисунке 9 представлены схематические иллюстрации кроссовера (спектральное просачивание) и перекрестных помех фильтра, двух важных проблем, которые необходимо преодолеть, чтобы получить количественные результаты в экспериментах по флуоресцентному резонансному переносу энергии. Кроссовер или просачивание проявляется в перекрытии спектра излучения донорной флуоресценции с полосой пропускания интерференционного фильтра эмиссии акцептора на рисунке 9, в результате чего сигнал эмиссии донора (нежелательные длины волн) проходит через эмиссионный фильтр.Напротив, перекрестные помехи фильтра описывают минимальный уровень затухания (блокировки) в определенном диапазоне двух фильтров, установленных вместе последовательно, и вызывают беспокойство при согласовании фильтров возбуждения и излучения для наборов флуоресценции. Дихроматические зеркала часто включают в оценку перекрестных помех комбинаций флуоресцентных фильтров. Хотя два эмиссионных фильтра редко устанавливаются на световом пути одновременно, спектры объединены на рисунке 9, чтобы одновременно проиллюстрировать обе концепции.Обратите внимание, что два спектра фильтра (синяя и красная кривые) представляют коэффициент пропускания света интерференционными фильтрами, тогда как кривая испускания донора (зеленая) представляет собой график зависимости интенсивности от длины волны.
Дополнительные факторы, которые потенциально могут привести к значительным ошибкам, также требуют исправления при использовании методов измерения FRET в установившемся режиме. Кроме того, желателен тщательный контроль концентрации донорного и акцепторного флуорофора. Определения концентрации флуорофора можно частично избежать с помощью измерений флуоресценции с временным разрешением , которые обеспечивают метод получения среднего времени жизни без точного знания концентраций доноров.Метод позволяет количественно определять расстояние разделения донор-акцептор и основан на измерениях времени жизни донора в присутствии и в отсутствие акцептора. Измерение спада интенсивности флуоресценции как функции времени проясняет динамику излучения молекулы в возбужденном состоянии, и, следовательно, может быть получена более подробная информация о природе донорно-акцепторного взаимодействия. Графические графики спада интенсивности иллюстрируют усредненные по времени детали процесса затухания флуоресценции (см. Рисунок 10 (а)), которые не разрешаются при использовании методов устойчивого состояния.Измерения, показывающие одно и то же значение для среднего времени жизни, когда регистрируется как интенсивность в установившемся режиме, нормированная на поглощение, могут соответствовать существенно разным формам кривой затухания на графиках данных с временным разрешением, указывая на различия в участвующих межмолекулярных процессах.
Время жизни флуоресценции ( τ ) флуорофора — это характерное время, в течение которого молекула находится в возбужденном состоянии перед возвращением в основное состояние. Представляя затухание флуоресценции в упрощенной единственной экспоненциальной форме после короткого импульса возбуждающего света, интенсивность флуоресценции как функция времени ( t ) определяется уравнением:
I (t) = I0 exp (-t / τ )
, где I (0) — начальная интенсивность излучения флуоресценции сразу после импульса возбуждающего света, а I (t) — интенсивность флуоресценции, измеренная в момент времени t .Время жизни флуоресценции ( τ ) определяется как время, необходимое для уменьшения интенсивности до 1 / e от ее начального значения (приблизительно 37 процентов от I (0) ; Рисунок 10 (a)), и составляет величина, обратная константе скорости затухания флуоресценции из возбужденного состояния в основное.
Основным общим преимуществом измерений FRET с временным разрешением по сравнению с установившимся режимом является то, что расстояние разделения донор-акцептор может быть нанесено на карту с большей количественной точностью.Это происходит отчасти потому, что время жизни флуоресценции не зависит от локальной интенсивности или концентрации и в значительной степени не зависит от фотообесцвечивания флуорофоров. Однако времена жизни флуоресценции очень чувствительны к среде флуорофора, и даже молекулы со сходными спектрами могут проявлять разные времена жизни в разных условиях окружающей среды. Поскольку рассеяние не влияет на время жизни флуорофора, измерения изменения времени жизни могут предоставить информацию, которая конкретно связана с локальными молекулярными процессами.
Срок службы флуорофора может быть изменен множеством переменных в локальном микроокружении, включая такие факторы, как гидрофобность, концентрация кислорода, ионная сила других компонентов среды, связывание с макромолекулами и близость к молекулам акцептора, которые могут истощать возбужденное состояние. состояние за счет резонансной передачи энергии. Значительным практическим преимуществом является то, что измерения времени жизни могут служить абсолютными индикаторами молекулярных взаимодействий и не зависят от концентрации флуорофора.
Два общих метода, обычно используемых для измерения времени жизни флуоресцентных ламп, классифицируются как во временной области ( импульсный , см. Рисунок 10 (а)) и в частотной области (также называемый с фазовым разрешением ; рисунок 10 (б)) методы. При измерении срока службы во временной области используются источники света с импульсным возбуждением, а время жизни флуоресценции определяется путем прямого измерения сигнала излучения или регистрации с помощью счета фотонов. Подход в частотной области использует синусоидальную модуляцию источника возбуждающего света (полученную из импульсных или модулированных лазерных систем), а время жизни определяется по фазовому сдвигу и глубине демодуляции сигнала флуоресцентного излучения.Каждый из этих подходов к визуализации времени жизни флуоресценции имеет определенные преимущества и недостатки, и оба широко применяются в традиционной широкопольной, конфокальной и многофотонной микроскопии.
На рисунке 10 показаны схематические диаграммы, представляющие методы временной и частотной области для определения времени жизни флуоресценции. В подходе во временной области (рис. 10 (а)) образец возбуждается коротким импульсом лазерного света, длительность которого намного короче, чем время жизни возбужденных частиц, и измеряется экспоненциальный профиль затухания как функция времени.Затухание флуоресценции обычно является моноэкспоненциальной функцией для одного флуорофора, но может иметь гораздо более сложный характер, если возбужденное состояние имеет многочисленные пути релаксации, доступные в окружающей среде. Синусоидально модулированный свет от лазера непрерывного действия, соединенного с акустооптическим модулятором, используется для возбуждения флуорофора в экспериментах в частотной области (рис. 10 (b)). Результирующее флуоресцентное излучение модулируется синусоидально на той же частоте, что и возбуждение, но сопровождается фазовым сдвигом и уменьшением глубины модуляции.В случае однократного экспоненциального затухания время жизни флуоресценции можно рассчитать, определив либо степень фазового сдвига ( φ ), либо коэффициент модуляции ( M ), используя уравнения, представленные на рисунке 10 (b). Если два значения идентичны, затухание флуоресценции действительно состоит из одной экспоненциальной функции. Когда присутствует более одного флуоресцентного вещества (или один флуорофор находится в сложной среде), фазовый сдвиг и время жизни модуляции следует оценивать в широком диапазоне частот.
Метод измерения времени жизни флуоресценции во временной области в основном основан на подсчете одиночных фотонов и требует системы детектирования с достаточным временным разрешением для сбора почти 100 процентов фотонов, генерируемых каждым импульсом возбуждения. Хотя методы с фазовым разрешением относительно менее требовательны в исполнении, они, как правило, не так чувствительны, как метод подсчета фотонов. Когда фазовая модуляция используется для разрешения сложных времен жизни мультифлуорофоров, длительное время воздействия повреждающего возбуждающего освещения может оказаться чрезмерным для некоторых образцов, а также может не обеспечить достаточного временного разрешения для процессов с живыми клетками.Предпочтительный метод зависит как от информации, необходимой для исследования, так и от типа исследуемого образца.
Измерения времени жизни флуоресценции оказались чувствительным индикатором FRET и имеют особые преимущества при исследованиях живых клеток из-за независимости измерений времени жизни от таких факторов, как концентрация и длина светового пути, которые трудно контролировать в живых образцах. Основное преимущество выполнения FRET-исследований путем измерения времени жизни флуоресценции заключается в том, что можно различать перенос энергии даже между донорно-акцепторными парами с аналогичными спектрами излучения.Когда время жизни флуоресценции измеряется напрямую (в отличие от использования значений в установившемся состоянии), определение FRET возможно без фотодеструкции донорных или акцепторных флуорофоров. Поскольку FRET уменьшает время жизни флуоресценции донорной молекулы за счет передачи энергии акцептору, прямое сравнение времени жизни донора в присутствии акцептора ( τ (DA) ) с временем жизни в отсутствие акцептора ( τ ( D) ), позволяет вычислять значение эффективности FRET ( E (T) ) для каждого пикселя изображения.
В зависимости от метода измерения времени жизни флуоресценции требуют, чтобы образец подвергался воздействию либо высокочастотных повторяющихся импульсов возбуждающего света, либо непрерывного синусоидально модулированного света. В исследованиях с живыми клетками всегда необходимо оценивать эффект интенсивного освещения. Независимо от метода, эталонное время жизни донора без акцептора должно быть определено в экспериментальных условиях, идентичных условиям измерения донор-акцептор.Одним из способов достижения этого с одним образцом является измерение времени жизни только донора после фотообесцвечивания акцептора после эксперимента по передаче энергии.
Выводы
В биологических исследованиях наиболее распространенными применениями флуоресцентного резонансного переноса энергии являются измерение расстояний между двумя участками макромолекулы (обычно белка или нуклеиновой кислоты) или исследование взаимодействия in vivo между биомолекулярными объектами.Белки могут быть помечены синтетическими флуорохромами или иммунофлуоресцентными флуорофорами, которые служат донором и акцептором, но достижения в генетике флуоресцентных белков теперь позволяют исследователям маркировать определенные целевые белки с помощью множества биологических флуорофоров, имеющих разные спектральные характеристики. Во многих случаях аминокислота триптофан используется в качестве внутреннего донорного флуорофора, который может быть связан с любым количеством внешних зондов, выступающих в качестве акцептора.
Если макромолекулы помечены одним донором и акцептором, а расстояние между двумя флуорохромами не изменяется в течение времени жизни возбужденного состояния донора, то расстояние между зондами можно определить по эффективности передачи энергии в установившемся состоянии. измерения, как описано выше.В случаях, когда расстояние между донором и акцептором колеблется вокруг кривой распределения, например, белковые сборки, мембраны, одноцепочечные нуклеиновые кислоты или развернутые белки (см. Сценарии, представленные на рисунке 11), FRET все еще можно использовать для изучения явлений, но предпочтительны измерения срока службы с временным разрешением. Некоторые биологические применения, которые попадают в оба случая, показаны на рисунке 11, включая конформационные изменения, диссоциацию или гидролиз, слияние мембраноподобных липидных везикул и взаимодействия лиганд-рецептор.
Хотя для измерения резонансного переноса энергии флуоресценции в оптическом микроскопе доступны различные методы, ни один из них не лишен недостатков. Некоторые методы требуют более сложных и дорогостоящих инструментов, в то время как другие основаны на предположениях, которые необходимо тщательно проверять. Некоторые подходы подходят для фиксированных образцов, но не могут применяться к системам живых клеток, в то время как другие методы должны включать значительные корректирующие вычисления или алгоритмы анализа данных.Однако несомненно, что анализ FRET показывает большие перспективы для дальнейшего развития полезности и объема биологических приложений.