Эфирный двигатель: Em-Drive — эфирный двигатель, опровергающий законы релятивистской физики. EM Drive от NASA – гиперпространственный двигатель Испытания двигателя EM-Драйв

Содержание

Em-Drive — эфирный двигатель, опровергающий законы релятивистской физики. EM Drive от NASA – гиперпространственный двигатель Испытания двигателя EM-Драйв

Успешное освоение космоса постоянно требует от человечества изучения и открытия новых технологий, которые позволили бы иметь более мощное оборудование и создавать системы обеспечения жизни экипажа для дальнейших космических полетов. Одной из таких революционных технологий может стать гипотетический электромагнитный двигатель EmDrive, который до недавнего времени считался невозможным. Однако в 2016-м году NASA опубликовало результаты исследования и проведенных экспериментов двигателя, которые доказывают его работоспособность. Следующий шаг американского космического агентства в исследовании данного вопроса – проведение экспериментов над двигателем EmDrive в открытом космосе.

Но начнем по порядку

Прежде всего, кратко рассмотрим принцип работы рядового двигателя ракеты. Есть три наиболее популярных типа ракетных двигателей:

  • Химический – наиболее распространенный тип ракетного двигателя.
    Его принцип работы следующий: в зависимости от агрегатного состояния топлива (твердотопливный или жидкостный двигатель) тем или иным способом окислитель смешивается с горючим, образуя топливо. После химической реакции — топливо сгорает, оставляя после себя продукты сгорания — быстро расширяющийся разогретый газ. Струя этого газа и выходит из сопла ракеты, формируя так называемое «рабочее тело», представляющее собой ту самую «огненную» струю, которую мы часто наблюдаем, например, в телепередачах или фильмах.
  • Ядерный – тип двигателя, в котором газ (например, водород или аммиак) нагревается в результате получения энергии от ядерных реакций (ядерный распад или синтез).
  • Электрический – двигатель, в котором разогревание газа происходит за счет электрической энергии. Например, термический тип такого двигателя разогревает газ (рабочее тело) при помощи нагревательного элемента, в то время как статический тип – ускоряет движение частиц газа при помощи электростатического поля.

Сборка реактивного двигателя

Корпус такого двигателя обязан состоять из неплавящегося металла.

Независимо от выбора типа двигателя, для его работы потребуется внушительный запас топлива, которое делает космический корабль значительно тяжелее и требует большей мощности от того же двигателя.

Двигатель EmDrive – что это и как работает?

В 2001-м году британский инженер Роджер Шойер предложил новый тип электрического двигателя, принцип которого в корне отличается от принципа работы перечисленных выше двигателей.

Конструкция представляет собой закрытую металлическую камеру (резонатор) в форме усеченного конуса (нечто вроде ведра с крышкой), который имеет определенный коэффициент отражения микроволнового излучения. Подключенный к конусу магнетрон генерирует электромагнитное излучение в микроволновом диапазоне, которое поступает в резонатор и создает там так называемую стоячую волну. За счет резонанса энергия колебания микроволн возрастает.

Как известно, свет, или электромагнитное излучение, оказывает давление на поверхность. По причине сужения камеры в одну сторону, давление микроволн на меньшее основание усеченного конуса – меньше, чем давление на большее основание. Если рассматривать камеру как закрытую систему, то результатом описанного выше эффекта будет лишь нагрузка на материал камеры, причем на одну ее сторону – больше. Однако, создатель концепции двигателя EmDrive утверждает, что данная система является открытой по причине предельной скорости движения электромагнитного излучения («скорость света»).

Физический принцип действия такого двигателя не ясен в полной мере. Роджер Шойер убежден, что объяснения данной технологии возможно в рамках всем известной ньютоновской механики. Вероятно, в силу наличия коэффициента отражения микроволнового излучения в камере, некоторая малая часть излучение выходит наружу, за пределы резонатора, что делает систему открытой. В то же время, выход излучения со стороны большего основания усеченного конуса происходит в большей степени по причине большей площади основания. Тогда выходящее микроволновое излучение будет аналогом рабочего тела, которое и создает тягу, движущую космический корабль в обратном направлении от излучаемых микроволн.

В то же время, исследователи НАСА предполагают, что истинна действия двигателя лежит намного глубже, в квантовой механике, в общей теории относительности, согласно которой система является открытой. Максимально упростив теорию, можно сказать, что частицы могут исчезать и рождаться в замкнутом контуре пространства-времени.

Возможность реализации двигателя подобным методом оценивали несколько научно-исследовательских организаций, в том числе и НАСА.

Результаты экспериментов

В течение 15-ти лет было проведено множество экспериментов. И хотя результаты большинства из них подтверждали работоспособность концепции двигателя, мнение независимых экспертов отличалось от мнения экспериментаторов. Главной причиной опровержения результатов экспериментов является факт неверной постановки и осуществления эксперимента.

Наконец-то за исследования двигателя EmDrive взялось американское космическое агентство, которое обладает достаточными ресурсами для создания эксперимента, способного вынести окончательный вердикт. А именно — экспериментальная лаборатория НАСА – Eagleworks, где был сконструирован прототип двигателя EmDrive. Двигатель помещался в вакуум, где исключена какая-либо тепловая конвекция, и оказалось, что прототип действительно способен выдавать тягу. Согласно недавнему отчету НАСА , в лаборатории удалось получить тягу, имеющую коэффициент мощности 1,2±0,1 мН/кВт. Этот показатель пока значительно ниже, нежели мощность используемых сегодня ракетных двигателей, однако примерно в сто раз выше, чем мощность фотонных двигателей и солнечных парусов.

С выходом отчета об эксперименте, вероятно, эксперимент над двигателем в земных условиях окончен. Дальнейшие эксперименты над EmDrive НАСА планирует провести в космосе.

Применение

Наличие подобного двигателя в руках человечества значительно расширяет возможности освоения космоса. Начиная с относительно малого – EmDrive, установленный на МКС, значительно понизил бы запасы топлива на станции. Это позволило бы продлить срок эксплуатации станции, а также в разы сократить грузовые миссии по доставке топлива. Следовательно, сократиться финансирование миссий и поддержка работоспособности станции.

Если рассмотреть рядовой геостационарный спутник, на который будет установлен данный двигатель, то масса аппарата уменьшится более чем в два раза. Подобным образом наличие EmDrive скажется и на пилотируемом космическом корабле, который будет двигаться заметно быстрее.

Если еще поработать над мощностью двигателя, то согласно расчетам, потенциал EmDrive позволяет доставить на шестерых астронавтов и некоторое оборудование, после чего – вернуться на Землю – примерно за 4 часа. Аналогично полет до Марса, с подобной технологией, займет пару-тройку месяцев. Полет же до Плутона займет около двух лет. К слову, станции New Horizons потребовалось на это – 9 лет.

Подводя итоги, следует отметить, что технология EmDrive способна значительно повысить скорость космических кораблей, сэкономить на эксплуатации аппаратов, а также топливе. Кроме того, данный двигатель позволяет человечеству осуществить те космические миссии, которые доселе были на границе возможного.


Путешествия со скоростью света могут стать возможны благодаря случайному открытию , но исследователи предупреждают: пока не стоит радоваться возможному путешествию к звезде Альфа Центавра длиной в одну неделю. Технология нового двигателя, которая ранее казалась невозможной, в третий раз успешно прошла тестирование.

Физики-любители и профессионалы обсудили результаты эксперимента онлайн, хотя пока не давала официальных комментариев.

Применение такого двигателя не ограничится путешествиями на скорости, превышающей скорость света. Технология уберет необходимость использования ракетного топлива на , которое сейчас нужно для периодического ускорения, сохраняющего траекторию движения МКС по орбите. Замена традиционной системы ракетного топлива на обычном геостационарном спутнике уменьшим массу объекта, запускаемого в космос, с 3 до 1,3 тонны и таким образом существенно снизит финансовые затраты.

Проводимые эксперименты пока очень далеки от реального применения на космических аппаратах, но однажды очередная технология «Звёздного пути» может стать неотъемлемой частью нашей жизни.

Спутник компании Cannae из шести юнитов CubeSat. Рендер: Cannae Inc.

Эксперты и энтузиасты с 2003 года спорят о возможности существования гипотетического «волшебного» электромагнитного двигателя EmDrive. Принцип его работы очень простой : магнетрон генерирует микроволны, энергия их колебаний накапливается в резонаторе высокой добротности, а факт наличия стоячей волны электромагнитных колебаний в замкнутом резонаторе специальной формы является источником тяги. Так создаётся тяга в замкнутом контуре, то есть в системе, полностью изолированной от внешней среды , без выхлопа.

С одной стороны, этот двигатель вроде бы нарушает закон сохранения импульса, на что указывают многие физики. С другой стороны, британский изобретатель Роджер Шойер (Roger Shawyer) свято верит в работоспособность своего EmDrive — и (см. несколько сотен страниц обсуждений на форуме NASASpaceFlight). Проведённые испытания на Земле (результаты 22 испытаний) как будто подтверждают работоспособность EmDrive.

Пришло время положить конец спорам.

Окончательную точку в спорах намерен поставить Гвидо Петта (Guido Fetta) — единомышленник Шойера и конструктор ещё одного гипотетического двигателя Cannae Drive, который работает на том же принципе: генерация микроволн и создание тяги в замкнутом контуре без выхлопа.

17 августа 2016 года Гвидо Петта объявил , что намерен запустить экспериментальный образец Cannae Drive на орбиту — и проверить его в действии. Гвидо Петта является исполнительным директором компании Cannae Inc. Сейчас компания Cannae Inc. лицензировала технологию электромагнитного двигателя фирме Theseus Space Inc., которая выведет на низкую околоземную орбиту спутник CubeSat .

Среди основателей компании Theseus Space — сама Cannae Inc., а также малоизвестные фирмы LAI International, AZ и SpaceQuest.

Дата запуска пока не объявлена. Возможно, энтузиастам удастся собрать деньги и построить экспериментальный аппарат в 2017 году.

Единственная задача этого спутника — испытания двигателя Cannae Drive в течение шести месяцев. Спутник попробует передвинуться с помощью электромагнитной тяги Cannae Drive.

Разработчики Cannae Drive заявляют, что их двигатель способен генерировать тягу до нескольких ньютонов и «более высоких уровней», что лучше всего подходит для использования в маленьких спутниках. Двигателю не требуется топлива, у него нет выхлопа.

Объём двигателя на спутнике CubeSat — не более 1,5 юнитов , то есть 10×10×15 см. Источник питания — менее 10 Вт. Сам спутник будет состоять из шести юнитов .


Спутник компании Cannae. Рендер: Cannae Inc.

Сразу после успешной демонстрации на орбите компания Theseus Space намерена предложить новый двигатель сторонним производителям для использования на других спутниках.

Энтузиасты уверены: если EmDrive работает, то в перспективе станет возможным создание не только эффективных космических двигателей, но и летающих автомобилей, а также кораблей, самолётов — любого транспорта на электромагнитной тяге.

Компания Cannae — не единственная, кто хочет проверить работу электромагнитного двигателя в космосе. Немецкий инженер Пол Коцыла (Paul Kocyla) сконструировал маленький карманный EmDrive , а сейчас собирает деньги в рамках краудфандинговой кампании. Чтобы запустить прототип в космос на мини-спутнике PocketQube , требуется 24 200 евро. За три месяца удалось собрать 585 евро.


Прототип EmDrive немецкого инженера Пола Коцылы

Недавно научные работы Шойера были опубликованы в открытом доступе . «По всему миру люди измеряли тягу. Одни строили двигатели у себя в гаражах, другие — в крупных организациях. Все они выдают тягу, тут нет великой тайны. Кто-то думает, что здесь некая чёрная магия, но это не так. Любой нормальный физик должен понять, как оно работает. Если кто не понимает, ему пора менять работу», — категорично британский инженер.

. Используемый в ней магнетрон генерирует микроволны , энергия их колебаний накапливается в резонаторе высокой добротности , и, по заявлениям автора, излучение преобразуется в тягу. На первый взгляд это обычный фотонный двигатель. Так как присутствует элетромагнитное излучение смотрим рисунок с переводом.
Известно, что электромагнитная волна это также и поток корпускул фотонов, различной энергии. Хуже всего поглощаются и отражаются фотоны рентгеновского спектра. Тут же явно задействованы не фотоны рентгеновского спектра, так что отражение и переотражение фотонов невидимого спектра тут присутствует. Но как утверждается получаемая тяга не вписывается в рамки «фотонной теории». Она существенно выше расчетной. При этом часть исследователей вообще отрицают «фотонную теорию».То есть яко бы налицо «нескомпенсированная сила». И мы имеем дело с нарушением закона сохранения импульса. В предложенной статье будет изложено особое мнение касательно природы данной дополнительной силы. И НЕРТНОСТЬ
(инерция ) (от лат. iners, род. падеж inertis — бездеятельный) в механике — свойство материальных тел,проявляющееся в том, что тело сохраняет неизменным состояние своего движения или покоя по отношениюк т. н. инерциальной системе отсчёта, когда внеш. воздействия на тело (силы) отсутствуют или взаимноуравновешиваются. Если же на тело действует неуравновеш. система сил, то свойство И. сказывается в том,что изменение состояния покоя или движения тела, т. е. изменение скоростей его точек, происходитпостепенно, а не мгновенно; при этом движение изменяется тем медленнее, чем больше И. тела. Мерой И.тела является его масса . Вот Масса и является в формуле для вычисления ускорения через силу знаменателем (a=F/M) — из чистой физики, Суть идеи. Возможно изменяется именно масса тела. То есть по факту мы имеем дело с «технологией нулевого веса» или точнее массы. Что бы понять суть данной технологии давайте вникнем в предложенную формулу.. До включения ЭМГ двигатель имеет массу например100 грам. А как только он включился масса стала иной. А в формуле отминусовать это изменение забыли. Так как теоретически «технологии нулевого веса или массы» существуют только на страницах фантастических книг. . Естественно, поверить в такой эффект как нестабильная масса очень сложно. Что же верьте в то, что нарушается «закон сохранения импульса».
То есть по факту физики столкнулись не с «нескомпенсированной силой», а с измененеим массы двигателя.
Скажем так для чистоты эксперимента, что бы доказать, что масса у ЭМГ двигателя действительно уменьшается его нужно тестить не просто в вакууме, а еще и подвесив на очень чувствительных весах.


Во всех же опытах никто взвесит сей девайс во время его работы не додумался. Простая диаграмма составленная по результатам опыта, сильно бы помогла.


Великий Ньютон учил, что если мы видим какое-то автономное движение то причина в реактивной силе. Если мы видим силу наблюдаем некую автономную ускоряющую силу то это сила реактивная. И только реактивная. Смотрите так называемый закон реактивного движения: А = F / M А — ускорение материальной точки; F — равнодействующая всех сил, приложенных к материальной точке; m — масса материальной точки. Если масса стабильна, то обнаруженная сила действительно нескомпенсированная.

Опыты с массой. Итак известны опыты которые показывают, что масса при определенных Условиях оказывается непостоянной. 1. Опыты Мирошниченко. Ссылаюсь на опыты доктора технических наук Мстислава Мирошникова. «Беспокойная масса покоя». (ТМ. 1988.1). Тот же Мирошников показал, что вес запаянных колб с дистиллированной водой внутри в диапазоне температур от 20 — 100 С отличается. Замеры веса проводились во избежание побочных эффектов в вакуумной камере. Именно он подтвердил существование эффекта уменьшения веса под воздействием тепловых пульсаций или же Броуновского движения. Мирошников также описывает эффект изменения веса и давления в вибрирующих механических системах. 2. Генератор Нуль-веса А.П. Щеголева Так, известен опыт с нагреванием стального шара, осуществленный А.П. Щеголевым . Центральная область стального шара (r = 50 мм), установленного на точные весы, нагревалась лучом лазера через отверсвтие, просверленное до центра шара. Во время работы лазера, нагревавшего стальной шар, вес шара стал меньше первоначального на 200 мг. При остывании шара его вес восстанавливался. В контрольном опыте с этим же шаром, нагретым в электропечи и перенесенным на весы для остывания, изменения веса зафиксировано не было. Объясняется изменение веса стального шара появлением потока энергии, направленного от центра к поверхности шара: поток тепловой энергии уменьшал гравитационный поток к центр у шара. В результате наложения противоположных потоков энергии вес стального шара уменьшался». Конечно этот опыт нужно проводить в вакууме. Так как горячий воздух обтекает шар на подобии того как огонь «обтекает» головку заженной спички и этот восходящий поток вполне может облегчать вес шара увлекая его вверх за счет взаимодействия нижней и боковых поверхностей шара с восходящими потоками теплого воздуха. Но Мирошниченко как раз и проводил опыты с колбами в вакууме. 3. Опыты Кунявского -Шабетникова. Так оказывается эффект уменьшения веса наблюдается также при электрических пульсациях. Работы инженера из Москвы Юрия Кунянского . По сообщениям автора, в опытах проводники под воздействием постоянного электромагнитного поля «обезвешивались» в вакууме на 0,3 — 0,4%, что в пересчёте на «тягу» проектируемого «антигравитационного двигателя» составляло 4 г. «Тяга», прямо скажем, не большая, но вдохновлённый первыми успехами Кунянский считал, что если ещё поднажать с силой тока, то эту цифру можно было бы поднять до планки в 3 — 5% от общего веса «гравиталёта». Также явление снижения веса проводника в гравитационном поле Земли при прохождении через него постоянного электрического тока пропорциональное силе тока обнаружено также В.Шабетниковым. . Что общего? Давайте проанализируем, что объединяет все эти опыты, в том числе и EM driver? Начнем с опытов с колбами в вакууме. Да все тела в вакууме начинают интенсивно излучать, ИК -волны, или фотоны теплового спектра. известно, что теплоотдача излучением в вакууме пропорциональна площади поверхности и, по закону Стефана — Больцмана, четвертой степени ее температуры. Шар излучает ик волны. Колбы излучают ик волны. И в том, числе и провода в опытах с электрическим током тоже излучают ИК-волны. А при повышении силы тока нагрев и интенсивность излучения только увеличиаеться. И ЭМГ двигатель тоже греется. Вот и вся причина, все эти девайсы начинают излучать ИК-волны. А тела излучающие ИК-волны обладают нестабильной массой. Вот и вам и технология «нулевой массы». Чем больше ЭМ — двигатель будет греться и излучать ИК-волны тем меньше его масса, а значит согласно формуле (a=F/M) Мы будем иметь аномально высокую тягу которая будет не укладыватся в расчеты если мы не будем учитывать уменьшение массы ЭМ-двигателя. При излучении им ИК волн. Эпилог. То есть можно обобщить, что никакой «нескомпенсированной силы» ЕМ двигатель не дает. Ученые просто столкнулись с «эффектом обнуления массы». Вызванной интенсивным излучением ИК-волн Мы имеем дело с зачатками «технологий нулевой массы», а закон сохранения импульса остается неизменно нерушимым.Еще в 50-е годы даже направление было такое — приборы-измерители мощности СВЧ на базе пандеромоторики — «шторка» из кварца, которая «отклонялась» потоком СВЧ. Это сейчас принят калориметрический (по нагреву нагрузки) способ измерения мощности, а тогда — даже приборы такие со шторками создавались. Все новое хорошо забытое старое. Скажем так надо трубу в которую поступает СВЧ излучение покрыть кварцем и тяга станет еще ощутимей. Литература 1. Quantum Vacuum Fluctuations Harnessed in a Propellant-less Engine Tested by NASA http://peswiki.com/index.php/Directory:Emdrive_%28Electromagnetic_Space_Drive%29 2..shtml

Евгений Золотов

Рассказ о «невозможном» двигателе EmDrive, стал одним из самых читаемых её материалов. И, конечно, я постоянно отслеживал тему, надеясь однажды написать продолжение. Но случай такой предоставился только на днях: солидным научным журналом опубликована статья группы сотрудников одной из лабораторий NASA, не просто испытавших движок, чтобы в очередной раз измерить возникающую тягу, но и предоставивших отчёт об испытаниях на суд независимых экспертов (то, что называется peer review), не выявивший серьёзных ошибок. А это значит, что возможность «невозможного» двигателя стала теперь ещё на порядок больше.

Если вы забыли или никогда не слышали, позвольте восстановить картину в общих чертах EmDrive, как его обычно называют, это по большому счёту обычная микроволновая печь, только выполненная не в форме куба, а в форме усечённого и, главное, закрытого с обеих сторон конуса. На узком конце крепится СВЧ-излучатель, включается, и — всё!

Топлива, которое выбрасывалость бы «за борт», здесь нет. Так что, согласно классической физике, а именно Закону сохранения импульса, тяга возникнуть не может. Однако изобретатели EmDrive (британский инженер Роджер Шаер и позже занявшиеся той же темой независимо другие личности) настаивают, что по разным причинам — из-за «квантовой несбалансированности» или ещё чего-нибудь в том же духе, что не учитывает современная физика — тяга таки имеет место быть и её, якобы, даже удалось измерить.

Заметьте, что Шаер и прочие вовсе не утверждают, что законы Ньютона неверны. Они лишь говорят, что наткнулись на эффект, который уточнит существующие законы. Это принципиально важный момент, который сильно помог «ЭМ-движителю» — обеспечив ему интерес со стороны серьёзных исследователей.

Отсюда начинается парадоксальная часть. С одной стороны, все здравомыслящие научно-популярные и научные ресурсы считают такой движок псевдонаучным. С другой — за него неожиданно взялись вполне серьёзные люди: сперва несколько научных групп из Китая, а потом и NASA. О китайцах с тех пор ничего не слышно, а вот американцы не потерялись: в США эта работа финансируется из кармана налогоплательщиков, поэтому результаты должны быть доступны всем.

И вот два года назад появляется первый, весьма обнадёживающий отчёт NASA: тяга действительно есть, хоть и по неизвестной причине. А на днях престижный Journal of Propulsion and Power публикует от сотрудников лаборатории NASA Eagleworks — в которой факт возникновения тяги снова подтверждается, причём в этот раз на чувствительном торсионном подвесе в вакууме (но по-прежнему на Земле). А ещё предлагается осторожное объяснение.

Объяснение — далеко не главная часть статьи, потому что является скорее догадкой, но именно оно наделало больше всего шуму. Дело в том, что привлечена существующая теория, которой буквально почти сотня лет: теория волны-пилота (Pilot wave). Её выдвинули ещё в 20-х годах прошлого века и потом несколько раз уточняли.

Боюсь, я объясню её лишь очень грубо (и буду признателен, если знатоки поправят!), но суть, в общем, в предположении, что мы вынуждены описывать квантовые процессы с помощью неудобных статистических методов лишь потому, что не замечаем некоей более низкоуровневой реальной динамики квантовых частиц — которые на самом деле движутся подобно макроскопическим телам, по вполне конкретным траекториям, определяемым свойствами вакуума. Здесь эта теория пригодилась, потому что позволяет объяснить вакуум как среду, поддерживающую колебания плотности: EmDrive передаёт вакууму импульс (отталкивается от него, словно от воды) и именно таким образом возникает тяга в замкнутой системе.

И тут следует подчеркнуть две важных вещи. Во-первых, теория волны-пилоты — не псевдонаучная выдумка, а одно из множества равновероятных объяснений квантовых процессов, которое удовлетворительно точно описывает наблюдаемые эффекты и подтверждается в том числе экспериментальными данными. И, во-вторых, сам факт публикации статьи NASA в таком издании как минимум снимает вопрос о корректности измерения тяги на подвесе (помнится, это был один из аргументов скептиков: мол, в настоящем космосе движок себя поведёт иначе). Попросту говоря, статью можно понимать так: в NASA не знают наверняка, почему тяга возникает, но знают, как её измерить — и простой читатель может на них в этом положиться.

Отсюда — новый простор для предположений. Опуская цифры, которым сейчас в общем-то придавать большого значения не следует (задачей была демонстрация существования эффекта, а поиск путей оптимизации — в списке на будущее), авторы работы констатируют: уже в текущем виде EmDrive хоть и на порядок менее эффективен классических ракетных движков, зато на два порядка эффективней других «безвыхлопных» движителей, как то солнечного паруса, разгона лазером, фотонного двигателя. Учитывая, что ограничение по скорости накладывается только скоростью света, а по мощности вообще никаких (ничто не мешает выстраивать такие двигатели буквально многокилометровыми батареями — хватило бы электричества, чтобы их запитать!), это делает EmDrive самым перспективным направлением для исследования и освоения Солнечной системы как минимум.

А значит, всё упирается теперь в генеральную проверку в космосе. Китайцы, напомню, уже намеревались такую провести. Провели ли и с какими результатами? Неизвестно. Однако в данном случае тишина заставляет скорее насторожиться, нежели разочароваться. Ведь ясно, что первый, кто подтвердит работу такого движка в космосе, а потом и первый, кто даст теоретическое обоснование, станут родоначальниками новой ветви физики и отцами неожиданных, непредсказуемых открытий и технологий!

Как хорошо сказал кто-то, представить, куда EmDrive приведёт нас, если окажется правдой, мы не в силах, поскольку стоим в самом начале пути. Как спектральные линии в конце концов привели к полупроводниковой революции, так и «невозможный двигатель» «отталкивающийся от вакуума», вовсе не обязательно должен стать лишь основой для ракетной техники будущего. Обязательно обнаружатся побочные эффекты, будут сделаны смежные открытия, поставлены новые вопросы: не каждый день, год и даже век удаётся уточнить или опровергнуть один из фундаментальных законов физики!

И как же приятно, что живём мы как раз в те дни, когда эта история пишется!

Антигравитация, двигатель и опыты с летающей тарелкой.

Принцип антигравитации, эффект Гребенникова, антигравитационный двигатель. Видео опытов с антигравитацией и свободной энергией.

Данная статья представляет собой установленные научные факты, результаты моих собственных исследований и их теоретическое обоснование.

Начиная с античных времён считалось, что все мировое пространство наполнено эфиром – субатомным веществом, из которого образуются все виды материи и состоит весь окружающий мир. На этом утверждении основывались теории ученых, в том числе и теория гравитации. И даже Ньютон изначально соглашался, что передача энергии от одного тела другому, такое как притяжение планет, может происходить только посредством среды. Но позже он изменил свое мнение, и оно стало общепринятым благодаря его авторитету в научных кругах.

Первым теорию, объясняющую гравитацию, так называемую экранную теорию, выдвинул 1748 г. Ломоносов. Он предположил что два находящихся рядом тела бомбардируются со всех сторон частицами эфира, и из-за того что эти тела закрывают друг друга, давление эфира между ними становится меньше и они сближаются. Далее в 1856 г физик Бьеркнес выдвинул пульсационную теорию, приведя простой эксперимент, в котором 2 свободно вибрирующих на воде шара сближались друг с другом или отталкивались создаваемым ими волнам в зависимости от того как они колебались — в фазе или полуфазе. Англичанин Кук проводил подобный опыт с цилиндрами моделируя электрические, магнитные и диамагнитные явления. Экспериментатор, Гатри (1870 г.) показал опыты по притяжению и отталкиванию колеблющихся камертонов. Эксперимент по теории стоков эфира Шотта провел в 1958 г. Станюкович. В два полых шара с множеством мелких отверстий подавался воздух. Истечение воздуха из отверстий в шарах было причиной возникновения притяжения шаров. Все эти эксперименты прекрасно иллюстрировали механизм гравитации при условии, что эфир является средой, через которую передаются взаимодействия между телами.

Для того чтобы доказать существование эфира тоже был проведен ряд экспериментов. В самых первых экспериментах в 1881 г Майкельсон при помощи интерферометра предпринял попытку замерить скорость эфира относительно движущейся Земли и получил эфирный ветер от 3 до 3,5 км/с, что не соответствовало орбитальной скорости планеты в 30 км/с. Такой результат можно объяснить тем, что большое количество эфира увлекается Землей точно так же как и атмосфера. Этот эксперимент был раскритикован, и его результат был отвергнут. Еще один факт, указывающий на существование субатомной среды это запаздывание потенциала, в результате которого происходит уменьшение силы взаимодействия от скорости, открытое Гауссом в 1835 году. Гаусс умер не успев опубликовать свое открытие и это было сделано его другом спустя годы, когда теория относительности уже утвердилась в науке. Как известно теория относительности предполагает то, что энергия передаётся от атома к атому моментально. Поэтому, чтобы теория работала, и было придумано искривление пространства времени – системы измерений. Уже относительно недавно современными учеными был сделан ряд открытий, не вписывающихся в теорию относительности. Например, сверхсветовое распространение фотонов, обнаруженное группой американских ученых во главе с Ален Аспектом.

Важно так же отметить открытие, сделанное инженером ядерщиком Николаем Носковым (Национальный Ядерный Центр, Республика Казахстан) . В результате своих исследований он предположил, что так называемое увеличение длины атома при движении вызвано его продольными колебаниями, связанного с вращением электронов по орбите. http://n-t.ru/tp/ng/yzp.htm Планетарная модель атома, предложенная в 1911 году Эрнестом Резерфордом после ряда экспериментов, вошла в противоречие с классической электродинамикой, согласно которой электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а следовательно, терять энергию и падать на ядро. Поэтому она была отвергнута в пользу квантовой механики и принципа облака вероятностей. Но если принять во внимание опыт с вибрирующими шарами и наличие эфира, то можно предположить что излучаемые электроном волны и есть той силой, которая не дает электрону упасть. Из этого всего можно сделать вывод, что атом может быть описан классической механикой как точный механизм.

Рассмотрим механическую модель атома водорода, на который действует сила притяжения другого атома, основанную на классической механике.


Видео:

https://youtu.be/R-6Dh2Wv8ec

Электродвигатель в центре это ядро атома, а магнит на маятнике — электрон. Магнит, установленный на штанге, жестко соединенной с осью вращения маятника играет роль положительно заряженного ядра другого атома, притяжение которого действует на электрон. Во время работы двигателя маятник, проходя мимо магнита на штанге сначала ускоряется, а потом замедляется. Таким образом, на отдельном участке центробежная сила возрастает, и создает реактивный момент в одном направлении больше чем в остальных. Такая система является инерциоидом – двигателем, который перераспределяя свою массу с разной скоростью, отталкивается от окружающей среды. При малой частоте колебаний такая система движется в однородной среде почти линейно, по длинной дуге, при большой частоте она вращается практически на месте.

Процесс, происходящий при колебательном движении в однородных — жидких и газообразных средах можно описать следующим образом: ассиметричные колебания приводят к образованию волновой среды, в которой две противоположно направленные волны разной силы, сделанные поочередно, существуют одновременно по инерции и создают разность давлений, приводящую к неравномерному высвобождению тепловой энергии из окружающей среды в виде вихря, толкающего объект.

Видео:

https://youtu.be/ECjTOa_mm5k

Такой эксперимент легко повторить в домашних условиях. Надо опустить в воду ладонь и сделать быстрое движение в одну сторону и медленное в другую. При обратном движении сопротивление воды будет больше благодаря высвобожденной из воды энергии. Этот процесс имеет следующее объяснение: Частицы вещества максимально приближены друг к другу и при этом равноудалены. Единственно возможное положение, при котором они могут быть равноудалены относительно друг друга, это треугольники, которые объединяются в шестиугольники. Это соответствует кристаллической структуре воды.


Частица 1 получает импульс. Предположим, что частицы будут двигаться по пути наименьшего сопротивления, как показывают стрелки. Если это будут бильярдные шары, то каждый раз импульс 1 будет делиться на 3 и потеряет силу. Но если это вибрирующие частицы то каждый раз при столкновении энергия импульса будет увеличиваться, потому что вибрирующий объект сам создает импульс отталкивания. Произойдет цепная реакция, которая приведет сначала к образованию множественных вихрей, предпосылки к чему есть на рисунке, превращающихся в большие вихри, которые передадут импульс частице 1 в том же направлении. Это значит, что совершая ассиметричные колебания, частица 1 будет двигаться в среде в направлении сильного импульса.

Так же мы видим, что частицы 7 образуют ровный фронт в трёх направлениях, который иллюстрирует структуру ударной волны при полете пули. Этот фронт имеет свойство распространятся дальше по мере того как сила вихря продолжает нарастать, поддерживаемая колебаниями первого тела. Вокруг тела образуется вихревая структура, которая имеет большую плотность, чем окружающая среда и создает эффект присоединенной массы. Она увеличивает площадь взаимодействия первого тела с окружающей средой, и вместе с тем его силу за счет собственной энергии. Именно с этим явлением связан эффект Гребенникова, обнаруженный им в полостных структурах и надкрылках жуков. Так же с этим связана особая структура кожи акулы, семян одуванчиков, перьев птиц и многого другого. Такая поверхность способствует образованию множественных микровихрей, даже при слабом движении. Основываясь на этом, аэродинамика птичьего полета, и движение медузы выглядит следующим образом: сначала из окружающей среды генерируется вихрь, имеющий большую плотность и массу чем окружающая среда, а затем он отбрасывается назад как реактивное топливо.


     

Упростив эту механику до ассиметричных колебаний, мы получаем летающую тарелку:


Видео:

https://youtu.be/EVNT3PKmoy4

Следовательно, гравитация это собственное движение вещества по пути наименьшего сопротивления за счет отталкивания от окружающей среды, антигравитация это любой способ движения путем создания разности давлений.

Можно предположить что таким же образом, движутся атомы и другие частицы в эфире. Атом с большой скоростью вращения электрона сильнее отталкивается от других атомов и это объясняет расширение вещества при нагревании. Отталкиваясь от других атомов и идя по пути наименьшего сопротивления, нагретый газ поднимается вверх. При этом его способность двигаться в направлении других атомов, отталкиваясь от эфира, гравитировать будет минимальна. Если же скорость вращения электрона по орбите уменьшится, то уменьшится и способность отталкиваться от препятствий, а способность двигаться в однородной эфирной среде возрастет. Добавление электронов на орбите атома уменьшит ассиметрию, и соответственно, амплитуду его колебаний. Поэтому тяжелое вещество с большим количеством электронов даже при большой скорости их вращения будет работать как гироскоп, стремясь оставаться на месте. Сила притяжения ядра находящегося рядом атома приведет к тому, что все электроны сместятся в его сторону одновременно. Образовав маятник на подобии парада планет, они одновременно создадут импульс инерции в одном направлении, в результате этого колебания станут ассиметричными, произойдет гравитация.


Чем больше масса маятника, тем эффективней движение. Поэтому тяжелое вещество имеет большую гравитацию. Именно разница между этими качествами — частотой колебаний атомов, их механического устройства и определяет распределение вещества во вселенной. Расположение атомов в кристаллических решетках определяется частотой, амплитудой и направлением их колебаний. Они постоянно стремятся продвинуться к центру общей массы и отталкиваются друг от друга на незначительное расстояние. Атомы жидкости или газа движутся на встречу друг другу с меньшей скоростью, а сила их отталкивания велика. Небесные тела и планетарные, звездные системы движутся в эфире на встречу друг другу по спиральным траекториям благодаря своим собственным вибрациям, больший импульс которых зависит от их взаимного расположения.

При этом процессы, приводящие к ассиметричным колебаниям, происходят и на уровне планетарных систем. Когда планеты расположены хаотично на орбитах вокруг звезды, силы их гравитации действуют равномерно, и звезда остается в центре. Когда планеты начинают сближаться друг с другом, между ними происходит гравитационное взаимодействие, они ускоряются. А когда планеты выстраиваются в одну линию, образуя парад, их общая гравитация действует на звезду, создавая реактивный момент, приводящий к ее резкому смещению относительно центра масс всей системы. При условии, что планетарная система взаимодействует с окружающей, средой это приводит к ее самостоятельному движению. Чем больше система приближается к источнику притяжения, тем быстрее вращение тел на ее орбите. Поэтому по мерее ее приближения, траектория будет из прямой переходить во вращение на месте, образуя спираль. Подобный принцип объясняет поведение всего вещества во вселенной, его свойств образовывать спиральные структуры на микро и макроуровнях. На примере возмущенной одиночным импульсом воды можно увидеть, как из однородного вещества могут получаться неоднородные сложные структуры, напоминающие строение видимой нам вселенной. Если создать движение в прозрачной воде, которая просвечивается, так что в ней видны мельчайшие возмущения то, можно будет увидеть, что все происходящие там процессы являются той или иной производной вихрей. На макроуровне мы можем увидеть сходство этого процесса с множественными галактиками, планетарными системами. На уровнях меньше можно сказать что вихрь обладает свойствами твердого тела. Состоя из того же что и окружающая среда он имеет большую массу, плотность, инертность за счет собственного гироскопического эффекта. Он может двигаться в среде по инерции, преодолевая ее сопротивление, забирая и затем отдавая из нее вещество. На этом простом опыте, можно увидеть, как образуются и прекращают свое существование галактики, как из окружающей среды образуется более плотное вещество. При этом как следует из приведенных выше примеров, энергия приводящая вихри в движение, берется из самого вещества. Частицы самостоятельно движется на встречу друг другу по спиральной траектории и отталкиваются. Основываясь на этих выводах можно предположить что базовое вещество – эфир из которого состоит вся материя имеет ту же особенность двигаться по спирали как и все вещество, которое им образовано. Подтверждением тому может служить вихревое строение фотона. Здесь можно провести абсолютно четкую аналогию эфирных радио и световых волн с волной на море — они имеют спиральную структуру. Таким образом, способ движения в вязкой среде применим и в космическом эфире.

Предположив, что эфир является средой, имеющей свойства вязкого, инертного вещества, мы можем так же предположить, что находящиеся в нем два атома будут двигаться на встречу друг другу по спиральной траектории аналогично предложенной выше модели атома, имея при этом одинаковое количество положительных и отрицательных зарядов. Такое движение полной мере соответствует явлениям, наблюдаемым во вселенной, объясняет спиральное строение галакти. Такие выводы указывают на реальность создания аэрокосмических аппаратов на волновом принципе, использующих для движения свободную энергию из окружающей среды.

Для подтверждения этой концепции мною был проделан ряд экспериментов, в которых антигравитационный двигатель, имитирующий колебания атома при движении был установлен на поплавок, дисковидное и серповидное крыло. Колебания при помощи двигателя приводили поплавок в движение, а подъемная сила крыла в набегающем потоке значительно возрастала благодаря образованию им акустических волн.

Видео опытов:

youtube channel

Проект летающей тарелки с антигравитационным двигателем:

flying saucer

Автор проекта: MasterOgon
E-mail: [email protected]

Поделись в соц. сетях:

Космический корабль с двигателем эм драйв. Em-Drive — эфирный двигатель, опровергающий законы релятивистской физики.

Что такое emdrive

НАСА может доставить человека на Марс за 10 недель. Все дело невозможной скорости заключено в ведре двигателя «EМ Drive», стянутого многочисленными шпильками и болтами.

Ломающий основы физики, двигатель не требующий топлива кроме как солнечных лучей – можно считать вечным, пока наша звезда не потухнет.

Передовая система двигательной установки изобретена Роджером Шоер 10 лет назад в его «Satellite Propulsion Research Ltd.», выдержав тестово-показательный запуск экспериментальной модели.

Демонстрация удалась, это была сенсация – двигатель, не требующий заправки топливом или ядерного реактора работал! Он создавал дикую тягу усилиями микроволн, отталкиваясь ими от…от…

А никто толком не знает, на каком принципе работает странное устройство, и даже сам изобретатель. Машина «разогревает» фотоны, те «катапультируются» из рабочей камеры с высокой скоростью, сообщая устройству движение.

В последнем докладе НАСА (просочившимся в прессу) якобы сообщается о ряде испытаний, проведенных специалистами Космического центра имени Джонсона в Техасе.

Документ инженеров НАСА показывает успешные технологические испытания в вакууме. Как некоторые подозревают, именно с двигателем «EM Drive» на борту, находился в космосе – тестировавший технологии будущего.

Технологичный двигатель свободной энергии, иначе EM Drive попросту и назвать то нельзя, теперь как полагают сделал Марс ближе к Земле минимум на полгода. Названый как EM Drive, двигатель по неподтвержденным данным обладает гигантским потенциалом в плане быстрых внутрисистемных полетов.

EM Drive способен доставить человеческий экипаж на Марс всего за 10 недель, без использования обычного ракетного топлива или ядерного реактора. Тем более что химические двигатели значительно проигрывают в скоростных характеристиках новинке.

Изображенный прототип EM Drive — экспериментальная двигательная система, вызвавшая сенсацию, поскольку согласно законам физики, он не должен работать. Традиционные ракетные двигатели используют химическое топливо, которое сгорает и выталкивается из подруливающих устройств.

В безвоздушном вакууме пространства, это работает по третьему закону Ньютона движения — генерации тяги путем выбрасывания массы в безвоздушном пространстве, без необходимого воздуха. И это вполне понятно, это работает.

Испытания двигателя EM-Драйв.

В случае с EM-Драйв, нет топлива, чтобы извлечь тягу, как же он работает? Не спрашивайте, потому что без «полу-литра брат, здесь не разобраться». Впрочем, вторая половина литра тоже не поможет, потому как автор изобретения либо действительно не знает, что он изобретал и какой принцип разрабатывал – что похоже на бред, либо все в глубоком секрете.

На испытаниях небольшой агрегат показывал силу тяги в 1,2 мН на киловатт (Мn / квт), малую долю от возможности в 60 Мн / кВт (на примере). Двигательная система может совершить глубокий космический полет, как герои космической эпопеи Star Trek.

Все это конечно выглядит для нас сомнительно, слишком уж чужд принцип работы на микроволнах /ионах и фотонах современным технологиям. Тем не менее НАСА в начале этого года заявило: Было , которые стали реальностью в заключение многих лет научных исследований.

И еще, ведя наступление на Марс, планируя полеты по нашей домашней системе, агентство отмахнулось от создания – для них это интересно, но не приоритетный вопрос. Не потому ли, что у них есть «быстрый двигатель»?

Уважаемый профессора физики в Университете Хельсинки Арто Эннила, отзываясь о работе ЕМдрайв сказал загадочную фразу: как и любой другой двигатель, EmDrive способен генерировать тягу без топлива. Его топливо входные фотоны сверхвысокой длинны (со слов зарубежных СМИ).

Секретный двигатель – оружие НАСА для скоростных путешествий.

Конструкция генерирует тягу путем задействования частицы света, выбрасывая микроволны внутри закрытой камеры в форме конуса. Движение внутри создает тягу на тонкий раструб конуса, который приводит двигатель в движение. Судя по множеству болтов в аппарате находится высокое давление.

Впервые увлекательный документ появился на форуме Nasa от австралийского пользователя Фил Уилсон (пишет dailymail), прежде чем пост был удален администраторами. Впоследствии публикация с отчётностью о полевых испытаниях устройства в условиях космоса «пробежалась» по всему интернету, и тайну было уже не скрыть.

Несмотря на кажущийся в «документе» успех НАСА в тестовых экспериментах, нет никаких признаков публикации в научном журнале. А ведь как сообщается, несколько команд работает над технологией, включая НАСА «Eagleworks Laboratories», которая занимается разработкой передовых двигательных систем.

Что такое ЕМдрайв?

Понятие EmDrive двигателя является относительно простым. Он обеспечивает тягу на космическом корабле с помощью микроволн. Солнечная энергия обеспечивает электроэнергию для микроволн. Последствия действительно существующей технологии, будучи запущенной в производство, неоценимы.

Невероятная сила двигателя-без-топлива дает людям возможность путешествовать дальше в космос, при значительно возросших скоростях. Отпадает необходимость тащить с собой запасы драгоценного в космосе топлива.

А место и масса(?) подумать страшно, насколько «облегчиться» космический корабль и возрастет полезный объём. В сущности, ракета-носитель с топливными цистернами также отойдет в историю.

В самом деле, есть множество плюсов, даваемых очаровательным агрегатом. Правда, когда эта концепция была впервые предложена, ее сочли мистификацией, поскольку «мотор» пошел против законов физики.

Теперь специалисты, зная лишь примерный принцип работы устройства, пытаются разобраться с возможностью фотонной тяги, что вероятно и служит инерционной массой для движения машины, когда фотоны «выбрасываются» из камеры мотора.

Несмотря на десяток лет тестирования и обсуждения, привод остается спорным.Суть заключается в том, что, на бумаге, он не должен работать, соблюдая законы физики. И все же, в тесте после испытания EM Drive просто продолжает работать.

Несмотря на многочисленные слухи о том, что документ НАСА об этих испытаниях прошел процесс рецензирования, это не было опубликовано в научном журнале. Таким образом, на данный момент, это только одна группа исследователей, сообщающая о невероятных результатах, совершенно без какой-либо внешней проверки.

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, «мысленный эксперимент» фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей «мысленных экспериментов» является обман слушателя или читателя путем замены настоящего физического эксперимента его «куклой» — фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, «мысленными экспериментами» привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие «фантики» от настоящих ценностей.

Релятивисты и позитивисты утверждают, что «мысленный эксперимент» весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: «Если факт не соответствует теории — измените факт» (В другом варианте » — Факт не соответствует теории? — Тем хуже для факта»).

Максимально, на что может претендовать «мысленный эксперимент» — это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

В прошлом году компания Volvo представила новое семейство 4-цилиндровых 2-литровых силовых агрегатов Drive-E . Линейка на данный момент включает два бензиновых мотора — Т5 мощнос­тью 245 л.с. и Т6, развивающий 306 л.с., а также дизель D4 с отдачей 181 л.с. В планах расширение этого ряда: мощность дизельных двигателей Drive-E будет составлять от 120 до 230 л.с., а бензиновых — от 140 до 306 л.с. (возможно, и более). Добиться этого будет несложно, применяя нагнетатели различной конст­рукции и производительнос­ти. Так, при одинаковом объеме бензиновых двигателей Т5 и Т6 первый снабжен турбонаддувом, а второй — комбинацией турбины и механического нагнетателя. Отсюда и разница в отдаче.

Что до нового турбодизеля Drive-E D4, то его изюминкой стала технология точного контроля впрыска топ­лива i-ART (intelligent Accuracy Refinement Technology). Главное ее отличие от распространенных сегодня систем Common Rail — в наличии индивидуальных датчиков давления и управляющих впрыском микроконтроллеров в каждой из четырех форсунок. Система i-ART, отслеживая давление в каждой форсунке, позволяет точнее дозировать подачу топлива в цилиндры двигателя. Это обеспечивает повышение экономичности и плавности работы мотора. Сокращению расхода топлива и вредных выб­росов способствует также повышенное до 2500 бар давление впрыска. К примеру, на модели Volvo XC70 с новым Drive-E D4 расход горючего составляет 4,9 л/100 км против 5,9 л/100 км с прежним дизелем.

Высокая экономичность, кстати, свойственна и бензиновым агрегатам линейки Drive-E. Так, у переднеприводного Volvo S60 с новым мотором Т5 расход бензина сократился с 8,6 л/100 км (с предыдущим Т5 — 249 л.с.) до 6,0 л/100 км в смешанном цикле, а на кроссовере XC60 тот же двигатель Drive-E Т5 выигрывает у предшественника (240 л. с.) почти два литра на сотню — 6,7 л/100 км против 8,5 л/100 км. Справедливости ради надо заметить, что существенный вклад в эту экономию вносит и новый 8-ступенчатый «автомат» Aisin.

В России новые моторы уже доступны. Правда, пока только два — на первых порах покупателям предлагают полноприводный универсал XC70 с дизелем D4 и модели S60, S80 и XC60 с бензиновым Т5 . Вместе с новыми силовыми агрегатами дебютировали также системы мониторинга полосы движения и помощи при параллельной парковке, а также электрический усилитель руля с тремя режимами настройки.

Всегда онлайн!

Мультимедийная система Sensus Connect — еще одна новинка, которая недавно появилась на российских моделях Volvo. Главная «фишка» — дос­туп к различным онлайн-сервисам и встроенный браузер для интернет-серфинга. Подключение к Всемирной паутине открывает, например, возможность слушать более 100 тыс. интернет-радиостанций с помощью сервиса TuneIn. Можно развернуть в автомобиле собственную точку доступа Wi-Fi, рассчитанную на подключение до восьми мобильных гаджетов. А можно, установив на смартфон специальное приложение, удаленно получать информацию о своем автомобиле. Карты в Sensus Navigation можно обновлять самостоятельно. В ближайшее время должна появиться возможность скачивать и устанавливать приложения. Ну а управление системой Sensus Connect организовано как посредством интерфейса на центральной консоли или на руле, так и с помощью голосового управления, что позволяет водителю не отвлекаться от дороги.

Успешное освоение космоса постоянно требует от человечества изучения и открытия новых технологий, которые позволили бы иметь более мощное оборудование и создавать системы обеспечения жизни экипажа для дальнейших космических полетов. Одной из таких революционных технологий может стать гипотетический электромагнитный двигатель EmDrive, который до недавнего времени считался невозможным. Однако в 2016-м году NASA опубликовало результаты исследования и проведенных экспериментов двигателя, которые доказывают его работоспособность. Следующий шаг американского космического агентства в исследовании данного вопроса – проведение экспериментов над двигателем EmDrive в открытом космосе.

Но начнем по порядку

Прежде всего, кратко рассмотрим принцип работы рядового двигателя ракеты. Есть три наиболее популярных типа ракетных двигателей:

  • Химический – наиболее распространенный тип ракетного двигателя. Его принцип работы следующий: в зависимости от агрегатного состояния топлива (твердотопливный или жидкостный двигатель) тем или иным способом окислитель смешивается с горючим, образуя топливо. После химической реакции — топливо сгорает, оставляя после себя продукты сгорания — быстро расширяющийся разогретый газ. Струя этого газа и выходит из сопла ракеты, формируя так называемое «рабочее тело», представляющее собой ту самую «огненную» струю, которую мы часто наблюдаем, например, в телепередачах или фильмах.
  • Ядерный – тип двигателя, в котором газ (например, водород или аммиак) нагревается в результате получения энергии от ядерных реакций (ядерный распад или синтез).
  • Электрический – двигатель, в котором разогревание газа происходит за счет электрической энергии. Например, термический тип такого двигателя разогревает газ (рабочее тело) при помощи нагревательного элемента, в то время как статический тип – ускоряет движение частиц газа при помощи электростатического поля.

Сборка реактивного двигателя

Корпус такого двигателя обязан состоять из неплавящегося металла.

Независимо от выбора типа двигателя, для его работы потребуется внушительный запас топлива, которое делает космический корабль значительно тяжелее и требует большей мощности от того же двигателя.

Двигатель EmDrive – что это и как работает?

В 2001-м году британский инженер Роджер Шойер предложил новый тип электрического двигателя, принцип которого в корне отличается от принципа работы перечисленных выше двигателей.

Конструкция представляет собой закрытую металлическую камеру (резонатор) в форме усеченного конуса (нечто вроде ведра с крышкой), который имеет определенный коэффициент отражения микроволнового излучения. Подключенный к конусу магнетрон генерирует электромагнитное излучение в микроволновом диапазоне, которое поступает в резонатор и создает там так называемую стоячую волну. За счет резонанса энергия колебания микроволн возрастает.

Как известно, свет, или электромагнитное излучение, оказывает давление на поверхность. По причине сужения камеры в одну сторону, давление микроволн на меньшее основание усеченного конуса – меньше, чем давление на большее основание. Если рассматривать камеру как закрытую систему, то результатом описанного выше эффекта будет лишь нагрузка на материал камеры, причем на одну ее сторону – больше. Однако, создатель концепции двигателя EmDrive утверждает, что данная система является открытой по причине предельной скорости движения электромагнитного излучения («скорость света»).

Физический принцип действия такого двигателя не ясен в полной мере. Роджер Шойер убежден, что объяснения данной технологии возможно в рамках всем известной ньютоновской механики. Вероятно, в силу наличия коэффициента отражения микроволнового излучения в камере, некоторая малая часть излучение выходит наружу, за пределы резонатора, что делает систему открытой. В то же время, выход излучения со стороны большего основания усеченного конуса происходит в большей степени по причине большей площади основания. Тогда выходящее микроволновое излучение будет аналогом рабочего тела, которое и создает тягу, движущую космический корабль в обратном направлении от излучаемых микроволн.

В то же время, исследователи НАСА предполагают, что истинна действия двигателя лежит намного глубже, в квантовой механике, в общей теории относительности, согласно которой система является открытой. Максимально упростив теорию, можно сказать, что частицы могут исчезать и рождаться в замкнутом контуре пространства-времени.

Возможность реализации двигателя подобным методом оценивали несколько научно-исследовательских организаций, в том числе и НАСА.

Результаты экспериментов

В течение 15-ти лет было проведено множество экспериментов. И хотя результаты большинства из них подтверждали работоспособность концепции двигателя, мнение независимых экспертов отличалось от мнения экспериментаторов. Главной причиной опровержения результатов экспериментов является факт неверной постановки и осуществления эксперимента.

Наконец-то за исследования двигателя EmDrive взялось американское космическое агентство, которое обладает достаточными ресурсами для создания эксперимента, способного вынести окончательный вердикт. А именно — экспериментальная лаборатория НАСА – Eagleworks, где был сконструирован прототип двигателя EmDrive. Двигатель помещался в вакуум, где исключена какая-либо тепловая конвекция, и оказалось, что прототип действительно способен выдавать тягу. Согласно недавнему отчету НАСА , в лаборатории удалось получить тягу, имеющую коэффициент мощности 1,2±0,1 мН/кВт. Этот показатель пока значительно ниже, нежели мощность используемых сегодня ракетных двигателей, однако примерно в сто раз выше, чем мощность фотонных двигателей и солнечных парусов.

С выходом отчета об эксперименте, вероятно, эксперимент над двигателем в земных условиях окончен. Дальнейшие эксперименты над EmDrive НАСА планирует провести в космосе.

Применение

Наличие подобного двигателя в руках человечества значительно расширяет возможности освоения космоса. Начиная с относительно малого – EmDrive, установленный на МКС, значительно понизил бы запасы топлива на станции. Это позволило бы продлить срок эксплуатации станции, а также в разы сократить грузовые миссии по доставке топлива. Следовательно, сократиться финансирование миссий и поддержка работоспособности станции.

Если рассмотреть рядовой геостационарный спутник, на который будет установлен данный двигатель, то масса аппарата уменьшится более чем в два раза. Подобным образом наличие EmDrive скажется и на пилотируемом космическом корабле, который будет двигаться заметно быстрее.

Если еще поработать над мощностью двигателя, то согласно расчетам, потенциал EmDrive позволяет доставить на шестерых астронавтов и некоторое оборудование, после чего – вернуться на Землю – примерно за 4 часа. Аналогично полет до Марса, с подобной технологией, займет пару-тройку месяцев. Полет же до Плутона займет около двух лет. К слову, станции New Horizons потребовалось на это – 9 лет.

Подводя итоги, следует отметить, что технология EmDrive способна значительно повысить скорость космических кораблей, сэкономить на эксплуатации аппаратов, а также топливе. Кроме того, данный двигатель позволяет человечеству осуществить те космические миссии, которые доселе были на границе возможного.

Независимые испытания двигателя с неизвестным принципом работы EmDrive, вроде бы подтвердившие существование его «аномальной» тяги, в очередной раз закончились крайне критическими отзывами со стороны научного сообщества. Дошло до того, что некоторые физики-теоретики предлагают вообще не рассматривать результаты эксперимента, потому что у них «нет внятного теоретического объяснения». «Лента.ру» решила разобраться и с тем, почему так получается, и с тем, какие еще необычные средства передвижения в космосе человечество придумало за свою историю.

Межзвездные путешествия при нынешнем состоянии технологий невозможны — говорит сама физика с ее законом сохранения импульса. Перефразируя известного персонажа, чтобы разогнать что-нибудь нужное, сперва следует выбросить в противоположном направлении что-нибудь ненужное — вроде ракетного топлива, которого не накопишь на путешествие за границы Солнечной системы.

Чтобы выйти из этого тупика, энтузиасты освоения космоса периодически анонсируют устройства вроде двигателя EmDrive — которые, как нам обещают, не нуждаются в выбросе топлива, чтобы набирать скорость. На вид гипотетический двигатель представляет собой ведро с магнетроном (генератором микроволн, как в СВЧ-печи) внутри. По утверждению изобретателей, раз микроволны не выходят из ведра, значит выброса чего-либо материального не происходит, при этом само «ведро» создает тягу, фиксируемую в экспериментах с 2002 года и по сей день. Причем один такой опыт проделали в НАСА, другой совсем недавно провел Мартин Таджмар (Martin Tajmar), глава немецкого Института аэрокосмического инжиниринга при Техническом университете в Дрездене. Оба учреждения трудно назвать прибежищем научных фриков — быть может, за аномальной тягой EmDrive что-то есть?

Их оппонентов, впрочем, это не смущает. Одни, как Шон Кэролл (Sean Carroll) из Калифорнийского технологического института, просто характеризует EmDrive словами , которые невозможно повторить в русскоязычных СМИ. Те, кто сдержаннее, высказывают ту же мысль иначе: EmDrive нарушает закон сохранения импульса . А Эрик Дэвис (Eric W. Davis) из Института продвинутых исследований в Остине (США) добавляет: даже если бы тяга действительно создавалась, но как в испытаниях обнаруживалась бы лишь десятками микроньютонов, то профессионалам, работающим в аэрокосмической отрасли, «вообще неинтересны новые методы передвижения, […] порождающие тягу измеряемую лишь в микроньютонах» — слишком уж она невелика.

Здесь следует отметить, что последнее утверждение довольно рискованно. По данным упомянутых экспериментов НАСА, зарегистрированная тяга составила 0,4 ньютона на киловатт — и несмотря на то, что эта цифра действительно ничтожна, двигатель с такими параметрами доставил бы New Horizons к Плутону за полтора года, вместо десятилетия, потребовавшегося на практике. Иными словами, для действительно дальних перелетов ситуация крайне далека от «незаинтересованности».

Изображение: M. Tajmar and G. Fiedler / Institute of Aerospace Engineering, Technische Universität Dresden, 01062 Dresden, German

Сложнее вопрос о том, работает ли EmDrive на самом деле, или в экспериментах «регистрируется» несуществующая тяга. Мартин Таджмар — известный «разрушитель мифов», экспериментатор, поставивший несколько «аномальных» экспериментов, найдя источники их аномалий в трудно обнаруживаемых ошибках измерения. В этот раз он привлек крутильные весы и проводил сам эксперимент в глубоком вакууме, чтобы исключить влияние конвекции воздуха. Все это не помогло убрать аномальную тягу.

Однако оппоненты не утратили своего скепсиса. Тот факт, что тяга не исчезала сразу после выключения EmDrive, может указывать на то, что речь идет о каком-то тепловом эффекте, влияющем на показания регистрирующих приборов. Следует отметить, что Таджмар в своей работе детально описывает предпринятые меры по теплозащите и магнитному экранированию, которых его критики (являющиеся физиками-теоретиками) почему-то не замечают.

Более всего смущает тезис Эрика Дэвиса о том, что работа Таджмара «не будет принята рецензируемыми журналами», только потому, что она не предлагает теоретического механизма, который мог бы объяснять наблюдавшуюся аномальную тягу. Очевидно, Дэвис в курсе того, как в XIX веке Майкельсон и Морли в American Journal of Science описание эксперимента, также не предложив никакого внятного теоретического механизма, который мог бы объяснить его. Если бы тогда журнал стоял на позициях Дэвиса, результаты важнейшего эксперимента, вызвавшего кризис теории эфира и в конечном счете возникновение теории относительности, просто не были бы опубликованы. Эксперименты по бета-распаду в 1914-1930 годах формально и вовсе нарушали закон сохранения энергии, но трудно представить себе, как кто-то из физиков той поры говорит: «данные об этом не попадут в рецензируемые журналы, потому что не объяснены теоретически».

Изображение: M. Tajmar and G. Fiedler / Institute of Aerospace Engineering, Technische Universität Dresden, 01062 Dresden, German

Повторимся: отсутствие теоретического объяснения тяги EmDrive действительно означает, что, скорее всего, он не работает — по крайней мере, не работает так, как это описывает его создатель Роджер Шойер (Roger Shawyer). Но и позиция Дэвиса, сводящаяся к утверждению «не стоит тратить время на эксперименты, если у них нет теоретического объяснения», несомненно, необычна для ученого.

Впрочем, не только EmDrive пытается перевести космические полеты на принципиально новые рельсы. В конце концов, самый быстрый из запущенных людьми аппаратов «Гелиос-2 » с трудом преодолел рубеж в 70 километров в секунду. С такой скоростью полет к звездам займет тысячи лет, что лишает его практического смысла.

Первая серьезная попытка превысить скорость химических ракет была предпринята в американском проекте «Орион» еще в 1950-х. В его рамках предлагалось подрывать небольшие водородные бомбы метрах в ста за кормовой амортизирующей плитой космического корабля. Плиту для этого покрывали тонким слоем графитовой смазки, после взрыва испарявшейся, но не дававшей кораблю перегреться. Мы не случайно написали «покрывали»: помимо расчетов, проводились и опыты по такому взрыво-импульсному полету, хотя и с помощью обычной взрывчатки:

Ключевая проблема «Ориона» очевидна: при взлете он должен был вызвать радиоактивные осадки. Конечно, его можно было собирать в космосе и отправлять лишь в дальние путешествия. По расчетам, сделанным Фрименом Дайсоном в 1960-х, беспилотный «Орион» мог достигнуть Альфа Центавра за 133 года — вот только стоил бы он несколько сот миллиардов долларов.

После сворачивания «Ориона» у ученых в США и СССР возникла другая мысль: использовать вместо термоядерных взрывов обычный ядерный реактор, нагревающий водород до 2-3 тысяч градусов. Самый эффективный двигатель такого типа, советский РД-0410 прошел испытания в Казахстане и в принципе позволял сравнительно чистый ядерный старт космического корабля с Земли. Поскольку из урана можно извлечь значительно больше энергии, чем из химтоплива, в теории такие средства разгона позволяли совершить пилотируемый полет к Марсу («Марс-94»)

Возникла и конкурирующая концепция – так называемой «ядерной лампочки ». В ней активная зона реактора закрывалась кварцевой оболочкой, через которую излучение нагревало газ в рабочей зоне двигателя до 25 тысяч градусов. При такой температуре активная зона реактора излучает в ультрафиолете, для которого кварц прозрачен, что исключало его перегрев. Нагреваемый газ, увлекаемый генерируемым вихрем, в свою очередь не должен был дать перегреться оболочке двигателя. Повышение рабочей температуры на порядок резко улучшало все параметры двигателя — но при СССР дальше проработки концепции дело не ушло, а после он и вовсе потерял какие-либо перспективы на финансирование.

Изображение: NASA

Тем не менее, ядерная лампочка выглядит весьма реалистичным проектом, позволяющим добиться высоких скоростей для массивных космических кораблей на базе уже существующих технологий. Увы, ее тяга хороша для быстрых межпланетных путешествий, но слабовата для межзвездных перелетов.

150 лет тому назад, после описания Максвеллом природы света, Жюль Верн предположил, что для межзвездных путешествий лучше всего подойдет парус, отражающий свет — тогда вместо топлива корабль будут разгонять фотоны. По прибытии в систему ближайшей звезды тот же парус затормозит его, так же без топлива.

Технически проект ограничен одним фактором: корабль со скоростью, близкой к световой, должен иметь паруса в десятки квадратных километров, массой не более 0,1 грамма на квадратный метр, что чрезвычайно трудно реализовать на практике.

Но еще в 1970-х годах был предложен так называемый лазерный парус : отражатель куда меньших размеров, разгоняемый лазерным излучателем с околоземной орбиты. Многие годы лазеры требуемой мощности просто не удавалось построить. Однако несколько лет назад Филип Лубин (Philip Lubin) из Калифорнийского университета в Санта-Барбаре (США) предложил вместо них создать группы из множества более мелких излучателей, действующих по принципу фазированной антенной решетки, с итоговой мощностью, ограниченной лишь их числом. В рамках его концепта DESTAR-6 разгон космического зонда массой 10 тонн до околосветовой скорости может быть осуществлен в пределах Солнечной системы — до 30 астрономических единиц от Солнца (дальше проблемы с фокусировкой лазеров не дадут разгонять корабль).

Иллюстрация: Philip M. Lubin

Конечно, DESTAR-6 должна быть огромной группировкой. Каждый из ее элементов по проекту Лубина должен питаться от солнечных батарей, из-за чего общие размеры такой группы — тысяча на тысячу километров. При сегодняшних ценах вывода грузов на орбиту, это те же сотни миллиардов долларов, что и для проектов типа «Ориона».

Поэтому летом 2015 года Лубин предложил использовать зонды минимальной массы: полупроводниковые пластины больших размеров, на которых предлагается расположить все необходимые зонду электронные и оптические компоненты. Их будет достаточно, чтобы делать снимки в оптическом диапазоне, обрабатывать и отправлять их на Землю, используя для этого энергию солнечных батарей с лицевой поверхности пластин. Толщина пластин может быть такой же, как у современных кремниевых подложек — менее миллиметра. Уменьшив массу зонда до десятка килограмм, можно будет доставить зонд к Альфа Центавра всего за 20 лет (0,2 скорости света). Размеры разгоняющей группировки спутников с лазерами на борту при этом могут быть уменьшены до 33 на 33 километра. Конечно, снимки на нем не смогут быть идеальными, да и затормозиться там зонду не удастся, из-за чего первая миссия к звездам будет напоминать пролет New Horizons возле Плутона. Впрочем, на фоне наших нынешних знаний о системе Альфа Центавра и это было бы манной небесной.

Все предложенные выше варианты требуют как минимум десятков лет ожидания. Нет ли более быстрого способа? В первой половине 90-х годов этот вопрос пришел в голову мексиканскому физику Мигелю Алькуберре (Miguel Alcubierre). Если окажется возможным получить отрицательную массу/энергию, ее можно использовать для создания «пузыря», сжимающего пространство прямо перед собой и расширяющего его позади себя, предположил ученый. Идея была чисто теоретической и даже фантастической. Даже при существовании отрицательной энергии, перемещение пузыря диаметром в 200 метров потребует энергии, эквивалентной массе Юпитера. Однако в последние несколько лет были предложены модификации его идеи, в которой «пузырь» , сравнивая параметры двух половин расщепленного лазерного луча, одну из которых он подвергает воздействию, теоретически способному искривлять пространство. В 2013 году в таком эксперименте были получены признаки искривления пространства — причем безо всякой материи с отрицательной массой. Увы, результаты не были окончательными: слишком много помех действует на интерферометр, чувствительность которого требуется существенно повысить.

И кстати об EmDrive: чтобы найти объяснение аномальной тяге, создаваемой «ведром», группа Уайта провела эксперимент с резонирующей полостью EmDrive, пропуская через нее лазерный луч своего интерферометра. Исследователи заявили, что луч в ряде случаев определенно проходил через полость за разное время. Сам Уайт склонен трактовать это как признак того, что по каким-то причинам внутри полости существуют слабые искривления пространства, что может быть как-то связано с аномальной тягой EmDrive.

Любой двигатель, к разработке которого не предпринимают никаких шагов, является невозможным. Первый автомобиль с двигателем внутреннего сгорания поехал еще в 1807 году, однако отсутствие интереса к изобретению (и целому ряду ему подобных), привело к тому, что большинство населения Земли считает изобретателем автомобиля то ли Форда, то ли Даймлера. Сходная история случилась с паровым двигателем и турбиной, все компоненты которых были изготовлены еще во времена Римской империи. Если мы будем считать межзвездные путешествия невозможными, они несомненно останутся таковыми.

И все же надежда есть. Достаточно безопасные ядерные ракетные двигатели испытывались еще десятилетия назад, они, как и технологии лазерного паруса, вполне реальны уже сегодня — было бы желание за них взяться. Возможно, нам повезет и физики откроют новые явления, которые позволят повторить историю открытия ядерной энергии. Когда Эйнштейн в 1934 году сообщал миру, что «нет ни малейших признаков, что атомную энергию когда-либо удастся использовать», Лео Силлард как раз разрабатывал концепцию цепной ядерной реакции, а до запуска основанного на ней атомного реактора оставалось всего восемь лет.

Моторное масло. Классификация API и группы качества ?

Моторное масло — это смесь 2 основных компонентов — базового масла и пакета присадок

ИА Neftegaz. RU. Моторное масло — это смесь 2 основных компонентов — базового масла и пакета присадок.

Применение терминов «Синтетика», «Полусинтетика» либо «Минеральное масло» подразумевает тип базового масла, которое было использовано в производстве смазочного материала.

Само базовое масло делится на группы:

1 группа — это базовое масло, полученное путем очистки нефти реагентами, данная группа содержит в себе много серы и имеет слабые показатели индекса вязкости (зависимость вязкости от температуры). 
Терминология — «Минеральное масло».

2 группа — это масла очищенные водородом (гидрокрекинг). 
Масло данной группы почти не содержат серы, при производстве, до момента добавления присадок, представляют из себя практически прозрачную жидкость, за счет чего срок службы самого смазочного материала существенно увеличивается, а уменьшение отложений и нагара в двигателе существенно увеличивает его ресурс. 
Терминология -«Минеральное масло». 3 группа — это по сути то же масло 2 группы, но с увеличенным индексом вязкости. 
Индекс вязкости масла  — это показатель, который фиксирует изменение вязкости в зависимости от температуры. 
Путем дополнительных процессов изомеризации масла получают лучшие показатели как низко-, так и высокотемпературной вязкости, что позволяет быть уверенным в смазочном материале как при запуске в самый сильный мороз, так и при эксплуатации при максимальных нагрузках.
Терминология — «Синтетика».

4 группа — это масло на основе полиальфаолефинов. 
Из-за высокой стоимости производства и после открытия технологий гидрокрекинга и изомеризации (2 и 3 группа базового масла), позволяющих производить базовое масло, ничем не уступающие им по качеству, объемы производства данной группы постепенно снижаются.

Смешение 3 или 4 групп базового масла с 1 или 2 группой базового масла — «Полусинтетика». При смешении 3 или 4 групп базового масла с 1 группой получается «Полусинтетика» увеличенным показателем по сере и иным элементам, что негативно отражается на ресурсе двигателя.

Классификация базового масла Американским институтом нефти (API).

Всего 5 групп (API 1509, Приложение E). Группа IV содержит полностью синтетическое базовое масла из полиальфаолефинов. Группа V для всего другого базового масла, не включенного в группы I — IV.

Группа 1. Произведено из сырой нефти
Масло классифицируются, как состоящее из насыщенных молекул менее чем на 90%.
В них много серы > 0,03%.
Диапазон вязкости 80 — 120.
Температурный диапазон для этого масла 0°С — 65°С.
Базовое масло 1 группы рафинируют с помощью растворителей — это самый простой и дешевый процесс очистки.
Именно поэтому масло из этой группы является самым дешевым базовым маслом на рынке.

Группа 2. Произведено из сырой нефти
Базовое масло группы 2 состоит на 90 % из насыщенных молекул.
В них серы < 0,03 % и индекс вязкости 80 — 120.
Углеводородные молекулы этого масла являются насыщенными, поэтому базовое масло группы 2 обладает лучшими антиокислительными свойствами, более прозрачное.
Это масло очень распространено на рынке сегодня, и стоит не намного дороже чем масло группы 1.

Группа 3. Произведено из сырой нефти
Базовое масло 3 группы состоят больше, чем на 90% из химически стабильных, насыщенных водородом молекул.
Содержание серы < 0,03% а индекс вязкости > 120 ед. Это масло очищено намного лучше чем базовое масло 2 группы благодаря процессу гидрокрекинга.
Этот длительный процесс специально предназначен для получения максимально чистого базового масла из нефти.

Группа 4. Полностью синтетические
Это базовое масло полиальфаолефины (PAO).
Производятся методом синтезирования.
Имеет более широкий диапазон рабочих температур чем масло из групп 1-3 и подходят для использования экстремально холодных условиях и для высоких температур.


Группа 5 Полностью синтетические
Базовое масло группы 5 — это все остальное базовое масло, включая силикон, фосфатный эфир, полиалкиленгликоль (PAG), полиэфиры, биосмазки и т.д.
Это базовое масло используют в комплексе с другим базовым маслом для улучшения свойств смазки.
Эфиры применяют в виде добавки к базовому маслу для улучшения свойств базового масла.
Смесь эфирного масла с полиальфаолефинами (PAO) работает при более высоких температурах, обеспечивают лучшую моющую способность и увеличенный срок использования.

Классификация моторных масел API появилась в 1947 г. по инициативе Американского института нефти ( American Petroleum Institute).
Классификация смазочных материалов была проведена согласно уровню их функциональных свойств, введены новые стандарты согласно требованиям американского авторынка.
API совместно с SAE разработали эту классификацию, разделив различные категории масел начиная с 1947 г. и до настоящего момента согласно их характеристикам и типам применяемых двигателей. 
Количество категорий не ограничено и институт API вводит новые категории каждый раз, когда автомобильный рынок выдвигает новые требования к моторным маслам.

Условные обозначения:

  • 1я буква обозначает применение смазочных материалов:
    — масла для бензиновых двигателей обозначаются буквой S
    — масла для дизельных двигателей — буквой C.
  • 2я буква обозначает уровень свойств моторного масла. 

Классификация моторного масла API для бензиновых двигателей

SE *** Бензиновые двигатели 1972. Те же требования к моторному маслу, что и для категории SD, но лучше защита двигателя.
SF *** Бензиновые двигатели  1980. Те же требования, что и для категории SE, но улучшена защита от износа и окислительная стабильность.
SG *** Бензиновые двигатели 1988. Те же требования, что и для категории SF, но лучше защита от износа, образования шлама и окисления масла.
SH *** Бензиновые двигатели 1993. Те же требования, что и для категории SG, но вводится система лицензирования и записи результатов всех моторных тестов и формул с целью гарантии качества. Символ API, который свидетельствует о дейсвтительном соответствии уровню SH помещается на этикетки канистр.
SJ Бензиновые двигатели 1996. Те же требования, что и для категории SH (включая лицензию и систему сертификатов) с лучшей защитой от окисления масла при высоких температурах и забивания катализатора.   
Начиная с  01/08/97, уровень SJ официально заменяет SH.
SL Бензиновые двигатели 2001. Новые тесты на степень износа  (Seq IVA), моющие свойства моторного масла (TEOST MHT4), окисление (Seq IIIF) и низкотемпературные отложения (Seq VG)  для лучшей защиты двигателя и продления интервала замены масла. Стандарт SL заменил  API SJ в середине 2001г.
SM Бензиновые двигатели 2004. Улучшены общие свойства для максимально-расширенного интервала замены масла. Ужесточен тест на высокотемпературные отложения (TEOST), новый тест на окисление (Seq. IIIG).
SN Бензиновые двигатели 2010. Представлен в октябре 2010 г. Разработан для автомобилей 2011 года выпуска и более ранних. Улучшенная защита от высокотемпературных отложений на поршнях. Более жесткие требования к контролю сажи и совместимости с уплотнителями.

*** устаревшие классификации, подобно APISA, APISB, APISC и APISD.

Классификация моторного масла API ДЛЯ 2-тактных двигателей 

Классификация API для 2-тактных двигателей имеет 4 уровня: TA, TB, TC для наземных транспортных средств и TD для использования на лодочных 2-тактных двигателях.  
Производители рассматривают данную классификацию моторных масел как устаревшую. Более новая — признанная японская спецификация JASO. Международная спецификация ISO базируется на данной японской спецификации, опубликованной в 1997г.

Классификация API для дизельных двигателей.

CE * «Требовательные» коммерческие дизельные двигатели (1987).Очень жесткие условия эксплуатации для нагруженных дизельных двигателей. Соответствует CD, усиленная защита от износа и высокотемпературных отложений, лучший контроль за окислением и расходом масла.
CF-4 * «Требовательные» коммерческие дизельные двигатели (1991).Те же требования, что и для категории CE, но усиленная защита против отложений на поршнях и высокого расхода масла.
CF Дизельные двигатели с непрямым впрыском (1994). Масла для строительной и карьерной техники, а также для двигателей, использующих дизельное топливо с высоким содержанием серы (>0.5%). Могут быть использованы вместо API CD. Иногда используются в дизельных двигателях для пассажирского транспорта.  
CG-4 Коммерческие дизельные двигатели, работающие в под тяжелыми нагрузками (развитие API CF-4, 1995). Масла для двигателей, соответствующих ограничениям по выхлопам в  США 1994 г. (дизельное топливо с содержанием серы ≤ 0.05%).  Могут быть использованы с дизельным топливом, содержащим серу в количестве до 0,5%).
CH-4 Дизельные двигатели под очень высокими нагрузками, удовлетворяющие стандартам по выхлопам США (1998). Масла, соответствующие требованиям США 1998г. для двигателей с пониженным уровнем выхлопов, специально разработаны для дизельного топлива с содержанием серы не более 0,5%. Особенно эффективны в борьбе с коррозией, износом, сажей и окислением. Высокая сдвиговая стабильность и устойчивость к вспениванию. Продлевают срок службы двигателей, эксплуатируемых в самых разнообразных условиях. Перекрывая требования предыдущих стандартов, данные масла достаточно гибко могут быть использованы в разнородных парках техники.
CI-4

Дизельные двигатели под очень высокими нагрузками (2002). Масла для последних дизельных двигателей с пониженным выхлопом, перекрывает требования CH-4. Особенно подходит для оборудования, работающего на дизельном топливе с очень низким содержанием серы (менее 0,5%). Ужесточенные требования к свойствам масел и одновременное увеличение интервала замены масла в 2 раза. Увеличение срока службы двигателя. Также принимается во внимание более строгие требования к работе с системами доочистки выхлопных газов.

Новая версия, названная API CI-4 Plus была опубликована в 2004г. с целью улучшить совместимость с системами EGR

CJ-4 Представлена в 2006г для 4-тактных высокоскоростных двигателей, удовлетворяющих требованиям к выхлопам 2007 года. Эти масла были разработаны для двигателей, оснащенных сажевыми фильтрами и рассчитанных на использование дизельного топлива с содержанием серы до 0,05%. Могут быть использованы вместо масел стандартов API CF-4, CG-4, CH-4, CI-4 и CI-4 Plus

* устаревшие спецификации, ровно как и API CA, API CB, API CC and API CD. CF и CG-4.

Классификация API для 2-тактных дизельных двигателей.

CD-II 2-тактные дизельные двигатели, работающие в сложных условиях (1988). Улучшенная защита от износа и отложений. Удовлетворяет требованиям уровня CD.
CF-2 2-тактные дизельные двигатели, работающие в сложных условиях (1994). Более жесткие требования, чем API CD-II. Усиленная защита от износа поршневых колец и цилиндров.

Классификация API трансмиссионного масла

API-GL-1
Минеральное трансмиссионное масло без присадок или с антиокислительными и противопенными присадками без противозадирных компонентов для применения, среди прочего, в коробках передач с ручным управлением с низкими удельными давлениями и скоростями скольжения.  
Цилиндрические, червячные и спирально-конические зубчатые передачи, работающие при низких скоростях и нагрузках.

API-GL-2
Червячные передачи, работающие в условиях GL-1 при низких скоростях и нагрузках, но с более высокими требованиями к антифрикционным свойствам. 
Может содержать антифрикционный компонент.

API-GL-3
Трансмиссионное масло с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. 
Применяется предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов, пассажиров и для нетранспортных работ. 
Обладают лучшими противоизносными свойствами, чем GL-2.

API-GL-4
Трансмиссионное масло с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. 
Применяется предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов и пассажиров и для нетранспортных работ.

API-GL-5
Масло для гипоидных передач с уровнем эксплуатационных свойств MIL-L-2105 C/D. 
Применяется предпочтительно в передачах с гипоидными коническими зубатыми колесами и коническими колесами с круговыми зубьями для главной передачи в автомобилях и в карданных приводах мотоциклов и ступенчатых коробках передач мотоциклов. 
Специально для гипоидных передач с высоким смешением оси. 
Для самых тяжелых условий эксплуатации с ударной и знакопеременной нагрузкой.

Классификация ACEA

Классификация моторного масла AСEA адаптирована под новые технологии, принимающие во внимание Европейские требования к защите окружающей среды. 
Начиная с 1996 г. было издано несколько версий стандартов AСEA.
Соблюдение требований ACEA 2008 является обязательным условием с декабря 2010г.
Версия ACEA 2008 определяет:
— 4 категории бензиновых и дизельных двигателей (A1/B1, A3/B3, A3/B4, A5/B5), 
— 4 категории автомобилей с системами доочистки выхлопных газов (C1, C2, C3, C4), 
-4  категории дизельных двигателей, используемых на тяжелой технике (E4, E6, E7, E9), 2 из которых относятся к тяжелым транспортным средствам, оснащенным системами доочистки выхлопных газов DPF или CRT (E6, E9).

Категория А/B:
A – бензиновые двигатели
B – дизельные двигатели

  Без экономии топлива Экономия топлива
Увеличенный интервал замены A3 / B4 A5 / B5
Стандартный  интервал замены A3 / B3 A1 / B1

Категория C:
Двигатели с системами доочистки выхлопных газов

  Без экономии топлива Экономия топлива
Низкое содержание SAPS С4 С1
Среднее содержание SAPS С3 С2

Описание требований ACEA 2008 к маслам категории Low SAPS (низкое содержание серы, фосфора и сульфатных зол)

Характеристики Показатели Экономия топлива Класс

Высокая экономия топлива
Низкое содержание SAPS

2. 9 ≤ HTHS
P ≤ 0.05 %;
S ≤ 0.2%,
CS ≤ 0.5 %

> 3%

С1

Высокая экономия топлива
Среднее содержание SAPS

2.9 ≤ HTHS
0.070 % ≤ P≤ 0.090 %,
S ≤ 0.3 %,
CS ≤ 0.8 %

> 2.5%

С2

Стандартная экономия топлива
Среднее содержание SAPS

HTHS ≥ 3.5
0.070 % ≤ P≤ 0.090 %,
S ≤ 0.3 %,
CS ≤ 0.8 %

> 1%
(вязкость xW-30)

С3

Сатндартная экономия топлива
Низкое содержание SAPS

HTHS ≥ 3. 5
Пониженная летучесть (≤11%)
P≤ 0.090%, S ≤ 0.2%, SA ≤ 0.5%

> 1%
(вязкость xW-30)

С4

HTHS — вязкость масла в условиях высокой скорости сдвига и высокой температуры.

 

Классификация ACEA для тяжелой техники

Низкое содержание SAPS

Среднее содержание SAPS

Расширенный интервал замены

E6 E4
TBN ≥ 12%

Стандартный интервал замены

E9 E7
TBN ≥ 9. 0%

TBN — щелочное число


Классификация моторного масла SAE J300

Классификация SAEJ 300 используется для характеристики вязкости (сопротивления течению) масла при высоких и низких температурах.
SAE: Society of Automotive Engineers (Общество автомобильных инженеров, США).

ASTM

Класс вязкости по SAE Низкотемпературная вязкость Высокотемпературная вязкость
  Проворачивание 1), МПа*сек, max при температуре,
°С
Прокачиваемость 2), МПа*сек, max при температуре,
°С
Кинематическая вязкость 3), мм2/сек при 100 °С При высокой скорости сдвига 4), МПа*сек, при 150 °С и 106 с-1, min
      min max  
0W 6200 при -35 60000 при -40 3,8 - -
5W 6600 при -30 60000 при -35 3,8 - -
10W 7000 при -25 60000 при -30 4,1 - -
15W 7000 при -20 60000 при -25 5,6 - -
20W 9500 при -15 60000 при -20 5,6 - -
25W 13000 при -10 60000 при -15 9,3 - -
20     5,6 9,3 2,6
30     9,3 12,5 2,9
40     12,5 16,3 2,9
(0W-40,
5W-40,
10W-40)
40     12,5 16,3 3,7
(15W-40, 20W-40,
40)
50     16,3 21,9 3,7
60     21,9 26,1 3,7

1. ASTMD 2602 – имитатор холодного пуска CCS
2. ASTMD 4684 и D 3829 – мини-ротационный вискозиметр MRV
3. ASTMD 445 – стеклянный капиллярный вискозиметр
4. ASTMD – конический имитатор подшипника HTHS

Пример: SAE 15W- 40

15W — Низкотемпературный класс вязкости.
Буква « W » означает winter (зима)
Чем ниже класс, тем ниже температура возможного старта двигателя
40 — Высокотемпературный класс
Чем выше класс, тем выше температура, которую может выдержать масло (защита двигателя при высоких рабочих температурах).

SAE xxW-yy  — Всесезонное масло, например Quartz 9000 5W-40
SAE xxW  или SAE yy – Сезонное масло, например Rubia S 10W 

Сезонные масла, в основном, используются там, где нет сильных перепадов температуры и среднегодовая температура достаточно высокая. Всесезонные масла предлагаются как с зимней, так и с летней степенью вязкости.

схемы, инструкции, описание. Происхождение генератора Тесла

Генератор Тесла — это прекрасная альтернатива солнечным панелям. Основным его достоинством считаются простота сборки, небольшие затраты на изготовление и минимальное количество материалов. Понятно, что эта разновидность генератора будет производить меньше электричества, нежели солнечная панель, однако можно сделать сразу несколько и получить неплохое дополнение в виде бесплатной энергии.

Происхождение генератора Тесла

Знаменитый ученый Никола Тесла полагал, что наш мир полностью состоит из разных форм энергии, для получения и эксплуатации которой нужно собрать улавливающий прибор. Он успел разработать множество конструкций генераторов бестопливного типа. Один из его проектов можно реализовать своими руками в домашних условиях .

Принцип функционирования бестопливного генератора Тесла состоит в том, что он применяет энергию солнца как источник положительно заряженных электронов, а энергию земли как источник электронов с отрицательным потенциалом. В результате образуется разница потенциалов, с помощью которой и создается электроток.

Система состоит из пары электродов, один из которых улавливает энергетические источники, а второй применяется в качестве заземления. Роль накопителя в конструкции играет емкостный конденсатор или линий-ионный аккумулятор (более современные вариант).

Как уже было сказано, генератор Тесла требует минимум материалов. Для его создания нужно взять следующее:

  • провода;
  • фанерные или картонные листы;
  • фольга;
  • резистор;
  • емкостный конденсатор.

Процесс сборки генератора Тесла своими руками не очень сложный. Он состоит из нескольких этапов.

Устройство заземления

Для начала необходимо позаботиться о надежном и правильном заземлении. Если самодельное

оборудование будет эксплуатироваться в деревне или на даче, то для создания хорошего заземления нужно просто вбить поглубже металлический штырь в землю. Также можно подключить установку к конструкциям, которые уходят в почву на достаточную глубину.

Если генератор будет применяться в городской квартире, то тут для заземления можно воспользоваться газовыми или водопроводными трубами. Кроме того, можно подключиться и к электрическим розеткам, которые, в свою очередь, обладают заземлением.

Изготовление приемника электронов

Затем нужно сделать прибор, улавливающий положительные частицы, которые вырабатываются источником света. Подобным источником может выступать не только солнце, но и осветительное оборудование. Генератор Тесла может вырабатывать электричество даже от дневного света, причем и в пасмурную погоду.

Приемник включает в свою конструкцию кусок фольги, зафиксированный на листе картона или фанеры. Когда световые частицы будут попадать на фольгу, в ее структуре начнут формироваться токи. Объем получаемой энергии зависит от площади фольги. Для увеличения показателей мощности установки можно собрать сразу несколько приемников и обеспечить их параллельное соединение.

Подсоединение схемы устройства

На следующей стадии необходимо подключить контакты друг к другу. Это делать нужно через емкостный конденсатор. Если рассматривать электроконденсатор, то у него на корпусе есть обозначения полярностей. К «минусовому» контакту следует подсоединить заземление, а к «плюсовому» зафиксировать провод от фольги. После этого начнется зарядка конденсатора, с которого потом уже можно будет выделять электричество. В том случае, если мощность конденсатора окажется слишком высокой, то он может взорваться от чрезмерного количества энергии. Для того чтобы предотвратить проблемы, электроцепь дополняют специальным ограничительным резистором.

Если говорить о классическом конденсаторе из керамики, то в этом случае полярность не имеет никакого значения.

Кроме того, можно попытаться устроить систему не с помощью конденсатора, а с помощью литиевой батарейки. Тогда у вас будет возможность аккумулировать гораздо большее количество энергии.

На этом сборка генератора завершается. Для проверки напряжения в конденсаторе можно воспользоваться мультиметром. В том случае, если оно достаточное, можно попытаться подсоединить к установке небольшой светодиод. Такую генераторную установку можно применять для самых разных проектов, например, для изготовления устройств ночного освещения на основе светодиодов, которое не будет нуждаться в питании.

По сути, вместо фольги также можно воспользоваться и иными материалами:

  • алюминиевыми листами;
  • медными листами.

Если крыша вашего дома сделана из алюминия, то можно попытаться включить ее в схему генератора и посмотреть, какое количество энергии она может выработать.

Машина Баумана Тестатика (Дистатика, ML-machine) — прекрасный образец действующего генератора свободной энергии , построенного в условиях мастерской своими руками, когда руки и голова у человека на месте. Принципиально это двигатель-генератор, использующий для выработки электроэнергии статическое электричество.

Генератор получил известность после публикации в СМИ.

В духовной общине Methernita, Линден в Швейцарии, с 1980-х годов работают устройства, генерирующие 220 Вольт для бытовых нужд поселка. Суммарная мощность систем составляет более 750 Киловатт. Изобретатель назвал свое устройство Swiss M-L converter , Thesta-Distatica, и заявил, что он получил описание конструкции и принципы работы во время медитации.

С технической точки зрения, устройство представляет собой модернизированный электрофорный генератор Вимшурста, диски которого способны вращаться постоянно за счет сил электростатического взаимодействия. В конструкцию также входят постояные магниты. Машина с диаметром дисков 20 сантиметров производит около 200 Ватт мощности. Большая машина имеет диски диаметром 2 метра и производит около 30 Кватт.

Детали описания конструкции могут быть получены от Швейцарской Ассоциации Свободной Энергии. Проект развивается группой исследователей Methernita, CH 3517, Linden, Switzerland. В основе лежит электростатический генератор Вимшурста, который использует стальные или алюминиевые сегменты. Отмечено, что при использовании постоянных подковообразных магнитов в современной версии конвертера, ЭДС значительно увеличивается. Специальный диодный модуль и лейденские банки обеспечивают регулировку частоты за счет резонанса, поскольку они соединены с катушками подковообразных магнитов.

Генератор использует принцип усиления статики. Машина достаточно простая, ее реально собрать в домашних условиях. Вполне возможно получать мощность 10-20 Квт, чего для домашних нужд больше чем достаточно.

Предлагается инструкция для изготовления генератора в упрощенном варианте своими руками. Машина получается гораздо проще, если не преобразовывать энергию в напряжение 220 В 50 Гц, а сразу использовать ее, например для отопления. Для изготовления генератора не требуется больших познаний в электронике.

Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует — энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Эфир и его свойства

Многие его разработки считаются утраченными ещё со времени его смерти . Одни из них известны исключительно как принципы, другие — всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.

Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина — Земля, а другая — её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.

А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию» . С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии — отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Энергия воздушной тяги

Эта идея — типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.

Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра, которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.

Незамысловатая домашняя мини-электростанция

Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.

Для его изготовления нужно:

Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.

Применение магнитов и маховика

Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок — в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.

Основная деталь — барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.

Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.

В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.

Простой генератор Тесла

Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.

Основание тому — существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.

Начинать самостоятельные эксперименты лучше с доступных для изготовления в домашних условиях приспособлений. Одно из них — простейший трансформатор Тесла. Это устройство позволяет буквально «получать энергию из воздуха». Его принципиальная схема изображена на рис. 3.В этой установке используются две пластины. Одна закапывается в землю, а другая поднимается на некоторую высоту над её поверхностью.

На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.

Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.

С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.

Устройство разработки Стивена Марка

Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4). С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства — электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU). Изобретение подтверждено патентом США от 27 июля 2006 года.

Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.

Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.

Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:

Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца — пластик, фанера, мягкий полиуретан.

Размеры кольца:

  • ширина: 25 мм;
  • внешний диаметр: 230 мм;
  • внутренний диаметр: 180 мм;
  • толщина: 5 мм.

Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.

Внешняя коллекторная катушка , она же — выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.

Каждая из катушек управления (рис.7) — плоского типа, по 90 градусов для установки вращающегося магнитного поля.

Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.

Выводы с наконечниками (рис. 7) — это два вывода внутренней коллекторной катушки.

Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.

Схема соединений делится на 4 секции:

  • входа;
  • управления;
  • катушек;
  • выхода.

Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала

и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.

Для реализации секции управления МОСФИТами (MOSFET) лучшее решение — стандартный интерфейс IRF7307, предлагаемый конструктором.

Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.

Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.

Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.

Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты потребляет значительное количество электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от . При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться.

Где взять бесплатное электричество?

Добыть электричество можно из всего. Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники электричества и энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.

На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:

Методика получения электричестваОсобенности выработки энергии
Солнечная энергия
Требует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева.
Ветряная энергия
При ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть.
Геотермальная энергия
Метод заключается в получение тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине земли.

Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.

Как сделать бесплатное электричество дома?

Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка . Если солнечной энергии недостаточно тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов расположенных в относительной близости к вулканическим зонам.

Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановиться или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.

Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но в среднем все они окупаются от 2-х до 5-ти лет. Сэкономить можно приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.

Как получить бесплатное электричество на даче?

Подключение к централизованной системе энергоснабжение проблематичный процесс и часто дачи остаются без света долгое время. Здесь на помощь может прийти установка дизельного генератора или альтернативные способы добычи.

На дачах зачастую отсутствует огромное количество электроприборов. Соответственно, потребление электроэнергии значительно меньше. Для начала следует определить преимущественный период времени, который будет проводиться в помещении. Так для летних дачников подойдут солнечные коллекторы и батареи, для остальных ветряные методы.

Питать отдельные электроприборы или освещать помещение можно также собирая электроэнергию от заземления. Схема для получения бесплатного электричества: ноль — нагрузка — земля. Напряжение внутри дома подается через фазовый и нулевой проводник. Включив в эту схему третий проводник нагрузки к нулю, в него будет направлено от 12Вт до 15Вт, которые не будут фиксироваться приборами учета. Для такой схемы обязательно нужно позаботиться о надежном заземлении. Ноль и земля не несут опасности удара током.

Бесплатное электричество из земли

Земля благоприятная среда для извлечения электричества. В грунте присутствуют три среды:

  • влажность — капли воды;
  • твердость — минералы;
  • газообразность — воздух между минералами и водой.

Кроме того, в почве постоянно проходят электрические процессы, так как его основной гумусовый комплекс представляет собой систему, на внешней оболочке которого формируется отрицательный заряд, а на внутренней положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.

Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно в 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.

В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединить между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобиться таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.

Как добыть бесплатное электричество из воздуха?

Впервые о получении электричества из воздуха заговорил Никола Тесла. Опыты ученого доказали, что между основанием и поднятой металлической пластиной существует статическое электричество, которое можно накапливать. К тому же, воздух в современном мире постоянно подвергается дополнительной ионизации за счет функционирования множества электросетей.

Почва может выступать основанием для механизма добычи электроэнергии из воздуха. Металлическую пластину размещают на проводнике. Она должна быть размещена выше других, рядом стоящих объектов. Выходы от проводника подключают к аккумулятору, в котором будет накапливаться статическое электричество.

Бесплатное электричество от ЛЭП

Линии электропередач пропускают по своим проводам огромное количество электричества. Вокруг провода, в котором идет ток, создается электромагнитное поле. Таким образом, если поместить под ЛЭП кабель, то на его концах образуется электрический ток, точную мощность которого можно просчитать, зная какой мощности ток передается по кабелю.

Еще одним способом является создание трансформатора вблизи линий электропередач. Трансформатор можно создать при помощи медной проволоки и стержня, используя метод первичной и вторичной обмотки. Выходная мощность тока в таком случае зависит от объема и мощности трансформатора.

Стоит учесть, что такая система получения бесплатного электричества является незаконной, хоть в ней и отсутствует фактическое незаконное подключение к сети. Дело в том, что такое вклинивание в систему электроснабжение наносит ущерб ее мощности и может караться штрафами.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Бесплатное электричество из магнитов

Магнит излучает магнитное поле и как следствие – его можно использовать для добычи бесплатного электричества. Для этого следует обмотать магнит медной проволокой, образуя маленький трансформатор, разместив который вблизи электромагнитного поля можно получать бесплатную энергию. Мощность электроэнергии в таком случае зависит от размера магнита, количества обмоток и мощности электромагнитного поля.

Как использовать бесплатное электричество?

Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения. Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопление статического электричества из воздуха могут привлекать молнии.

Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети — к пожарам. Подходить к обеспечению дома электричеством в домашних условиях нужно с детального изучением методов и законов физики.

Следует также учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется или накапливать в аккумуляторах, а на всякий случай иметь запасной вид электрообеспечения.

Прогноз на будущее

Уже сейчас альтернативные источники энергии широко используются. Львиная доля потребления электричества приходиться на домашние электроприборы и освещения. Заменив их питание с централизованного на альтернативное можно существенно экономить бюджет. Особое внимание на альтернативные источники электроснабжения стоит обратить майнерам, так как майнинг на централизованном энергоснабжении способен забирать до 50% прибыли, в то время, как добыча на бесплатном электропитании будет приносить чистый доход.

Все больше домов переходит на питание от солнечных батарей или ветряных электростанций. Такие методы дают намного меньше мощности, но являются экологически чистыми источниками энергии, которые не наносят вреда окружающей среде. Конструируются также и промышленные альтернативные электростанции.

В дальнейшем это сфера будет только дополняться новыми методами и улучшенными аналогами.

Заключение

Добыть электроэнергию можно даже из воздуха, но для покрытия всех нужд потребления необходимо спроектировать целую систему альтернативной выработки электроэнергии. Можно пойти легким путем и купить уже готовые солнечные батареи или ветряные станции, а можно приложить усилия и собрать собственную электростанцию. Сейчас бесплатное электричество не до конца изведанная сфера и открывает массу возможностей для самостоятельных экспериментов.

Предлагаемое устройство не имеют ни чего общего с гальваническими элементами питания (батарейками, аккумуляторами и т.п.) и, тем более, с вечными двигателями.

Устройство вырабатывает электроэнергию нетрадиционным методом.

Данное устройство представляет собой генератор, который конвертирует энергию окружающей среды, превращая ее в электричество нетрадиционным методом.

Настоящие устройства работают со строгим соблюдением закона сохранения энергии и представляют собой элементарные электрические генераторы, — источником питания для которых является рассеянная энергия окружающего пространства.

В частности настоящие устройства являются конвертерами широкого спектра низко-потенциальной энергии окружающей среды в электричество постоянного тока.

В первом приближении Настоящие устройства выглядят как самозаряжающиеся конденсаторы, мощность которых пропорциональна их запрограммированной электрической емкости и напрямую зависит от притока энергии из окружающей среды в виде ионизированных частиц, механических колебаний, звука, тепла, света, электромагнитных волн, радиационного фона, магнитного поля земли и т.д. и т.п.

Преимущество: — аналогичных технологий не существует.

Принципиальным преимуществом настоящих устройств является:

— Во-первых, абсолютная коммуникабельность, ввиду широчайшего спектра конвертируемой энергии окружающей среды,

— Во-вторых, долговечность без эксплуатационного обслуживания ввиду отсутствия движущихся частей и деталей.

— В — третьих, устройство не боится коротких замыканий. После замыкания практически мгновенно набирает прежние показатели.

— А также одним из основных преимуществ устройств являются неограниченные возможности в их конструкционном исполнении от традиционных форм в виде общепринятых гальванических элементов, до форм, определяемых спецификой их применения.

Предлагаемые устройства позволяют, телефонам, планшетам, видео камерам и другим приборам работать в автономном режиме длительное время.

Принцип работы: — это условно называемая электрическая губка, которая впитывает электроэнергию окружающей среды, разделяя заряды, при этом самостоятельно вырабатывая электрическую энергию.

Работающие установки коммуникабельны и мобильны, при этом можно делить и умножать масштаб установок, создавая нужные параметры для решения различных требований.

При этом себестоимость производства устройства (генератора), — на уровне традиционныхэлементов питания (батарей, аккумуляторов).

Новая технология позволяет делать получение электроэнергии в высокой степени технологичной и экономически выгодной.

В устройстве для получения электроэнергии, отсутствуют движущиеся детали, что практически исключает ремонтные и профилактические работы.

Предлагаемая технология, является абсолютно независимой и автономной при длительной эксплуатации.

Устройство не боится коротких замыканий.
— После замыкания практически мгновенно набирает прежние показатели.

Аналогичных устройств не существует.

А тот факт, что, устройство поглощает, вредный для человека радиационный фон, перерабатывая его и превращая в электрическую энергию, — делает технологию нужной и полезной для экологии.

Все выше сказанное, позволяет с уверенностью заявить, — что предлагаемая технология, является технологией 21 века, и позволяет решить новые методы получения экономически выгодной и экологически чистой электрической энергии.

Глобальное потепление климата, катастрофическое ухудшение экологии и целого ряда общеизвестных экономических и политических проблем однозначно подталкивает человечество к поиску новых альтернативных источников энергии.

Научно-исследовательским институтом разработаны новые технологии решающие проблему получения экономически выгодной электрической энергии альтернативным методом.

Продолжим и расскажем подробнее о новых открытиях.

Следующей разработкой альтернативных устройств получения электроэнергии нетрадиционным методом является,
— Самозаряжающийся генератор, — конвертирующий энергию окружающей среды в электричество.

Сейчас приоткроем занавес некоторых секретов происходящих процессов.
Природа подарила человечеству активные диэлектрики, благодаря которым можно изготовлять новый, точнее сказать, нетрадиционный вид альтернативных источников электрической энергии — энергетические губки.

Так называемые энергетические губки способны впитывать, поглощать и концентрировать в себе разнообразную низко потенциальную энергию окружающей среды, и преобразовывать (конвертировать) её в относительно высокопотенциальное электричество, аналогично океанским электрическим скатам или речным электрическим угрям.

— UA № 84117 и RU № 2390907 «Устройство для получения электрической энергии»;

— UA № 85360 и RU № 2419951 «Статический генератор электрической энергии».

Дальнейшие публикации о новых более совершенных конструкций энергетических губок временно приостановлено, — до практической реализации уже известных, с целью исключения научно-технического плагиата.

Описанные энергетические губки по своим техническим характеристикам способны заменить традиционные электролитические аккумуляторы, например, в мобильных телефонах, слуховых аппаратах, шахтерских фонарях и т.п. устройствах.

С позиции рядового потребителя энергетические губки при этом обладают рядом неоспоримых преимуществ:
— абсолютная автономность на весь период их эксплуатации, так как они заряжаются самостоятельно даже при непрерывной их работе на протяжении всего срока действия, не менее 2-3 лет;

С позиции специалистов энергетические губки так же имеют следующие преимущества и перспективу:
— высокую технологичность производства, обусловленную возможностью изготовления энергетических губок методом вакуумного напыления;
— энергетические губки можно изготовлять любой формы, например, в форме корпуса самого телефона или его кнопок, каски шахтера или в форме прожектора для каски, что позволит снять необходимость носить коробочку с аккумуляторами, и беспокоиться за их подзарядку, всё это будет зависеть от фантазии конструкторов и потребностей заказчика;
— перспектива изготовления энергетических губок мощностью в десятки киловатт с гарантированным сроком службы не менее тридцати лет.

На наш взгляд к вопросу производства долговечных энергетических губок с мощностью исчисляемой киловаттами надо подходить плавно и глубоко обдуманно.

Энергетическая независимость членов общества при всех положительных эффектах может легко привести к коллапсу самого общества.

— энергетические губки большой мощности способны эффективно снижать, как естественный, так и наведённый радиационный фон в окружающей их среде, а так же создавать градиент температур в десятки градусов.

Этот вопрос надо рассматривать отдельно, например, в контексте осуществления климат контроля заданного объема пространства путем изготовления энергетических губок в виде обоев, жалюзи, тканей, облицовочных плиток для полов и стен, карнизов и плинтусов, индивидуальных розеток, само клеек, картин, предметов интерьера, мебели, монтажных блоков, портативных холодильников, целевых контейнеров, медицинских боксов и т.д.

— После патентования двух вышеуказанных устройств дальнейшие разработки не приостановлены.
Нами ведутся исследования по альтернативным источникам электроэнергии в восьми — девяти абсолютно не зависимых друг от друга направлениях.

Публикаций о них пока нет, и поэтому, хотя бы с некоторыми из направлений, я попытаюсь Вас ознакомить, — как можно кратко и с привлечением нескольких любительских фильмов и фотографий первых образцов.

Пожалуйста, перед просмотром фильмов, для более полного понимания принципа работы устройств, ознакомьтесь с сопроводительной аннотацией по теме.

Конструкция и принцип работы супер конденсатора (ионистора) позаимствовано из интернета в рубрике ионистор своими руками. Самодельный ионистор – рисунок 1.

На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля.

Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора, — в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, — в другой с положительными ионами.

После зарядки ионы и электроны начинают перетекать навстречу друг другу.

При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.

В ионисторах, электролитом служит 25%-процентный раствор поваренной соли, либо 27%-процентный раствор гидроокиси калия.

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами.

Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую.

Этот ионистор, можно, очень простым и потому высоко технологичным способом, практически не изменяя существующих технологий производства ионисторов, переконструировать в генератор постоянного тока.

На наш взгляд, очень важен тот факт, что уже существующие и налаженные в производстве ионисторов технологии, не надо изменять при внедрении предлагаемого изобретения в реальное производство, — что позволяет быстро внедрить изобретение и запустить экономически выгодную технологию в производство.

Экономика торжествует!

Поставленная цель достигается элементарно — путем введения в электролит демона Максвеллаа.

Следует, отметь, что в настоящее время демон Максвелла уже не является мысленным экспериментом 1867 года, в подтверждение приведу общеизвестные примеры.

— Для подтверждения вышесказанного и для того чтоб более детально разобраться в сути вопроса, — заинтересованным компаниям необходимо найти в интернете публикации Японских и Американских ученных о демоне Максвелла или перевести несколько дополнений на русском языке, предоставленных ниже.

Как видно из предоставленных описаний достижений мировой науки, — из-за высокой себестоимости, демон Максвелла пока не доступен для рядового потребителя.

Нами найдено решение получения высоко технологичного и не дорогого для производства демона Максвелла, с себестоимостью, на уровне цен традиционно применяемых электролитов и уже использующихся во многих странах в производстве ионизаторов.

В подтверждение демонстрируем фотографии первых сделанных образцов.

Также демонстрируем образцы сделанные по другой технологии.

Дополнительно предоставляем возможность просмотреть документальные фильмы на нашем сайте и в интернете.
1) http://www.youtube.com/watch?v=D0eX2ZPzJik

Предоставленная информация, а также, фильмы и фотографии, доказывают, — что за пройденное время, работы не прекращаются и, достигнут вполне ощутимый прогресс.

А именно, что в «условиях кухни», руками, уже собраны источники получения электроэнергии нетрадиционными методами, в десятки раз меньше по размеру и в сотни раз мощнее существующих устройств.

Уверенны, что после достигнутых результатов, — возможно и целесообразно, рассматривать вопрос реального производства.

На наш взгляд, — возможно:

— купить (от Китая-Кореи-Индии-Турции до Германии и США) готовую линию по производству ионисторов стоимостью $ 100 000-$ 800 000, в зависимости от производительности и страны изготовителя,

— заранее согласовав с изготовителем линии геометрические размеры ионистров с размерами традиционных батареек,

— установить реконструированную линию в наиболее экономически удачной стране,

— добавить нового, улучшенного нами демона Максвелла,

— и после этого выбросить на рынок новый продукт и занять лидирующие позиции.

Следует отметить, что экспериментальные ионисторы двухлетней давности и более свежие полугодовой давности отличаются увеличенной площадью двойного электрического слоя за счет природы карбоновых электродов и более совершенными свойствами секционируемого нами демона Максвелла.

В связи с тем, что исследования в этом направлении нами продолжаются, мы можем уже продемонстрировать, пока самую первую, элементарную ячейку абсолютно твердотельного ионистора изготовленную уже методом вакуумного напыления.

Абсолютно твердое тело ионистора и его, не превзойденные электротехнические свойства, достигаются использованием в качестве материала электродов АПП (алмазоподобных пленок), превосходящих в десятки раз углеродные нано трубки по удельной поверхности, а также использованием твердых электролитов и более совершенного нашего демона Максвелла.

Предполагаем, что такой технологический подход, позволит нам в ближайшее время получить технологию производства не дорогих самозаряжающихся ионисторов превосходящих по своей удельной электрической емкости литиевые батарейки.

А новый экологически чистый и экономически выгодный подход в получении электрической энергии, позволит изобретению занимать лидирующие позиции длительное время в 21 веке.

На наш взгляд демон Максвелла для обывателя продемонстрирован, а сама уникальность предмета изобретения доказана наяву.

Хочу подчеркнуть, что предоставленная информация по демонстрации изобретения, не является цирковым фокусом,

— так как у нас нет необходимости создания иллюзии за кадром, потому что мы не можем позволить себе заниматься обманом.

Во всем увиденном на фото и видео репортаже, можно убедиться при демонстрации во время личной встречи.

Предоставленная для ознакомления информация, еще раз подчеркивает, что все сделанное на экране, преследует единственную цель – обеспечить наглядность демонстрации изобретения, и ни в коем случае не попытку напустить туману для поднятия имиджа.

Осталось на словах предоставить информацию, что элементарную ячейку можно изготовлять с самовосстанавливающимся напряжением 2,5 вольта,

— при этом энергетическая мощность будет прямо пропорциональна электрической емкости ячейки, а сроки непрерывной эксплуатации предлагаемых ионизаторов нового поколения, будут работоспособными сотням тысяч моточасов.

Для большей ясности по теме проекта, ознакомьтесь с предоставленной ниже дополнительной информацией с интернета.

При заинтересованности, — предоставим дополнительную информацию и обеспечим сопровождение проекта авторским надзором при внедрении технологии.

p.s. Ожидаем взаимовыгодных предложений по сотрудничеству.

Если Вас заинтересовало изобретение, ознакомитесь с дополнительной информацией с интернета.

Японцы создали демона Максвелла.

membrana , 16 ноября 2010.

Основа опытной установки: ротор из пары микросфер и четыре электрода (A-D), на которые подаётся синусоидальное напряжение со смещёнными фазами (шарики и электроды показаны в разном масштабе) (иллюстрация Shoichi Toyabe, Eiro Muneyuki, Masaki Sano /Nature Physics).

Демона Максвелла — мысленный эксперимент, покушающийся на второе начало термодинамики, удалось поставить в реальности физикам из университетов Тюо (Chuo University) и Токио (University of Tokyo).

Японцы создали два связанных шарика полистирола диаметром 0,3 микрометра каждый. Один находился на поверхности стекла, второй мог вращаться вокруг первого. Установку при этом заполняла жидкость. Её молекулы хаотично подталкивали шарики (броуновское движение), естественно, с равной вероятностью, как по часовой, так и против часовой стрелки.

Системы с обратной связью, говорят японские физики, могут представлять собой машины нового типа, преобразующие информацию в энергию.

Теоретически в будущем подобные устройства могли бы питать за счёт броуновского движения микромашины. На рисунке показана условная схема эксперимента.

Положение вращающегося ротора тут заменено шариком, прыгающим по ступенькам случайным образом. Когда шарик прыгает вверх, умный демон Максвелла ставит барьер, не позволяющий шарику скатиться обратно.

При этом «демон» сам не подталкивает шарик (иллюстрация Mabuchi Design Office /Yuki Akimoto).

Далее авторы добавили слабое электрическое поле, которое создавало крутящий момент. Это был аналог лестницы, по которой шарик мог «взбираться», увеличивая потенциальную энергию. Иногда молекулы толкали ротор против действия поля (подъём), иногда в сторону поля (прыжок по ступенькам вниз). Но в целом ротор вращался туда, куда его толкало внешнее поле.

Каждый раз, когда ротор в броуновском движении делал шаг против поля, компьютер сдвигал последнее так, что шарик мог повернуться, но когда ротор пытался вращаться обратно, поле блокировало его.

Так был создан аналог открываемой и закрываемой демоном Максвелла дверцы: ротор увеличивал свою энергию за счёт теплового движения молекул.

Законов природы, впрочем, установка не нарушает, поскольку для работы «демона» (камеры, системы коррекции напряжения) необходима энергия.

Но японцы подчёркивают: данный опыт впервые на практике доказал реальность теплового насоса — демона Максвелла, теоретически обоснованного Лео Сцилардом в 1929 году.

Такая машина извлекает энергию из изотермической окружающей среды и преобразует её в работу.

Общий принцип теплового насоса – демона Максвелла («двигатель Сциларда»).

Макроскопическая система (компьютер) управляет событиями в микроскопической системе (в реальности – ротор и поле, а условно – комната с молекулами и перегородкой) за счёт получения информации о ней.

Энергия в микроскопической системе растёт (и может производить полезную работу), но не вполне бесплатно, поскольку «демон» потребляет энергию на получение информации и управляющие действия (иллюстрация Shoichi Toyabe, Eiro Muneyuki, Masaki Sano /Nature Physics).

Учёные посчитали, сколько бит содержали кадры с положением ротора, и установили, что при комнатной температуре один бит, превращается в 3 х 10 -21 джоулей, в полном соответствии с теорией, — сообщает New Scientist.(Читайте о других экспериментах, — с ротаксаном и нано трубками — в которых наблюдалась аналогия с демоном Максвелла.)

Демон позапрошлого века нарушил равновесие круглых молекул.
Владислав Карелин , 2 февраля 2007.
Раньше считали, что демон Максвелла мог караулить только сообщающиеся сосуды с газом. Теперь оказалось, что его можно заставить работать и с хитрыми молекулами, надетыми на другие молекулы (иллюстрация Peter Macdonald, Edmonds UK).

Мистика не чужда точной науке. Даже физики порой вынуждены прибегать к помощи оккультных сил. Набравшись смелости и начитавшись об одном таинственном существе почти полуторавекового возраста, учёные взялись за работу и — изумлённым исследователям явился демон!

К счастью, ситуацию удалось удержать под контролем.
Природа способна на всякие технологические чудеса.
Она часто использует в важных биологических процессах механизмы, которые можно назвать молекулярными двигателями. Эти «естественные моторы» вдохновляют учёных на создание чего-то похожего в своих лабораториях.
Однако сотворить такие устройства на молекулярном уровне не так просто.
Тепловая энергия в микромире проявляет себя не так, как в привычных для нас макро условиях. На микроуровне тепло превращается в кинетическую энергию мельчайших частиц, которые постоянно дёргаются, находясь в непрерывном броуновском движении.
Темп этих перемещений столь велик, траектория молекул из-за постоянных столкновений так непредсказуема, а их самих так много, что эти частички схватить не удастся никаким пинцетом.
Однако контролировать движение молекул в некоторых случаях учёным очень хотелось бы. Проблема эта достаточно давняя и беспокоит умы с середины XIX века, хотя значительных прорывов в этой области было сделано мало.
Максвелл придумал несколько разных режимов работы своего демона.
A) Демон Максвелла устраивает жёсткий фей контроль для молекул. Пропускает только синие (предположим, что они холодные), красным (горячим) вход закрыт.
Через некоторое время в одном сосуде остаются горячие, а во втором собираются холодные. В итоге – очевидный температурный дисбаланс.
®
B) Другой случай. На этот раз демон готов пропускать кого угодно. В одном сосуде молекул становится больше, чем в другом, но итог такой же, как в первом случае: один из сосудов (где молекул много) становится горячее (иллюстрация с сайта s119716185.websitehome.co.uk).
Скорость движения молекул связана с теплотой. Если у учёных появится возможность управлять ими, то, значит, они смогут управлять и температурой различных систем.
Размышляя над такими проблемами, английский физик Джеймс Клерк Максвелл (James Clerk Maxwell) предложил простой способ «администрировать» поведение молекул.
Речь идёт всего лишь о мысленном эксперименте, который, правда, оставил огромный след в науке и вошёл во все учебники физики. Придуманная Максвеллом система состоит из двух сосудов, наполненных газом и сообщающихся между собой.
Отверстие, которое соединяет ёмкости, может закрываться и открываться с помощью очень лёгкой затворки, которой управляет демон (этого мистического субъекта, пришлось допустить в теорию).
Правда, что это за демон, откуда он и как его зовут – не уточняли, поэтому впоследствии (для соблюдения научной последовательности) демона так и прозвали – демон Максвелла.
Демон должен следить за тем, какие молекулы в результате своего хаотического движения подлетают к отверстию.

В зависимости от их скорости демон открывает заслонку, «сортируя» молекулы так, чтобы в одном сосуде оставались «холодные» (медленные), а в другом – «горячие» (быстрые).

Джеймс Клерк Максвелл (1831-1979 годы).

Помимо прочих достижений в области физики и математики великий ный описал принцип работы термодинамического демона.
Но как его следует изображать на картинках – не уточнил. Поэтому в науке не сложилось единого мнения о том, красный демон или зелёный, и должны ли у него быть рога, хвост и трезубец (фото с сайта ifi.unicamp.br).
Если бы такой демон мог существовать в реальности, то его работа привела бы к нарушению Второго закона термодинамики. Напомним, закон гласит, что тепло не может самопроизвольно переходить от холодного тела к горячему.
А ведь, нарушив этот запрет, можно было создать тепловую машину, которая работала бы без потребления топлива и энергии…

Разумеется, у Максвелла не было никаких планов насчёт разрушения термодинамики, да и строить вечных двигателей он не хотел. Физик всего-то задумал проиллюстрировать статистическую природу Второго закона.
Однако впоследствии эта «демоническая модель» нередко вдохновляла многих – от изобретателей до философов, хотя и оставалась в стороне от практики «большой науки».
Однако демон оказался живуч и заявил о себе спустя ровно 140 лет.
Может быть, это даже не демон, а какой-нибудь джинн, способный томиться веками в безвестности, терпеливо ожидая своего часа. Жаль, что Максвелл в этом не признался.
Но, так или иначе, химики университета Эдинбурга (University of Edinburgh) из исследовательской группы Дэвида Лея (David A. Leigh) создали молекулярную машину, принцип действия которой основан на работе такого демона.

Профессор Дэвид Лей. Он смог приручить демона Максвелла для экспериментов в области термодинамики, хотя это и было непросто. Сможет ли он сделать то же самое в области карточных игр – пока неизвестно (иллюстрация с сайта s119716185.websitehome.co.uk).
Эта нано машина представляет собой ротаксан.
Ротаксаны – это молекулярные структуры, состоящие из замкнутой циклической молекулы, нанизанной на линейную молекулу, у которой на концах имеются объёмные группы, которые не дают кольцевой молекуле соскочить.
В последнее время эти структуры стали пользоваться большой популярностью в различных нано технологических экспериментах (например, мы рассказывали о солнечном моторе на основе ротаксана).
Как правило, в предыдущих опытах использовались перемещения молекулы-кольца. Это движение имеет случайный характер, и теперь учёные решили придумать способ как-то им управлять.

Для этого они сделали несколько модифицированный ротаксан.

Во-первых, в линейную молекулу «вставлена» молекула углеводорода стильбена. Стильбен разделяет молекулу на две части и служит своего рода воротами (об этом дальше).

Кроме того, в каждом отсеке линейной молекулы есть «липкое место» – область, к которой молекула «прилипает», то есть выше вероятность обнаружить её именно там. Причём в одном «куске» молекулы этот участок находится ближе к воротам, а в другом – ближе к концу.
Плюс к этому, система способна реагировать на свет.

Слева изображены изменения исследованного ротаксана, а справа – изменения, которые должны были бы происходить в результате действий демона над сосудами с газом.
Красная окружность – круговая молекула, нанизанная на линейную, оттенками синего и зелёного показаны «липкие» участки. a) В первоначальном положении линейная молекула «закрыта» (ворота указаны стрелкой). b)
В результате освещения ворота открываются, и из-за теплового колебания круговая молекула переходит на другую часть линейной © и прикрепляется к «липкому» месту, после чего (d) ворота закрываются. Равновесие сместилось.
При облучении данной конфигурации круговая молекула, скорее всего, не откроет ворота и не перейдёт на прежнюю позицию (иллюстрация Viviana Serreli, Chin-Fa Lee, Euan R. Kay, David A. Leigh).
В исходном состоянии ворота стильбена закрыты. Если излучение падает на циклическую молекулу, то она сигнализирует об этом воротам.
Это проявляется в том, что кольцо передаёт воротам некоторую энергию, которой хватает им, чтобы открыться и закрыться за короткий промежуток времени.
Так как в одной части молекулы кольцо находится ближе к воротам, то выше вероятность того, что открытые ворота молекула пройдёт именно из этой части, и что энергетический сигнал от неё дойдёт до ворот.
Работая с большим количеством таких систем, учёные увидели то, что и ожидали: в итоге большинство кольцевых молекул оказалось в одной части ротаксана. Равновесие оказалось смещённым.

Циклические молекулы, как им и полагается, колеблются — так как обладают некой тепловой энергией (опыт проводился при 25 градусах по Цельсию).
А это значит, что вместе со смещением молекул в пространстве произошло и смещение теплового равновесия.

Если таким образом равновесие будет смещено, скажем, в большом количестве ротаксановых структур, то сдвиг будет очень заметен.

А итог – тот самый, который Максвелл предсказал только теоретически – нарушение Второго закона термодинамики: одна часть системы станет холоднее другой.

А одна художница, вдохновившись демоном Максвелла-Лея, решила возложить на него ответственность не только за ворота, но и за кольца. Вот такой симпатяга (иллюстрация Regina Fernandes – Illugraphics).
Впрочем, со столь скоропалительными выводами торопиться не будем.
В формулировке закона говорится о невозможности перехода, происходящего спонтанно. То есть – без дополнительного подведения энергии.
А в данном эксперименте некий расход энергии был – световое излучение. Так что за термодинамику можно быть спокойным – она осталась целой и невредимой.
К тому же, реализованный проект даже не очень-то похож на вечный двигатель – как ни как, достигнутое соотношение энергии между двумя частями ротаксанов в среднем составляло 7:3, не более.
Это, конечно, очень впечатляющее значение для экспериментальной физики, но далёкое от всякой фантастики. Что ж, возрадуемся снова: и на этот раз никаких посягательств на классическую физику не случилось.
При этом интересно, что поведение разработанной системы описывается моделью с демоном Максвелла.
Пусть и не с всемогущим, но зато с тем самым, о котором великий физик рассказывал в XIX веке.

Демон Максвелла во плоти или ещё один вариант нано мотора.

Россия успешно испытала антигравитационный двигатель Леонова

Русский ученый, лауреат премии Правительства России Владимир Леонов создал фундаментальную теорию Суперобъединения, которая выводит российскую фундаментальную науку в мировые лидеры.

Ученый поделился с нами результатами испытаний квантового двигателя с горизонтальной тягой в 50 кг силы в импульсе, проведенных в 2009 году. Прошло более пяти лет, и мы поинтересовались сегодняшним состоянием дел:

— Владимир Семенович, на Вашем блоге размещены видеролики испытаний 2009 года аппарата с квантовым двигателем внутри. Привод на колеса отсутствует, тем не менее, аппарат передвигается горизонтально за счет внутренних сил. Ваши оппоненты утверждают, что все дело в трении подшипников колес, а в невесомости он работать не будет.

— Чтобы убрать имеющийся скептицизм, мною за эти годы был усовершенствован квантовый двигатель и сделан аппарат с вертикальным взлетом, чтобы убрать «фактор подшипников». В июне 2014 года были успешно проведены его стендовые испытания. При массе аппарата в 54 кг импульс вертикальной тяги составил 500…700 кгс (кг силы) при потребляемой электрической мощности 1 кВт. Аппарат взлетает вертикально по направляющим с ускорением в 10…12g. Этими испытаниями убедительно доказано, что гравитация покорена экспериментально, подтверждая теорию Суперобъединения.

— Вы можете дать сравнительные характеристики квантового двигателя и современного ракетного двигателя?

На основании стендовых испытаний такие характеристики получены. Для сравнения: современный ракетный двигатель (далее – РД) на 1 кВт мощности создает тягу в 1 Ньютон (0,1 кгс). Опытный образец квантового двигателя (КД) образца 2014 года на 1 кВт мощности создает тягу в 5000 Ньютонов (500 кгс) в импульсе.
Конечно, в непрерывном режиме удельные тяговые характеристики КД уменьшаются. Однако, в импульсном режиме КД уже сейчас в 5000 раз эффективнее РД. Это объясняется тем, что КД, в отличие от РД, не греет атмосферу и космос продуктами сгорания топлива. КД питается электрической энергией.

— Но это же революция в двигателестроении. А как она отразится на космической отрасли?

— Сегодня реактивные двигатели (РД) космических аппаратов достигли своего технического предела. За 50 лет временной импульс их работы увеличен с 220 секунд (Фау-2) всего в 2 раза до 450 секунд (Протон). Импульс работы квантовых двигателей составляет не сотни секунд, а годы. Ракета с РД массой в 100 тонн в лучшем случае несет 5 тонн (5%) полезного груза.
Аппарат с квантовым двигателем в 100 тонн будет иметь квантовый двигатель с реактором в 10 тонн, то есть полезная нагрузка составляет 90 тонн, это уже 90% против 5% у РД.

— А каковы будут скоростные характеристики межпланетных космических кораблей нового поколения?

— Максимальная скорость космического аппарата с квантовым двигателем может достигать 1000 км/с против 18 км/с у ракеты. Но главное, имея длительный импульс тяги, аппарат с КД может двигаться с ускорением. Так, полет до Марса на космическом корабле нового поколения с квантовым двигателем в режиме ускорения ±1g составит всего 42 часа, причем с полной компенсацией невесомости, до Луны – 3,6 часа. Наступает новая эра в космических технологиях.

— А какой источник энергии вы планируете применить для питания квантового двигателя?

— Наиболее перспективным источником энергии является реактор холодного ядерного синтеза (ХЯС), например, по схеме итальянского инженера Андреа Росси, работающего на никеле. Энергоотдача топлива, того же никеля в ядерном цикле, в миллион раз выше, чем у химического топлива, то есть 1 кг никеля в режиме ХЯС выделяет энергии, как 1 миллион кг бензина.
Но в России есть и собственные разработки. Я писал об этом в статье «Комиссия по лженауке и холодный синтез похоронят сырьевую экономику России». Сегодня мы пожинаем плоды этого в виде падения цен на углеводородные энергоносители (Читайте «Россию собираются душить холодным синтезом»)

— Холодный синтез – это отдельная большая тема, а возвращаясь к квантовому двигателю, хотелось бы знать о применении его в авиации.

— Создание универсального двигателя, который мог бы одновременно работать в космосе, в атмосфере, на земле и под водой является первостепенной задачей фундаментальной науки.
Этому требованию удовлетворяет только один двигатель – квантовый. Например, у пассажирского самолета расход топлива турбореактивного двигателя идет на преодоление сопротивления воздуха на высотах 10…12 км, выше он не летает. Установка КД на самолете позволит летать ему на высотах 50…100 км, где сопротивление снижается на порядки, а соответственно и расход традиционного топлива, самолет летит по сути дела по инерции.
При переходе на топливо ХЯС самолет сможет летать годами без дозаправки. За счет увеличения скорости, например, на трассе Москва-Нью-Йорк время полета может быть снижено с 10 часов до 1 часа.

— Ну, прямо фантастика. А что будет с автомобилем?

— Да никакой фантастики нет, есть фундаментальная теория Суперобъединения, которая определяет физические основы новых реакторов ХЯС и квантового двигателя, работающих на новых физических принципах.
Сегодняшний уровень развития науки техники сто лет назад воспринимался бы как фантастика, когда авиация и автомобили только зарождались. А что будет через сто лет?
Уже сейчас установка квантового двигателя на автомобиле в корне изменяет его схему. Имеем корпус автомобиля на колесах и силовую установку с КД. Трансмиссия не нужна. Тягу обеспечивает КД, проходимость колоссальная, колеса не буксуют. Заправка 1 кг никеля в реактор ХЯС позволит легковому автомобилю пробегать 10 миллионов километров без дозаправки, это 25 расстояний до Луны.
Автомобиль будет почти «вечным» – 50…100 лет срок службы. Появятся летающие автомобили с антигравитационной подушкой, способные по воздуху преодолевать водные преграды.

— Вы обрисовали нам идеалистическую картину недалекого будущего. Но кто же это позволит сделать? Транснациональные корпорации, чей бизнес держится на бензине и нефти не допустят такого. Да и 50% бюджета России до санкций Запада наполнялось за счет нефтегазового экспорта.
— Это не так в корне. Все, что сейчас ездит и летает – это прошлый век. Поверьте, пройдет время, и транснациональные корпорации наперегонки побегут осваивать производство новых автомобилей, летательных аппаратов и реакторов. Это правила успешного бизнеса, и они очень жесткие. Кто опоздает к раздаче, тот разорится.
И у России нет другого пути развития, как путь научно-технического прогресса. Сырьевая экономика России оказалась уязвимой от санкционной политики Запада, и это не было секретом. Теперь за санкции мы должны благодарить Запад, что он пробудил Россию. Нам надо буквально 2-3 года, чтобы провести модернизацию и ускоренными темпами обеспечить рост экономики. Дэн Сяопину было 74 года, когда он начал модернизацию Китая и их экономика была в худшем состоянии, Путину – 62.
— Насколько нам известно, вы уже 20 лет работаете над теорией Суперобъединения, квантовым двигателем и реактором ХЯС. Но оказалось так, что итальянец Андреа Росси первым запустил реактор холодного ядерного синтеза. США и Китай также работают над созданием квантового двигателя. А не опаздываем ли мы, и кто в России мешает развитию новых энергетических и космических технологий?

— Как это ни парадоксально, но основным противником холодного синтеза и исследований в области антигравитации было и остается руководство Российской академии наук (РАН), а точнее комиссия РАН по лженауке, которая объявила холодный синтез и антигравитацию махровой лженаукой.
Нетрудно доказать, что комиссия РАН по лженауке была специальным проектом извне, когда на фоне борьбы с колдунами и лжецелителями, в РАН были разгромлены все группы ученых-энтузиастов в области ХЯС. К нашему счастью специалисты в области ХЯС не сдались и продолжали работать в «подполье», организуя по инициативе одного из пионеров ХЯС Юрия Бажутова ежегодные конференции по холодной трансмутации ядер. Сейчас готовятся уже к проведению 22-ой конференции. Что касается реактора Росси, то особых секретов у него нет, и его реактор уже был повторен русским ученым Александром Пархомовым.
Но руки у комиссии РАН по лженауке дотянулись и до военных, до Роскосмоса. Были остановлены работы в области создания аппаратов искусственного тяготения в НИИ космических систем (НИИКС), а один из пионеров нового направления в космическом двигателестроении генерал Валерий Меньшиков отправлен в отставку.
В СМИ была задута компания по дискредитации данных работ (читайте «Возобновление испытаний «Гравицапы» — это пушечный залп по Академии наук»). В итоге было потеряно время, и Роскосмос не смог участвовать в модернизации квантового двигателя.
Добавлю, что в работе КД нет никакого нарушения третьего закона Ньютона. КД создает тягу при взаимодействии с квантованным пространством временем. Китай и США также работают над созданием квантового двигателя. Но их достижения по силе тяги составляют менее 1 грамма против 500 кг у российского КД (читайте «Новый американский двигатель опроверг законы физики»).

— Владимир Семенович, большое Вам спасибо за интересное интервью. А как обстоят дела с бозоном Хиггса?

— Как я и утверждал, бозон Хиггса и его поиски на БАКе – это крупнейшая антинаучная фальсификация. Обещали после открытия бозона Хиггса создать новую физику и решить проблемы квантовой гравитации. Не решили.
А проблемы квантовой гравитации и искусственного управления тяготением успешно решены в теории Суперобъединения, которая и представляет собой новую физику. В основе теории Суперобъединения лежит открытие мною в 1996 году кванта пространства-времени (квантона). Квантон – это нулевой недостающий элемент в таблице Менделеева (атом вакуума Ньютоний), без участия которого не могут формироваться остальные элементы.

— Большое спасибо за Ваше интервью. Будем надеяться что санкции Запада действительно подтолкнут развитие отечественной науки в приоритетных областях.

Эфирных кораблей и Эфирных двигателей

Реклама

Один из наших городских далий не позднее 26-го числа обратил внимание своих читателей на письмо своего парижского корреспондента, в котором говорится, что во Франции с Монсом были проведены очень успешные эксперименты. Эфирный двигатель Трембли на корабле. Было заявлено, что двигатель имел мощность 75 лошадиных сил и что его превосходство над паровым было настолько большим, что он экономил 75 процентов топлива. В той же самой статье очень невинно замечается, что «если бы изобретение было в руках американцев и применимо к американским моделям, нет сомнений в том, что их скорость могла бы значительно превысить указанную здесь максимальную скорость (16 миль в час.) «Тем, кто не осведомлен о прогрессе изобретений — зеленым в инженерии — следует быть очень осторожными в выражении мнений за или против по таким вопросам. Этот монс. Эфирный двигатель Трембли работал в этом самом городе и мог бы быть замеченный на Новелизе в 1851 году. Если бы он был подходящей заменой паровому двигателю и сэкономил 75 процентов топлива, может ли кто-нибудь предположить, что гг. Стиллман Аллен не принял бы его? Комбинированный эфирный двигатель Монс. Трем. Блей состоит из обычного парового двигателя с двумя цилиндрами и поршнями, на один поршень действует пар, а на другой — эфир или хлороформ, нагретый выхлопным паром.- Экономии топлива в этом случае, что мы видим, быть не может; это очень глупое устройство, потому что было бы лучше использовать пар до предела его расширения, или al-ioffi-ii-tn …. n. а … В общем, tVcgt-W-тритим «geTsT извлекает выгоду из своего тепла, применяя его для испарения хлороформа. Если бы от этого цилиндра с эфиром можно было извлечь какую-либо пользу, то есть в экономии топлива, было бы более разумно применить немедленно передать тепло огня в эфир или хлороформ и полностью использовать его в качестве эфирного двигателя.Химикам хорошо известно, что ни эфир, ни спирт нельзя использовать в качестве экономичного заменителя пара; как же тогда эфир может сэкономить топливо, будучи объединенным с паровым двигателем? 75-процентная экономия топлива — это грандиозная идея, но как это сделать — это очень сложный вопрос, на который нужно ответить; ни один логик не сделал бы такого заявления. Это похоже на заявление такого рода: «реальный эффект паровой машины равен только 25 процентам топлива; но выхлопной пар того же двигателя, применяемый для нагрева хлороформа, производит механический эффект, равный 75 процентам топлива. процентов топлива; другими словами, 75 процентов топлива теряется с выхлопным паром паровой машины.»Небольшое обучение — не опасная вещь; именно отсутствие малого делает опасными претендентов на него.

Изначально эта статья была опубликована под названием «Эфирные корабли и эфирные двигатели» в Scientific American 8, 51, 405 (сентябрь 1853 г.)

doi: 10.1038 / scientificamerican09031853-405b

Прочитать дальше

В магазине

Scientific American

Информационный бюллетень

Станьте умнее. Подпишитесь на нашу новостную е-мэйл рассылку.

Поддержите научную журналистику

Откройте для себя науку, меняющую мир.Изучите наш цифровой архив 1845 года, содержащий статьи более 150 лауреатов Нобелевской премии.

Подпишитесь сейчас!

Центр данных по альтернативным видам топлива: диметиловый эфир

Диметиловый эфир (DME) — синтетическая альтернатива дизельному топливу для использования в специально разработанных дизельных двигателях с воспламенением от сжатия. В нормальных атмосферных условиях ДМЭ представляет собой бесцветный газ. Он широко используется в химической промышленности и в качестве пропеллента аэрозолей. Диметиловый эфир требует давления около 75 фунтов на квадратный дюйм (psi), чтобы быть в жидкой форме.Из-за этого требования к обращению с DME аналогичны требованиям к пропану — оба должны храниться в резервуарах для хранения под давлением при температуре окружающей среды.

Для использования DME в транспортных средствах требуется двигатель с воспламенением от сжатия и топливная система, специально разработанная для работы с DME. Ряд демонстраций автомобилей DME был проведен в Европе и Северной Америке, в том числе одна, в которой заказчик проработал 10 автомобилей на расстояние 750 000 миль.

Производство

Хотя диметиловый эфир можно производить из биомассы, метанола и ископаемого топлива, наиболее вероятным сырьем для крупномасштабного производства ДМЭ в США является природный газ.ДМЭ можно производить непосредственно из синтез-газа, полученного из природного газа, угля или биомассы. Его также можно получить косвенно из метанола в результате реакции дегидратации. DME не продается в США.

Преимущества

Диметиловый эфир имеет несколько топливных свойств, которые делают его привлекательным для использования в дизельных двигателях. У него очень высокое цетановое число, которое является мерой воспламеняемости топлива в двигателях с воспламенением от сжатия. Показатели энергоэффективности и мощности DME и дизельных двигателей практически одинаковы.

Из-за отсутствия углеродно-углеродных связей использование DME в качестве альтернативы дизельному топливу может практически устранить выбросы твердых частиц и потенциально устранить необходимость в дорогостоящих дизельных фильтрах для твердых частиц. Однако DME имеет вдвое меньшую удельную энергию, чем дизельное топливо, и для этого требуется топливный бак в два раза больше, чем требуется для дизельного топлива.

Исследования и разработки

В 2013 году Университет штата Пенсильвания, Volvo и Национальная лаборатория Ок-Ридж завершили полевые испытания прототипа грузовика DME.Этот грузовик большой грузоподъемности хорошо показал себя в реальных условиях вождения, достигнув эффективности, сопоставимой с обычным дизельным грузовиком. Результаты испытаний показали, что стандарты выбросов твердых частиц могут быть соблюдены без использования дизельного сажевого фильтра. Как и в случае с обычными дизельными автомобилями, сокращение выбросов оксидов азота (NO x ) может осуществляться с помощью стандартных систем последующей обработки NO x . В качестве альтернативы двигатель можно откалибровать, чтобы исключить необходимость в такой системе, но это снижает эффективность.

Дополнительная информация

Узнайте больше о диметиловом эфире по ссылкам ниже. Центр данных по альтернативным видам топлива (AFDC) и Министерство энергетики США не обязательно рекомендуют или одобряют эти компании (см. Отказ от ответственности).

AFDC также обеспечивает поиск публикаций для получения дополнительной информации.


Пусковые жидкости (эфир) безопасны для использования в дизельных двигателях

Что такое пусковые жидкости

Вообще говоря, пусковая жидкость представляет собой летучее, легковоспламеняющееся соединение, обычно упакованное в виде аэрозоля, которое распыляется в воздушный фильтр или впускное отверстие двигателя для облегчения запуска при определенных условиях.Диэтиловый эфир является наиболее распространенной жидкостью, поскольку он быстро распыляется и легко воспламеняется, поэтому термин «эфир» стал общим термином для исходных жидкостей. Пусковые жидкости / эфир обычно используются в холодную погоду на двигателях, которые трудно запустить или которые не имеют системы дросселирования и, следовательно, с трудом запускаются на начальном этапе. Его также можно использовать в качестве диагностического инструмента для подтверждения работы системы зажигания в двигателях с искровым зажиганием, хотя эта практика, как правило, не предпочтительна для более стандартизированных методов поиска и устранения неисправностей.

Можно ли использовать пусковые жидкости в дизельных двигателях?

Пусковые жидкости / эфир в двигателях зажигания от сжатия

Эфир или любая пусковая жидкость в этом отношении никогда не должны использоваться в дизельном двигателе, если это явно не указано производителем двигателя как приемлемое. Существует множество коммерчески доступных продуктов, рекламируемых как универсально безопасные для дизельных двигателей; всегда обращайтесь к руководству по эксплуатации и / или руководству по добавкам к дизельному топливу для вашего автомобиля, чтобы подтвердить рекомендации производителя двигателя.

Наклейка на воздушную коробку Dodge Ram 1996 года выпуска. четко указывает на опасность использования стартовой жидкости

Напомним, что дизельный цикл основан на подаче топлива в камеру сгорания в тот самый момент, когда сгорание желательно; топливо не сжимается в цилиндре, как в других двигателях внутреннего сгорания. Кроме того, в дизельных двигателях используется относительно высокая степень сжатия, которая обеспечивает достаточную температуру воздуха для самовоспламенения в тот момент, когда происходит впрыск.Следовательно, нет способа контролировать время сгорания любого топлива, содержащегося в цилиндре, когда поршень движется от НМТ к ВМТ, и самовоспламенение произойдет в момент, когда температура воздуха внутри цилиндра достигнет точки воспламенения топлива (обратите внимание, что хотя это упрощенное утверждение, которое отрицает другие переменные, оно формирует основу для термодинамической активности внутри камеры сгорания). Кроме того, температура вспышки диэтилового эфира немного ниже, чем у дизельного топлива, что облегчает воспламенение.

В 4-тактном дизельном двигателе воздух втягивается в цилиндр во время такта впуска и сжимается во время такта сжатия. Такт сжатия начинается с того, что поршень находится в нижней мертвой точке (НМТ), его нижний предел хода. По мере того, как поршень движется вверх, объем цилиндра уменьшается, в то время как температура и давление наддува воздуха пропорционально возрастают. К тому времени, когда поршень достигает верхней мертвой точки (ВМТ), своего верхнего предела хода, температура воздуха превышает температуру самовоспламенения дизельного топлива.Таким образом, топливо, впрыскиваемое в цилиндр в это время, самопроизвольно воспламеняется, и поршень начинает двигаться вниз в рабочий такт. Обратите внимание, что здесь нет свечи зажигания или механизма зажигания, как в бензиновом двигателе.

Конструктивно дизельный двигатель поэтому не может контролировать сгорание топлива, сжимаемого его воздушным зарядом. Как только смесь достигает точки возгорания, она самовоспламеняется. В некоторых случаях смесь может не воспламениться до тех пор, пока дизельное топливо не будет впрыснуто в цилиндр, и, очевидно, это не повлечет за собой никаких повреждений.Однако, если смесь воспламенится до конца такта сжатия, поршень и соответствующие компоненты зубчатой ​​передачи должны будут поглотить событие упреждающего сгорания, известное как детонация. Такие условия могут привести к катастрофическим отказам двигателя — сломанным поршням, пальцам запястья, шатунам, треснувшим блокам двигателя, взорванным прокладкам головки блока цилиндров и т. Д.

Пусковая жидкость / эфир в дизельных двигателях со свечами накаливания

Эфир / пусковая жидкость также несовместима с любым дизельным двигателем, который оснащен свечами накаливания или впускным подогревателем любой формы (сеточные обогреватели, воздухонагреватели и т. Д.).Раскаленный докрасна наконечник свечи накаливания обеспечивает более чем достаточно тепла для воспламенения смеси пусковых жидкостей. Как и в вышеупомянутом случае, нет никакого способа контролировать сгорание этого топлива, когда оно попадает в цилиндр и может произойти детонация.

Современные дизельные двигатели рассчитаны на работу в любую погоду, поэтому НИКОГДА не обязательно использовать пусковую жидкость. Если двигатель не запускается, это явная неисправность или неисправность в одной или нескольких системах.В двигателях, которые оснащены таким оборудованием, необходима правильно работающая система свечей накаливания для легкого запуска в холодных условиях. Техническое обслуживание топливной системы также важно для облегчения запуска двигателя в холодную погоду; низкое давление топлива может препятствовать горению в холодных условиях из-за плохого распыления. Большинство, если не все дизельные двигатели оснащены блоком подогревателя, который позволяет подогревать моторное масло и / или охлаждающую жидкость двигателя перед запуском. Их следует использовать в ваших интересах, поскольку они не только способствуют более легкому запуску в холодном состоянии, но также защищают ваш двигатель, уменьшая накопление мокрых отходов и разбавление топлива во время цикла прогрева двигателя.

Исключения — жидкость для запуска двигателя допустима в дизельных двигателях

Пусковая жидкость может использоваться в дизельном двигателе тогда и только тогда, когда производитель прямо заявляет о ее безопасности. Вы обнаружите, что единственные двигатели, в которых пусковая жидкость считается приемлемой (или даже требуется в качестве вспомогательного средства для холодного запуска), — это те, которые были произведены несколько десятков лет назад. В этих двигателях не используются свечи накаливания и они имеют относительно низкую степень сжатия, поэтому описанная выше механика не обязательно применима во всей их полноте.От практики использования пусковых жидкостей для запуска дизельного двигателя в холодную погоду отказались несколько десятилетий назад, и современные двигатели, скорее всего, будут повреждены из-за детонации.

Добавьте пусковую жидкость и не игнорируйте основные причины, по которым двигатель трудно запустить в холодную погоду. Всегда используйте подогреватель блока цилиндров в соответствии с рекомендациями производителя и надлежащим образом обслуживайте / ремонтируйте двигатель, чтобы его было легко запустить при любой температуре. Пусковая жидкость строго запрещена во всех режимах Power Stroke, 5.Дизельные двигатели Cummins 9 л / 6,7 л, Duramax 6,6 л, International IDI и 6,2 л / 6,5 л GM / Detroit, как указано в соответствующих руководствах по эксплуатации.

Еженедельная автомобильная клиника Майка Аллена

Q: У нас есть кемпер 1973 года с двигателем V8 объемом 5,7 л с системой впрыска топлива. Нам не удалось запустить двигатель, хотя он переворачивается. Безопасно ли распылять пусковую жидкость из эфира в рожок воздухозаборника карбюратора?

A: Что ж, если у вас есть впрыск топлива, у вас нет звукового сигнала воздухозаборника карбюратора.У вас есть впрыск топлива или карбюраторы, но не то и другое вместе.

Прежде, чем вы начнете распылять эфир на все, что у вас есть, кто-нибудь определил, есть ли искра? Или доставка топлива? Или компрессия?

Я не большой поклонник эфира — слишком взрывоопасен. Однажды я наблюдал, как кусок блока двигателя Chevy S-1 плыл по стоянке, пока кто-то пытался завести его с помощью эфира. Сломался шатун, и это произошло, когда эфир вышел из строя, в то время как поршень все еще находился слишком далеко от верхней мертвой точки на пути вверх во время такта сжатия.

Я обычно использую очиститель карбюратора, чтобы оживить неохотные двигатели, он безопаснее и почти так же эффективен.

Q: Я подумал, что был довольно умен, когда смог поместить в мой Crown Vic 2003 года шланг поливинилхлорида длиной 10 футов, согнув его над передним сиденьем. Но, потом при снятии патрубка отломил разъем обогревателя заднего стекла. Как мне переподключить эту вкладку? Я не хочу разбить свое окно, пытаясь его припаять.

A: Вам повезло: я написал колонку «Субботний механик» о том, как отремонтировать решетки обогревателя вашего автомобиля.

Q: У меня есть для вас хороший. Около года назад я заменил передние ступичные подшипники и карданные валы на своем Honda Civic 1997 года выпуска. Около шести месяцев назад я заметил, что ступичный подшипник вышел из строя, поэтому заменил его. Месяц спустя это звучало так, как будто мой карданный вал был неисправен, поэтому я заменил его снова, и пока я был на нем, я заменил также подшипник, потому что на нем образовалось плоское пятно. Через неделю подшипник снова вышел из строя, и за последние 8 месяцев я заменил их 5 раз на пассажирском колесе и 4 раза на стороне водителя.Что здесь происходит?

A: Ооо, это хороший. Я видел это раньше. Все в порядке с вашими подшипниками, шпинделем, стойкой подвески или колесом. По крайней мере, пока подшипники не выйдут из строя.

Ремень заземления аккумулятора неправильно соединяет блок двигателя с отрицательной клеммой аккумулятора. Я знаю, я знаю — о чем говорит Аллен? Какое отношение может иметь заземляющий браслет к подшипникам?

Плохой путь заземления заставляет ток течь к стартеру по пути с наименьшим сопротивлением — прямо через оси и ШРУСы, а затем, как вы уже догадались, через подшипники ступиц.. Сильный ток оставляет небольшие следы от дуги на шариках и дорожки внутри подшипников, которые вскоре выходят из строя.

Заземление аккумулятора должно обеспечивать действительно низкоомное соединение как с шасси автомобиля, так и с блоком двигателя. Я предполагаю, что ваш болтается, отсутствует или заржавел. Дай мне знать, что ты нашел, а?

Q: У меня есть Honda S2000 2002 года выпуска, и складной верх скоро потребуется заменить. Я проверил цены в Интернете и, похоже, я могу купить новый качественный верх примерно за 650 долларов.00; однако настоящая проблема — это установка. На местном уровне работа стоит около 2200 долларов за все, включая цену топа. Есть ли компания, которая продает топы с инструкциями по установке, оборудованием и т. Д.? Я был бы очень признателен за ваше понимание и комментарии относительно решения этого ремонта, а также за любые дополнительные источники для получения дополнительной информации.

A: Таким образом, смета на установку этой вершины составляет около полутора тысяч долларов на оплату труда.Ой.

Я никогда не устанавливал складной верх, хотя я занялся парой старомодных тканевых люков на крыше. Это кропотливая и кропотливая работа, чтобы все это уместилось. Если бы это была моя машина, я бы, наверное, оставил ее кому-то, кто занимается установкой топов весь день и всю неделю. Слишком легко порвать дорогой верх, и у вас есть хорошие шансы надеть его настолько нестандартным, что он не будет работать должным образом.

Q: На моем TrailBlazer 2005 года при включении дальнего света ближний свет отключается.Я обнаружил, что могу вручную удерживать указатель поворота, в котором есть функция от вспышки до прохода, и сочетать как дальний, так и ближний свет. Комбинация высокого и низкого света обеспечивает гораздо лучшее освещение, когда уместен дальний свет, чем только только дальний свет.

Есть ли комплект реле, позволяющий оставаться включенными как дальний, так и ближний свет? Есть ДХО, которые используют лампы ближнего света и противотуманные фары, если они активированы, отключаются при включении дальнего света. Я не хочу делать какие-либо изменения проводки, которые могут привести к короткому замыканию в моей электрической системе.Я хотел бы найти комплект, в котором я мог бы просто подключить несколько жгутов проводов.

Почему ближний свет все равно отключается, когда включен дальний? У меня Nissan Rogue 2008 года выпуска, и ближний свет остается включенным, когда включен дальний свет.

A: В некоторых автомобилях используются лампы ближнего и дальнего света в одном стеклянном корпусе. Хотя можно использовать обе нити на короткое время, я бы побеспокоился о перегреве корпуса, если они оба будут работать непрерывно.

Но почему бы не сжечь обе нити, если они находятся в разных лампах? Модуль дневных ходовых огней может счесть это нормальным, или он может иметь шипящие припадки.Реле для включения ближнего света было несложно установить. Но я бы просто добавил несколько дополнительных фар.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Плохая пусковая жидкость для бензиновых двигателей

Представьте, что вы собираетесь забрать свой классический автомобиль со склада, или вы только что нашли идеальную сарайную находку.Если у него есть карбюратор, и он некоторое время простоял, у него могут быть проблемы с запуском. Если на улице холодно, опять же могут возникнуть проблемы с запуском. Пусковая жидкость стала быстрым средством для начала чего-либо, но можете ли вы нанести ущерб своей топливной системе или двигателю, используя ее?

Хорошая или плохая пусковая жидкость?

Если вы спросите пять разных специалистов, рекомендуют ли они использовать пусковую жидкость, вы, скорее всего, получите пять разных ответов. Простой ответ заключается в том, что это может быть полезно при определенных обстоятельствах, но не должно быть долгосрочным решением для постоянного запуска вашего автомобиля.

Когда можно использовать пусковую жидкость?

Два наиболее распространенных варианта использования пусковой жидкости — это когда она очень холодная и бензин не хочет испаряться, и когда вы выносите автомобиль или двигатель с хранения. В холодную погоду автомобиль с карбюратором будет с трудом заводиться. Карбюратор использует внутреннюю форсунку для испарения топлива из жидкого состояния в газообразное, а более холодный бензин испарять труднее. У автомобиля с впрыском топлива не будет такой проблемы с испарением, поскольку более высокое давление топлива и топливные форсунки будут испарять топливо намного лучше.Использование пусковой жидкости для запуска двигателя в холодном состоянии позволит теплу двигателя согреть бензин, когда он поступает в карбюратор, и в конечном итоге позволит двигателю работать самостоятельно. То же самое можно сказать, когда транспортное средство или двигатель находятся на хранении в течение определенного периода времени. Если у него есть карбюратор, даже при более высоких температурах может потребоваться попытка запуска двигателя, чтобы перекачать топливо из топливного бака в карбюратор. Двигатель будет вращаться вместе со стартером и аккумулятором, но эта комбинация не будет пытаться запустить автомобиль, если аккумулятор в конечном итоге разрядится.Если у вас есть электрический топливный насос в вашей топливной системе, вам может не понадобиться много пусковой жидкости, чтобы оживить ваш автомобиль после хранения.

Когда не следует использовать пусковую жидкость?

Решение не использовать пусковую жидкость может быть больше связано с тем, для чего она используется, а не с точным временем. Два двигателя, которые плохо работают с пусковой жидкостью, — это двухтактные и дизельные. В двухтактных двигателях моторное масло подается вместе с бензином, поступающим в цилиндр сгорания. Входящее в комплект моторное масло помогает поддерживать двигатель в смазке.Исходная жидкость содержит часть или полностью состоит из эфира. Эфир является растворителем, и при смешивании с маслом он растворяет и разрушает масло. Если на двухтактном двигателе используется достаточное количество пусковой жидкости, она может помешать включенной масляной смеси выполнять свою работу по смазке двигателя. Это может привести к повреждению подшипников и поршней и, в конечном итоге, к отказу двигателя.

Дизельные двигатели имеют высокую степень сжатия, что позволяет воспламенить смесь эфира до того, как двигатель будет готов к использованию сгорания.Это называется преждевременным зажиганием или детонацией и может привести к повреждению двигателя или полному отказу.

Может ли пусковая жидкость помочь в диагностике проблемы?

Если вам часто приходится использовать пусковую жидкость, это может быть более серьезная проблема, чем просто холодный бензин или двигатель, принесенный со склада. Засоренный карбюратор, нуждающийся в очистке, может помешать нормальной работе двигателя на низких оборотах. Ваш двигатель также может сильно шипеть и отказываться от нормальной работы, если у вас плохой бензин. Возможно, вы пропустили добавление стабилизатора бензина AMSOIL в топливный бак перед тем, как поставить автомобиль на хранение, и теперь газ потерял свою летучесть.Если несколько брызг пусковой жидкости не позволяют вашему двигателю на мгновение запуститься и поработать, возможно, у вас более серьезная проблема, требующая дополнительной диагностики.

Пусковая жидкость может помочь при запуске двигателя, который не работает, но следуйте указаниям на контейнере и используйте ее с осторожностью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *