Гидромеханическая коробка передач что это такое: принцип действия видео
Одним из элементов системы управления автомобилем является гидромеханическая трансмиссия. Благодаря ей водитель может переключать передачи плавно и без рывков. Гидромеханическая коробка передач — что это такое? Давайте разберемся.
Гидромеханическая коробка передач
Роль АКПП с гидромеханическим управлением
Для автомобиля и подобного ему транспортного средства трансмиссией является узел, который передает от двигателей к колесам крутящий момент. Так это выглядит в автомобилях со сцеплением, но их постепенно вытесняют с рынка АКПП. «Автоматы» сегодня ставят все чаще. В них не предусмотрено сцепления, а передачи переключаются автоматически. Гидромеханика помогает облегчить задачу смены передач во время движения. В классических коробках при управлении автомобилем выполняются следующие процессы:
- отключение трансмиссии от двигателя в момент смены передач;
- при изменении дорожных условий изменение величины крутящего момента.
Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.
Для выполнения этих действий и необходима гидромеханическая АКПП. Она одновременно выполняет функции сцепления и трансмиссии. Эту коробку специально придумали для использования в городских условиях, где постоянно выжимать сцепление может быть проблематично из-за частых остановок в пробках. Управляется автомобиль с гидромеханикой при помощи педалей тормоза и газа.
Разновидности гидромеханики
В состав этой трансмиссии обязательно входит гидротрансформатор, составляющие системы управления и механическая коробка. Она может быть одной из нескольких систем:
- многовальной;
- двухвальной;
- трехвальной;
- планетарной.
Последняя разновидность коробки наиболее распространена. Она часто устанавливается на легковые автомобили, так как не имеет высокой металлоемкости. Она отличается меньшим шумом при работе, высоким сроком службы и компактностью.
Вальные механизмы можно встретить на грузовиках и автобусах. В них для переключения передач предусмотрены многодисковые муфты, которые помещены в масло. Первая передача и задний ход включаются при помощи зубчатой муфты. Благодаря особому устройству вальных коробок переключение скоростей происходит за счет работы коленчатого вала. Скорость движения при этом не снимается, крутящий момент и мощность не разрываются.
Удаление царапин на кузове автомобиля без покраски.
НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.
Читать далее >>
Основное назначение АКПП
Функции гидротрансформатора
Гидротрансформатор выполняет функции сцепления в современных АКПП. Благодаря этому узлу автомобиль двигается с места плавно, без рывков. Динамические нагрузки при этом снижаются, что помогает эксплуатировать двигатель в щадящем режиме, повышая его долговечность. При применении гидротрансформатора части трансмиссии служат гораздо дольше. Водитель из-за снижения количества передач утомляется меньше. Гидротрансформаторы рекомендуется применять на внедорожниках, так как с их помощью можно увеличить проходимость автомобиля в тяжелых условиях – по снегу или песку.
Важно! В России также стоит выбирать трансмиссии с этим узлом, так как в зимнее время специальная техника часто не успевает прочищать дороги. Благодаря гидротрансформатору создается устойчивая сила тяги с небольшой скоростью вращения ведущих колес, что повышает их сцепление с дорожным покрытием.
Гидротрансформатор
Устройство гидротрансформатора
Размещают гидротрансформатор между двигателем и механической частью коробки. Он представляет собой соединенные между собой диски с лопастями. Первым идет насосное колесо, которое является ведущим. Оно связывает двигатель и трансформатор. Турбинное является ведомым, оно контактирует с первичным валом. За усиление крутящего момента отвечает реакторное. Турбины практически утопают в масле (погружены в него на три четверти). Их прикрывает корпус, защищающий от попадания в масло посторонних частиц. Во время работы турбины к насосному диску направляется усилие вращающего момента двигателя. Одновременно на турбинный диск направляется под давлением поток масла. Его раскручивает реакторное колесо, располагающееся в центральной части. Возникшее усилие передается на вал КПП.
Работает гидротрансформатор за счет особой циркуляции масла, которое попадает в него с внешней части насосного диска, затем движется на турбинное колесо и возвращается через центральную часть этого узла. Завершается цикл циркуляции масла на насосном диске.Замена крутящего момента в гидротрансформаторе происходит автоматически по мере возрастания нагрузки двигателя. Этот узел отправляет на коробку силу крутящего момента, где при помощи фрикционов происходит включение передач. Нужное передаточное число определяется трансформатором автоматически, в зависимости от его значения изменяется напор циркулирующего масла.
Гидротрансформатор акпп в разрезе
Планетарный механизм
В большинстве современных АКПП гидротрансформатор действует в паре с планетарной системой. Она занимается передачей крутящего момента к фрикционным муфтам. В самом простом варианте усилие направляется на центральную шестерню (солнечную). Два дополнительных сателлита (вспомогательные шестерни) находятся в постоянной сцепке с центральной шестерней благодаря нанесенным на эти элементы зубчикам. Сателлиты не фиксируются, а свободно вращаются вокруг своих осей. Механизм шестеренок находится внутри коронного колеса, которое в зависимости от включенной передачи фиксируется или приходит в движение. В момент фиксации коронной шестерни начинает двигаться ведомый вал (на него передается усилие). В противном случае сателлиты передают момент на коронную шестерню, оставляя ведомый вал в неподвижном состоянии. Для переключения передач в планетарные АКПП устанавливаются фрикционные муфты. Каждая из них выглядит как несколько дисков, представляющих собой тонкие пластины из гладкого металла. Каждая пластинка покрыта специальным фрикционным составом, предотвращающим ее износ. На части их можно найти шлицы. Между муфтами расположены прокладки. Прижимаются друг к другу они при помощи гидравлического поршня, функционирующего при подаче рабочей жидкости. При возрастании в нем давления фрикционы плотно смыкаются, становясь почти единым целым. После падения давления жидкости в гидравлическом поршне фрикционные диски возвращаются на место с помощью пружины. Работа фрикционов тесно связана с функционированием тормозных и планетарных механизмов. На эти моменты передаются команды системы управления КПП и крутящий момент двигателя. Без их участия не производится торможение двигателем и запуск на буксире.
Механический узел действует слаженно и четко.
планетарная система
Важно! В нейтральном положении выключаются фрикционы и тормозные механизмы. При разгоне и переключении передач фрикционы начинают действовать, а планетарные системы вращаются синхронно.
Электронная часть гидромеханической АКПП
Электронное управление необходимо для точности переключения передач в современных АКПП. Сейчас практически нельзя встретить трансмиссии, работа которых бы не поддерживалась электронными комплектующими. Они отвечают за:
- Функционирование АКПП. В гидромеханике эта система состоит из регуляторов давления и насосов.
- Сбор информации о действующей программе управления.
- Выработку импульсов управления.
- Исполнение команд при переключении передач.
- За защиту двигателя и трансмиссии в случае опасной ситуации.
- За ручное управление, за все операции отвечает блок, а управление происходит за счет рычага.
Электронная часть гидромеханической АКПП
Сильные и слабые стороны гидромеханики
Гидромеханическая коробка представляет собой последовательное соединение трансформатора, планетарного узла с фрикционами гидравлической системы управления. Ее основное достоинство – отсутствие необходимости водителю переключать передачи вручную. Электроника делает это точно, благодаря чему отсутствует дискомфорт при движении, а двигатель не подвергается перегрузкам. Их отсутствие помогает сохранить его в целости на долгое время. При начале движения передача мощности также происходит без прерывания и рывков, что делает гидромеханику более совершенной, превосходящей по своим характеристикам механические коробки передач. Не зря их используют не только в автомобилестроении, но и устанавливают на танки (в Америке и Германии).
Важно! Если вы выбираете автомобиль, на котором преимущественно будете двигаться по городу, то стоит выбирать именно гидромеханическую АКПП. С ее помощью у вас не возникнет неудобств при остановках в пробках или на светофорах.
Слабой частью такой АКПП является гидротрансформатор
Недостатком такого механизма является его высокая стоимость и техническая сложность. При переключении передач можно заметить потерю производительности за счет пробуксовки фрикционов и тормозных лент. Слабой частью такой АКПП является и гидротрансформатор, из-за которого теряется крутящий момент. Несмотря на явные преимущества эффективность гидромеханики по результатам замеров составляет 86%, тогда как у обычной коробки она достигает 98%. Еще один недостаток – необходимость устанавливать системы подпитки охлаждения гидроагрегата. Они занимают место под капотом, из-за чего моторно-трансмиссионный отсек имеет большие габариты. Также автомобили с установленной гидромеханикой нельзя завести путем толкания или перемещения его на тросе. Для этой разновидности коробки, как и во всех автоматах, характерно отсутствие возможности регулировать потребление топлива. Описанный вариант гидромеханической АКПП является одним из самых примитивных. Сегодня разрабатываются более совершенные трансмиссии, которые устанавливают на легковые автомобили, выпущенные в последние годы. Гидромеханикой рекомендуется пользоваться тем, кто недавно сел за руль. Для новичка она незаменима тем, что самостоятельно переключать передачи нет необходимости.
Гидромеханическая коробка передач
Автор admin На чтение 5 мин. Просмотров 1.8k.
Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.
Трансмиссия? А это что такое и зачем?
Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так. Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП.
Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:
- необходимости отключения от двигателя трансмиссии при переключении передач;
- изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.
В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.
Об устройстве гидромеханической коробки
Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:
- гидротрансформатор;
- управляющие механизмы;
- механическая коробка передач.
Про гидротрансформатор
Основой гидромеханического автомата является гидротрансформатор.
Фактически в гидромеханической АКПП он выполняет роль, аналогичную сцеплению в обычном автомобиле – передает момент от двигателя к коробке.
Как видно из рисунка, устройство гидротрансформатора довольно простое и включает в себя три колеса специальной формы:
- насосное, осуществляющее связь между двигателем и гидротрансформатором;
- турбинное, выполняющее связь с валом (первичным) коробки передач;
- реакторное, предназначенное для усиления крутящего момента.
Все эти турбины закрыты специальным корпусом и на три четверти погружены в масло, заполняющее внутренний объем. Гидромеханический привод работает таким образом – насосное колесо, на которое поступает вращающий момент от двигателя, вращаясь, направляет на турбинное колесо поток масла, которое им раскручивается и предает усилие на вал коробки передач.
Происходит циркуляция масла по сложной траектории – с внешней части насосного кольца на внешнюю часть турбинного, а затем через центр устройства обратно к насосному. Следствием такого движения является гидромеханическая передача момента к коробке передач от мотора.
Такой гидромеханический привод обладает особенностью – из-за присутствия третьего, реакторного колеса, возможно усиление передаваемого момента. Происходит это благодаря его расположению в центре гидротрансформатора.
Когда осуществляется гидромеханическая передача момента, поток масла от турбинного колеса направляется к центру устройства и затем возвращается обратно к насосному. Однако на его пути расположено реакторное колесо, и поток, оказывая на него давление, вызывает с его стороны ответную реакцию, которая, воздействуя на турбину, усиливает момент, переданный от насосного колеса.
Такое дополнительное воздействие, возникающее, когда происходит гидромеханическая передача мощности от мотора, приводит к тому, что она увеличивается. Величина усиления зависит от разности скоростей межу колесами гидротрансформатора, чем она больше, тем более значительным оно будет.

Очень полезным фактом являет то, что гидравлический привод автоматически устанавливает нужное передаточное число между колесами и двигателем, благодаря изменению величины напора жидкости при ее передаче между напорным и турбинным дисками.
Однако диапазон такого изменения достаточно небольшой, и при этом отсутствует возможность, используя гидромеханический привод, разорвать связь между трансмиссией и мотором, поэтому гидротрансформатор работает последовательно с планетарной коробкой, позволяющей устранить отмеченные недостатки.
Про планетарную коробку
В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.
В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях.

Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.
Достоинства и недостатки гидромеханической коробки
В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.
Достоинством такой АКПП считаются:
- исключение ручного переключения передач;
- обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.
Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.
По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.
Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.
Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.
Мне нравится1Не нравитсяЧто еще стоит почитать
Гидромеханическая коробкая передач: устройство и прицип работы
Гидромеханическая коробка передач (ГМП) — это трансмиссия высокой проходимости с автоматическим управлением.
Роль АКПП с гидромеханическим управлением
Что будет, если двигатель соединить напрямую с колёсами: машина лениво начнёт движение и поедет с максимальной скоростью 20 км/ч. По законам физики сила, которую должны преодолеть колёса равна F=ma+Fтр , где m — масса автомобиля, Fтр — сила трения с поверхностью земли. Двигатель достигнет максимальной мощности при оборотах 5000 — 6000 об/мин, но в таком режиме работы ресурс агрегата быстро иссякнет.
Чтобы мгновенно стартовать после нажатия педали газа, и защитить двигатель от перегрузки, в машине установлена трансмиссия. Она также способна изменять крутящий момент, ускоряя или замедляя автомобиль.
По типу переключения скоростей различают механические и автоматические КПП:
- механикой полностью управляет водитель, выжимая педаль сцепления и переводя рычаг для изменения скорости;
- в автоматах работает гидромеханическая передача с минимальным участием водителя.
Гидромеханическое управление облегчает и упрощает работу водителя, снимая часть «обязанностей». Плавность и бесшумность АКПП повышает комфорт вождения при трогании и разгоне. Также ГМП защищает двигатель и коробку от динамических нагрузок, которые может создать водитель, постоянно «выжимая» газ.
Основные элементы гидромеханической коробки передач:
- гидротрансформатор;
- масляный насос;
- коробка передач;
- система управления.
Функции гидротрансформатора
Гидромеханическая коробка передач работает за счёт движения жидкости, которую качает масляный насос. Главный «потребитель» масла — гидротрансформатор (ГДТ). ГДТ преобразует и передаёт крутящий момент от коленчатого вала в трансмиссию через работу жидкости.
Конструктивно ГДТ представляет собой набор лопастных колёс, «запертых» в герметичной камере в форме бублика:
- насосное колесо приварено к чаше корпуса и соединено с коленвалом;
- турбина через ступицу насажена на вал трансмиссии, и механически не связана с насосным колесом;
- реакторное колесо установлено между турбиной и насосом. Предназначено для усиления крутящего момента.
Гидромеханическая коробка передач начинает работать с запуском двигателя: включается масляный насос и насосное колесо. На лопасти колеса попадает жидкость и раскручивается вокруг оси ГДТ. Под действием центробежной силы масло отбрасывается на лопасти турбины, проходит через реактор и возвращается к насосному колесу. Под давлением потока лопатки турбины начинают вращаться, передавая крутящий момент по валу в коробку передач.
Чем выше обороты двигателя, тем быстрее вращаются колёса ГДТ, а крутящий момент снижается. Без реактора «бублик» работал бы только в режиме гидромуфты, передавая вращение без трансформирования. В момент, когда скорости насоса и турбины выравниваются, реактор начинает свободно вращаться, усиливая давление жидкости, попадающей на лопасти насоса.
Большая часть энергии двигателя уходит на перемещение и нагрев масла в ГДТ. В результате снижается общий КПД, и растёт расход топлива. Для устранения этого недостатка в «бублик» устанавливают муфту блокировки с фрикционной накладкой. При включении муфты двигатель и трансмиссия жёстко сцепляются, и передача момента происходит без потерь.
Передаточное число гидротрансформатора достигает максимально 2,5 — 3, что не достаточно для устойчивой работы двигателя в разных режимах движения машины. Нет возможности включить задний ход, поскольку колёса ГДТ вращаются только в одном направлении. Для компенсации этих недостатков гидромеханическая коробка передач оснащена дополнительным узлом.
Конструкция гидромеханики
В ГМП применяют простые ступенчатые или планетарные механизмы с электронным управлением. Принцип работы гидромеханической коробки передач в обоих вариантах заключается в изменении скорости вращения выходного вала за счёт различных передаточных чисел зубчатых передач.
Как работает вальная кпп
Устройство гидромеханической коробки передач вального типа похоже на механическую КПП. Преобразование крутящего момента происходит ступенчато через включение и отключение зубчатых передач, расположенных на параллельных валах. Количество и размер шестерённых пар соответствует определённому передаточному числу.
Первичный, входной вал, получает крутящий момент от гидротрансформатора. Через пару постоянно сцепленных шестерней мощность передаётся на вторичный вал, а затем на колёса. Для получения прямой передачи, в конструкцию добавляют промежуточный вал, а первичный и вторичный валы располагают на одной оси.
Для расширения диапазона скоростей применяются многовальные конструкции с 4 и более валами. Работа коробки при этом усложняется, увеличиваются габариты и масса. Подобные ГМП встречаются на грузовиках-тягачах.
Зубчатыми передачами управляют фрикционные многодисковые муфты. Муфта становится тормозом, когда соединяется с корпусом ГМП. Для включения блокировки масляный насос подает гидравлическое давление на фрикционы. Благодаря фрикционам скорость переключается плавно, а использование гидропривода ускоряет торможение.
Гидромеханические коробки передач вального типа плохо справляются с растущей тягой от повышения грузоподъёмности транспорта, с ужесточением требований по топливной экономичности. Рост параметров значительно увеличивает массу и габариты конструкции. По этим причинам вальные КПП заменяют на планетарные передачи.
Как работает планетарная кпп
Инженеры предпочитают устанавливать в гидромеханическую КПП планетарный механизм вместо ступенчатой конструкции по следующим причинам:
- компактные размеры;
- плавная и быстра работа;
- нет разрыва в передаче мощности при переключении передач;
- большое количество передаточных чисел за счёт использования многорядных конструкций.
Простая планетарная передача состоит из центральных шестерней: с внутренними зубьями — короны, с внешними зубьями — солнца. Между ними обкатываются зубчатые колёса сателлиты, оси которых закреплены на раме-водиле. В зависимости от конструкции водило соединено с выходным валом или коронной шестерней.
Устройство планетарной коробки определяет её принцип действия. Чтобы изменить крутящий момент гидротрансформатора, один из элементов планетарной передачи вращают, а другой элемент затормаживают. Третий элемент становится ведомым, а его скорость определяется числом зубьев всех шестерней.
Для получения прямой передачи водило и солнечную шестерню жёстко соединяют. Корона не может проворачиваться относительно закреплённой системы, поэтому механизм вращается как единый узел. Передаточное число в этом случае равно 1.
Чтобы получить задний ход, центральные шестерни вращают в одну сторону. Для этого останавливают сателлиты, блокируя водило.
В качестве тормозов планетарной коробки передач используют тормозные ленты или фрикционные диски. Блокировочные элементы работают в автоматическом режиме по сигналу электроники.
Электронная часть гидромеханической акпп
В гидромеханическом автомате отсутствует сцепление, поэтому каждая ступень коробки снабжена элементом переключения. Работу элементов контролирует электронный блок ЭБУ, связанный с блоком управления двигателем. Во время переключения передач автоматически регулируется частота вращения мотора, что помогает достичь оптимальных рабочих характеристик агрегата.
Система электронного управления гидромеханической коробки передач разбита на подсистемы:
- измерительную — для сбора параметров с датчиков давления, температуры и т.д.;
- функциональную — для управления маслонасосом, регуляторами давления и т.
д.;
- управляющую — для выдачи сигнальных импульсов.
Для автоматизации управления помимо ЭБУ в систему входят электроклапаны, датчики, усилители, регуляторы, корректирующие элементы и т.д. Электроклапаны — соленоиды, расположены в гидроблоке, и по сигналу ЭБУ открывают канал гидроплиты для прохода жидкости к фрикционам, гидротрансформатору и другим узлам.
В зависимости от положения селектора ЭБУ действует по программному алгоритму, заложенному в память:
- при плавном разгоне дроссельная заслонка двигателя открывается медленно. Компьютер отслеживает степень открытия заслонки и посылает импульсы узлам гидромеханической коробки передач для увеличения скорости. При достижении первой передачи (20 км/ч), коробка переходит на вторую скорость. Такой режим движения называется «экономичным»;
- при агрессивном разгоне ЭБУ работает в «спортивном» режиме. Каждая последующая передача включаются после того, как двигатель максимально раскрутится. Если водитель отпустит педаль газа, обороты упадут не сразу.
В этом режиме мотор развивает максимальную мощность, увеличивается расход топлива и снижается ресурс АКПП.
«Умное» управление проводит самодиагностику для корректирования работы ГМП. Например, если масло в коробке грязное, то в системе падает давление. Для защиты узлов ЭБУ может блокировать переключение передач, перераспределять нагрузку между электроклапанами, запретить включение гидротрансформатора. Неисправности и сбои в коробке компьютер записывает в виде кодов.
Компьютер умеет адаптироваться, выбирая подходящий режим под стиль вождения, динамику разгона и манеру торможения. Адаптация снижает износ коробки за счёт снижения числа переключений. При этом повышается комфорт водителя и безопасность движения.
Сильные и слабые стороны гидромеханики
Гидромеханическая коробка передач привлекает водителей простым управлением, плавностью переключения, низкой ценой по сравнению с вариаторами или DSG. И это ещё не все достоинства.
Сильные стороны | Слабые стороны |
Высокая безопасность движения, поскольку водитель больше концентрируется на дороге.![]()
| Дорогой ремонт из-за сложной конструкции и количества электроники. |
Лёгкая и быстрая обучаемость вождения для новичков. | Высокий расход и стоимость оригинального масла . |
Защита двигателя от перегрузок, за счёт автоматического переключения скоростей и адаптации к стилю вождения. | При долгих и частых пробуксовках масло в коробке перегревается, поэтому нужно избегать движения по грязи. |
КПД гидротрансформатора достигает 97% при включении муфты блокировки. | Фрикционы истираются, загрязняя и перегревая трансмиссионную жидкость. |
За счёт использования реактора момент на турбинном колесе ГДТ приумножает крутящий момент двигателя. Это повышает ресурс и проходимость автомобиля. | В мороз гидромеханику нужно долго прогревать, чтобы масло пришло в рабочее состояние. |
Гидромеханическая коробка передач имеет возможность автоматизации каждого узла, что делает трансмиссию перспективной. | Автоматизация ГМП не позволяет водителю полностью «прочувствовать» управление автомобилем. |
Гидромеханическая коробка передач будет работать безотказно долгие годы при регулярном техобслуживании и соблюдении условий эксплуатации.
Перспективы использования гидромеханической коробки передач
Гидромеханическая коробка передач постоянно совершенствуется:
- растёт число ступеней: ZF поставляет 9-ступенчатую ZF9НР для легковых автомобилей, Caterpillar устанавливает в спецтехнику 7-ступенчатые ГМП;
- меняются кинематические схемы;
- отрабатываются новые алгоритмы электронного управления;
- снижается расход топлива и выбросов;
- повышается скорость и плавность работы.
Большую перспективу имеет гидромеханическая коробка передач с планетарным механизмом. Трансмиссия подходит для маломощных и сверхмощных двигателей за счёт добавления новых планетарных рядов и варьирования передаточными числами. Новые технические решения повышают экономичность автомобиля. Добавление ступеней устраняет «провалы» в переключении скоростей, достигая максимальной плавности.
Производители выпускают ГМП разных типоразмеров для мощности двигателя от 50 до 1500 кВт. С ростом грузоподъёмности спецтехники увеличивается КПД и тяговые характеристики трансмиссии.
Развитие интеллектуальных автоматизированных систем управления и диагностики направлено на повышение эффективности автомобиля и обеспечения безопасности водителя. Гидромеханическая коробка передач приспособлена к автоматизации, что открывает большие возможности для расширения функциональности механизмов и систем.
Заключение
Гидромеханическая трансмиссия в автомобилях используется с 1940-х годов, а переход на электронное управление начался в 1980-х. С тех пор АКПП стала более функциональной, плавной, надёжной. Удачная конструкция позволяет совершенствовать систему управления и повышать технические характеристики, а значит расширять сферу применения гидромеханических коробок передач.
Страница не найдена — АКПП
Масло для АКПП
Кто-нибудь из вас делал замену масла в АКПП автомобиля Паджеро? Если да, то как
Все про автоматическую коробку передач
Гидромеханическая коробка передач (ГМП) — это трансмиссия высокой проходимости с автоматическим управлением. ГМП поддерживает
Все про автоматическую коробку передач
В современных конструкциях гидроблок АКПП совмещён с электронной платой управления (ТСМ). Вместе этот «мозг»
Масло для АКПП
Здравствуйте, дорогие читатели! Сегодня я расскажу вам о замене масла в АКПП на машине
Масло для АКПП
Можно ездить без капремонта коробки лет 10, если знать, как проверить уровень масла в
Ремонт и обслуживание АКПП
АКПП DP2 – это автоматическая коробка передач, приобретенная французским автоконцерном Renault в 2009 году
Гидромеханические коробки передач.

Гидромеханические коробки передач
Гидромеханическая передача является комбинированной, в которой наряду с гидротрансформатором применяется ступенчатая коробка передач. Обычно такую коробку передач сокращенно называют ГМП или ГМКП.
Гидротрансформатор, как и гидромуфта был изобретен немецким профессором Германом Феттингером в начале прошлого века. Прежде чем найти применение на автомобилях, эти гидродинамические передачи использовались в судостроении.
На автомобилях ГМП впервые появилась в США — в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile. В настоящее время в США гиромеханическими коробками передач оснащаются почти 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей.
В Европе массовое применение гидромеханических коробок передач началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz, Opel, BMW.
Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.
К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро¬трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.
В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и вальные ступенчатые коробки передач с автоматическим управлением.
Устройство и работа гидротрансформатора, а также его отличие от гидромуфты подробнее рассмотрено здесь.
В некоторых случаях гидротрансформатор устанавливается дополнительно к стандартному фрикционному сцеплению и ступенчатой коробке передач, при этом переключение передач происходит ручным способом.
В такой конструкции достаточно однодискового сцепления, так как оно служит только для отключения первичного вала коробки передач от турбинного колеса трансформатора при переключении передач, а плавность увеличения крутящего момента обеспечивает гидротрансформатор.
Достоинством такой передачи является относительная простота конструкции и управления по сравнению с автоматизированной передачей. Однако наиболее часто гидротрансформатор используется в сочетании двух- или трехступенчатой коробкой передач без стандартного фрикционного сцепления.
Коробки передач выполняются вальными или чаще планетарными. Управление переключением передач автоматическое или полуавтоматическое.
***
Двухступенчатая вальная коробка передач
Гидротрансформатор в сочетании с двухступенчатой вальной коробкой передач применяется в гидромеханической передаче автобуса ЛиАЗ-677М (рис. 1).
Она представляет собой редуктор с расположенными внутри него валами: первичным 3, вторичным 11 и промежуточным 15. Первичный вал связан с турбиной гидротрансформатора, а вторичный вал – с карданной передачей трансмиссии. Первая (понижающая) передача имеет передаточное число 1,79, а вторая передача – прямая, т. е. ее передаточное число равно единице.
Особенностью такой коробки передач является то, что для включения передач наряду с зубчатой муфтой используются многодисковые муфты (фрикционы), работающие в масле.
Ведущие диски фрикционов – стальные, а ведомые – металлокерамические. Они устанавливаются на внутренних или наружных шлицах и имеют возможность незначительного перемещения в осевом направлении. В разъединенном положении пакет дисков удерживают пружины, сжимание дисков происходит от воздействия масла, подаваемого в цилиндр включения фрикциона.
При включении первой передачи срабатывает фрикцион 5, который блокирует зубчатое колесо 4 с первичным валом 3. Муфта 8 при этом смещается влево и блокирует зубчатое колесо 7 с вторичным валом 11.
Крутящий момент передается через зубчатое колесо 4 первичного вала, зубчатые колеса 16 и 14 промежуточного вала и зубчатое колесо 7 на вторичный вал 11. При включении второй передачи срабатывает фрикцион 6, который блокирует первичный вал 3 с вторичным валом 11. Муфта 8 устанавливается в нейтральное положение.
Для движения задним ходом муфта 8 перемещается в правое положение и блокирует зубчатое колесо 10 с вторичным валом 11, затем включается фрикцион 5. Крутящий момент передается через зубчатые колеса 4, 16, 13, 12, 10 на вторичный вал 11 коробки передач.
При включении фрикциона 2 происходит блокировка гидротрансформатора, когда турбинное и насосное колеса жестко соединяются друг с другом, и он переходит в режим гидромуфты.
***
Трехступенчатая планетарная коробка передач
В гидромеханических передачах наибольшее применение нашли планетарные коробки передач. Они обладают компактностью, пониженным уровнем шума при работе и длительным сроком службы. Переключение передач в них происходит практически без разрыва потока мощности.
Основным звеном планетарной коробки передач является планетарный ряд (рис. 2), состоящий из эпициклического (коронного) зубчатого колеса 1, солнечного зубчатого колеса 2, водила 3 и сателлитов 4.
Оси сателлитов установлены на водиле и вращаются вместе с ним, т. е. они подвижны. В зависимости от того, какой элемент планетарного ряда является ведущим, а какой заторможен, происходит изменение передаточных чисел планетарного ряда.
Двухступенчатые коробки передач имеют один планетарный ряд. Многоступенчатые могут иметь два и более планетарных рядов, которые связаны друг с другом.
Торможение элементов планетарных рядов при переключении передач производится фрикционными муфтами (фрикционами) или ленточными тормозными механизмами.
Конструкция гидромеханической передачи легкового автомобиля, в которой гидротрансформатор сочетается с трехступенчатой планетарной коробкой передач представлена на рис. 3.
Гидротрансформатор 1 состоит из трех колес с лопастями. Вал 2 турбинного колеса является ведущим валом коробки передач. Ведомый вал 12 коробки передач расположен соосно с ведущим валом. Коробка передач включает два одинаковых планетарных ряда 7 и 8, три многодисковых фрикциона 5, 6, 9 и два ленточных тормозных механизма 4, 10.
Переключение передач осуществляется включением фрикционов и тормозных механизмов в различных комбинациях (рис. 4).
В нейтральном положении включен тормозной механизм 10 (рис. 3) и сблокирована муфта 13 свободного хода. Ведомый вал 12 не вращается.
На первой передаче включены фрикцион 6 и тормозной механизм 10, а также включена муфта 13 свободного хода. Эпициклическое зубчатое колесо планетарного ряда 8 вращается с угловой скоростью ведущего вала 2, а солнечное зубчатое колесо заторможено, водило вращает эпициклическое зубчатое колесо планетарного ряда 7, в котором солнечное зубчатое колесо также заторможено. Ведомым является водило этого ряда, выполненное заодно с ведомым валом 12. Муфта свободного хода 13 включена.
На второй передаче включены фрикцион 5 и тормозной механизм 10. Эпициклическое зубчатое колесо планетарного ряда 8 вращается свободно, а планетарного ряда 7 – с угловой скоростью ведущего вала 2.
Так как солнечное зубчатое колесо заторможено, то вращается водило и ведомый вал 12. Муфта свободного хода 13 включена.
На третьей передаче включены фрикционы 5 и 6, а также тормозной механизм 10. Эпициклическое зубчатое колесо и водило планетарного ряда 8 ведущие. С такой же угловой скоростью вращаются эпициклические зубчатые колеса и водило планетарного ряда 7, т. е. ведущий и ведомый валы вращаются с одинаковой частотой.
На передаче заднего хода включен фрикцион 6 и тормозной механизм 4. Водило планетарного ряда 8 заторможено, а эпициклическое зубчатое колесо ведущее.
Солнечное зубчатое колесо вращается в обратном направлении, в этом же направлении вращается солнечное зубчатое колесо планетарного ряда 7. Так как эпициклическое зубчатое колесо планетарного ряда 7 заторможено, ведомым является водило, связанное с ведомым валом 12.
Муфта свободного хода 13 заблокирована.
***
Управление гидромеханической коробкой передач
Главная страница
Дистанционное образование
Специальности
Учебные дисциплины
Олимпиады и тесты
Гидромеханические коробки передач — гидротрансформатор, планетарная коробка передач
Основным неудобством при использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно приходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Это требует от него затрат значительных физических сил, особенно в условиях городского движения или при управлении автомобилем, работающим с частыми остановками. Для устранения таких неудобств и облегчения работы водителя на легковых, грузовых автомобилях и автобусах все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач. При гидромеханической коробке передач управление движением автомобиля осуществляется педалью подачи топлива и при необходимости тормозной педалью.
Гидромеханическая коробка передач состоит из гидротрансформатора и механической коробки передач. При этом механическая коробка передач может быть двух-, трех- или многовальной, а также планетарной.
Гидромеханические коробки с вальными механическими коробками передач применяются главным образом на грузовых автомобилях и автобусах. Для переключения передач в таких коробках используются многодисковые муфты (фрикционы), работающие в масле, а иногда – для включения низшей передачи и заднего хода – зубчатая муфта. Переключение передач фрикционами происходит без снижения скорости вращения коленчатого вала двигателя, т.е. бесступенчато – без разрыва передаваемых мощности и крутящего момента.
Гидромеханические коробки с планетарными механическими коробками передач получили наибольшее распространение и применяются на легковых, грузовых автомобилях и в автобусах.
Их преимущества: компактность конструкции, меньшие металлоемкость и шумность, больший срок службы.
К недостаткам относятся сложность конструкции, высокая стоимость, пониженный КПД.
Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.
Гидротрансформатор
Гидротрансформатор (рисунок 1) представляет собой гидравлический механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками – насосного (ведущего), турбинного (ведомого) и реактора. Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены турбинное колесо 2, соединенное с первичным валом 5 коробки передач, и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.
Рисунок 1 – Гидротрансформатор
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта
При работающем двигателе насосное колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу, обеспечивая передачу крутящего момента в гидротрансформаторе.
Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места. В этом случае реактор неподвижен, так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличиваются скорости вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается, и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.
Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и ведущими колесами автомобиля. Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при увеличении сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине и, следовательно, на ведущих колесах автомобиля.
Планетарная коробка передач
Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме (рисунок 2) солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся в зацеплении с коронной шестерней 2, имеющей внутренние зубья.
Рисунок 2 – Планетарный механизм
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз
Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.
На рисунке 3 приведена схема гидромеханической коробки передач, которая состоит из гидротрансформатора, трехвальной двухступенчатой механической коробки передач и системы управления. Наличие двухступенчатой механической коробки передач увеличивает диапазон регулирования крутящего момента.
Рисунок 3 – Схема гидромеханической коробки передач
1, 6, 7, 9, 10, 11, 13 – шестерни; 2, 3, 17 – фрикционы; 4 – муфта; 5, 12, 19 – ведомый, промежуточный и ведущий валы; 8 – регулятор; 14, 15 – насосы; 16 – коленчатый вал; 18 – гидротрансформатор
Гидромеханическая коробка передач включает ведущий 19, ведомый 5 и промежуточный 12 валы с шестернями, многодисковые фрикционные сцепления 2, 3, 17 (фрикционы) и зубчатую муфту 4 с приводом. К системе управления относятся передний 15 и задний 14 гидронасосы и центробежный регулятор 8, который воздействует на фрикционы 2, 3, 17, обеспечивающие переключение передач.
В нейтральном положении все фрикционы выключены, и при работающем двигателе крутящий момент на вторичный вал 5 не передается. На I (понижающей) передаче системой управления автоматически включается фрикцион 2. При этом ведущая шестерня 1, свободно установленная на ведущем валу 19 коробки передач, блокируется валом, а зубчатая муфта 4 устанавливается вручную в положение переднего хода с помощью дистанционной системы управления. Крутящий момент на I передаче от гидротрансформатора передается через фрикцион 2, шестерни 1, 13, 11, 10 и зубчатую муфту 4 на ведомый вал 5 коробки передач.
При разгоне на I передаче, когда гидротрансформатор автоматически осуществляет заданный диапазон регулирования крутящего момента, скорость возрастает до оптимального значения для переключения на II передачу. В этом случае центробежный регулятор 8 дает сигнал на включение фрикциона 3 и отключение фрикциона 2.
Автоматическая система управления обеспечивает включение II (прямой) передачи, при этом крутящий момент от первичного вала 19 коробки передач передается через фрикцион 3 непосредственно на вторичный вал, и скорость автомобиля возрастает до значения, определяемого диапазоном регулирования гидротрансформатором.
Гидромеханическая коробка передач на автомобилях
На рисунке 4 представлена двухступенчатая гидромеханическая коробка передач легкового автомобиля. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управления с кнопочным переключением передач. Кнопки соответственно означают: нейтральное положение, задний ход, I передача и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.
Рисунок 4 – Гидромеханическая коробка передач легкового автомобиля
1 – гидротрансформатор; 2, 4 – тормозные механизмы; 3 – фрикцион; 5, 6 – планетарные механизмы
В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной I передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.
Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на II передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.
Для движение автомобиля задним ходом включается только тормозной механизм 4.
Другие статьи по коробкам передач
Преимущества автомобилей с гидромеханическими коробками передачами
Условия работы водителя автомобиля все время усложняются из-за увеличения количества автомобилей и из-за роста грузовых и пассажирских потоков. Возникла необходимость облегчения работы водителя и повышения ее эффективности при одновременном повышении безопасности движения. Мощным средством решения этих сложных задач стала автоматизация управления автомобилем путем применения автоматических трансмиссий.
Самым распространенным видом автомобильной автоматической трансмиссии стала гидромеханическая передача. Из-за широкого распространения именно ее за рубежом называют «автоматическая трансмиссия».
Гидромеханическая передача содержит гидродинамический трансформатор, механические передачи и систему управления автоматическим переключением передач. При механической трансмиссии поток мощности от двигателя к колесам автомобиля идет через шестерни, т.е. через жесткую механическую связь. При гидромеханической же передаче этот поток мощности идет еще и через гидродинамический трансформатор, рабочие колеса которого связаны друг с другом через жидкость. Благодаря этому уменьшаются динамические нагрузки, вызываеые как крутильными колебаниями, идущими от двигателя, так и неравномерностью хода зубчатых передач. Смягчаются также динамические эффекты от неровностей дорожного покрытия.
Гидродинамический трансформатор благодаря особенностям своей характеристики изменяет (трансформирует) крутящий момент двигателя. Поэтому число передач в механической части гидромеханической передачи делается меньше числа передач в механических коробках передач — 5-6 передач вместо 13-16 в большегрузных автопоездах и на одну-две передачи меньше в легковых автомобилях.
Переключение передач в гидромеханических передачах осуществляется без разрыва потока мощности, обороты двигателя при этом изменяются плавно.
Перечисленные свойства гидромеханических передач придают автомобилям ряд ценных преимуществ.
Ниже кратко сообщается о 10 преимуществах автомобилей с гидромеханической передачей и обсуждаются 2 особенности: возможность увеличенных расходов топлива и большая стоимость гидромеханических передач по сравнению с механическими передачами. Эти особенности часто считаются недостатками гидромеханической передачи, но при внимательном рассмотрении таковыми не оказываются.
1. ЭКОЛОГИЯ
Когда автомобиль с механической передачей разгоняется для дальнейшего движения, то водитель последовательно использует все или почти все передачи коробки передач. Работа на каждой передаче сопровождается изменением частоты вращения вала двигателя от малой до максимальной при полной, как правило, подаче топлива. После достижения максимального значения частота вращения вала двигателя резко уменьшается для повторения такого же цикла на следующей передаче.
При таком режиме работы двигателя в атмосферу выбрасывается много токсичных веществ.
При использовании гидромеханической передачи экологические показатели улучшаются за счет сокращения числа переключений передач (меньшее количество передач) и за счет плавного изменения частоты вращения вала двигателя при этих переключениях. В литературе упоминались случаи, когда автомобили с механическими передачами не удавалось продать из-за несоответствия экологическим требованиям, и удавалось продать после достижения соответствия этим требованиям за счет установки на автомобили гидромеханических передач.
2. ОБЛЕГЧЕНИЕ УПРАВЛЕНИЯ АВТОМОБИЛЕМ
Для движения автомобиля с механической передачей постоянно используются 4 органа управления: педаль подачи топлива, педаль тормоза, педаль сцепления, рычаг переключения передач.
Для движения автомобиля с гидромеханической передачей постоянно используются 2 органа управления: педаль подачи топлива и педаль тормоза. Из-за автоматического переключения передач отпадает надобность в педали сцепления и в рычаге переключения передач. В гидромеханической передаче, правда, имеется еще один орган управления — механизм переключения передач, но, в отличие от механизма переключения механической коробки передач, он не используется при каждом переключении передач. Скорее его можно назвать избирателем режимов. В числе режимов: стоянка; нейтраль; задний ход; несколько режимов движения, в каждом из которых может использоваться определенная комбинация передач или быть постоянно включена одна передача. Режимы движения меняются редко.
3. БЕЗОПАСНОСТЬ ДВИЖЕНИЯ
Сокращение органов управления позволяет водителю при усложнении дорожной обстановки не отвлекаться на манипуляции органами управления, а уделить все внимание ситуации на дороге. Быстроте реакции водителя в сложной обстановке способствует и то, что при применении гидромеханической передачи органов оперативного управления всего два и для каждого можно использовать «свою ногу», которую не нужно куда-то переносить или на что-то переключать.
4. КОМФОРТАБЕЛЬНОСТЬ ДВИЖЕНИЯ
Переключения передач в гидромеханической передаче происходят без разрыва потока мощности. Благодаря этому пассажиры и водитель не испытывают толчков и рывков, которыми неизбежно сопровождается переключение передач в механической коробке передач и которые зависят от квалификации водителя. При автоматическом переключении передач такой зависимости нет, движение происходит как бы при бесступенчатой трансмиссии и становится более комфортабельным.
5. ДВИЖЕНИЕ С МАЛЫМИ СКОРОСТЯМИ
В ряде случаев важна способность автомобиля двигаться с малыми скоростями — например, при «пробках» на дорогах. Благодаря гидродинамическому гидротрансформатору отсутствует жесткая связь двигателя с колесами автомобиля. Это позволяет давать любые обороты валу двигателя даже при стоящем на передаче неподвижном автомобиле. Давая двигателю малые обороты, можно обеспечить движение автомобиля со сколь угодно малой скоростью, не опасаясь заглохания двигателя.
6. ПРОХОДОМОСТЬ АВТОМОБИЛЯ
Гидромеханическая передача позволяет гибко регулировать скорость автомобиля и величину подводимого к колесам автомобиля крутящего момента, работая только педалью подачи топлива.
Это существенно улучшает проходимость автомобиля. Значительно легче предотвращать проворот колес автомобиля на скользкой или обледенелой дороге, предотвращать срыв грунта при движении на сыпучих грунтах. Облегчается движение и в других тяжелых дорожных условиях.
7. КВАЛИФИКАЦИЯ ВОДИТЕЛЯ
Существенное упрощение управления автомобилем позволяет снизить требования к квалификации водителя. При освоении управления автомобилем с механической трансмиссией наибольшие трудности вызывает приобретение навыка в переключении передач, когда требуется сочетание выжима сцепления с переводом рукоятки переключения передач и последующее отпускание педали сцепления в сочетании с перемещением педали подачи топлива.
При гидромеханической передаче нужды в таком навыке нет, переключения передач происходят автоматически. Это существенно облегчает обучение управлению автомобилем и его эксплуатацию, снижает требования к квалификации водителя.
8. УТОМЛЯЕМОСТЬ ВОДИТЕЛЯ
Оценивать количественно такой сложный физиологический фактор, как утомляемость, чрезвычайно трудно, тем более, что одни и те же внешние воздействия на разных людей действуют по-разному. На физиологические оценки могут влиять и особенности конструкции автомобилей, не относящиеся к исследуемому фактору. Поэтому наиболее достоверными нам представляются оценки, которые делают водители по своим ощущениям и впечатлениям от работы на автомобилях с подлежащими оценке агрегатами.
Для примера можно взять автобус — условия работы водителя на нем наиболее тяжелые. Автобус останавливается на многочисленных остановках и перед светофорами, а затем снова разгоняется после каждой остановки. Для обеспечения такого режима движения водитель автобуса с механической трансмиссией в смену делает несколько тысяч переключений передач, выжимая сцепление при каждом переключении.
ЗИЛ незадолго до прекращения на нем производства автобусов построил небольшую партию автобусов с гидромеханическими передачами своей конструкции. Эти автобусы проходили эксплуатационные испытания в автобусных парках разных городов, перевозя пассажиров по рейсовым маршрутам. Пробеги этих автобусов исчислялись десятками тысяч километров.
Были случаи, когда в силу каких-то обстоятельств водителям приходилось работать две смены подряд. Водители отмечали, что за две смены работы подряд на автобусе с гидромеханической передачей они уставали так же, как за одну смену работы на автобусе с механической трансмиссией. Таков эффект влияния гидромеханической передачи на утомляемость водителей.
9. ДОЛГОВЕЧНОСТЬ АГРЕГАТОВ АВТОМОБИЛЯ
Гидромеханическая передача благотворно влияет на долговечность двигателя и других агрегатов автомобиля. На эту тему имеется много публикаций, но лучше всего опираться на собственные данные, полученные в нашей стране на наших дорогах.
Лаборатории гидропередач ЗИЛ удалось получить количественные оценки применительно к грузовым автомобилям ЗИЛ, проведя длительные испытания гидромеханических передач фирмы Аллисон (США) на седельных тягачах ЗИЛ-130 В1 и на ряде других грузовых автомобилях ЗИЛ.
Испытания были сравнительными. Они длились около 12 лет. Одновременно испытывались 2 тягача ЗИЛ-130 В1 — один с гидромеханической передачей, другой со стандартной механической трансмиссией. На автомобиле с гидромеханической передачей первый отказ по гидромеханической передаче наступил через 800 тыс. км, второй — через 870 тыс. км. Предельного состояния у гидромеханической передачи достичь не удалось. После небольшого ремонта она была пригодна для дальнейшей эксплуатации.
За время сравнительных испытаний с пробегом 870 тыс.км на автомобиле с гидромеханической передачей были проведены следующиие ремонтные работы:
· заменены 2 шасси;
· заменены 4 двигателя;
· проведено 8 текущих ремонтов двигателя.
На автомобиле с механической трансмиссией за это же время:
· заменены 2 шасси;
· заменены 4 двигателя;
· проведено 9 текущих ремонтов двигателя;
· заменены 13 ведомых дисков сцепления;
· заменены 4 коробки передач;
· проведено 4 текущих ремонтов коробок передач.
Видно, что применение гидромеханической передачи на одном конкретном автомобиле позволило сэкономить 4 коробки передач, 13 дисков сцепления и стоимость 4-х ремонтов коробки передач и одного ремонта двигателя.
Надо добавить, что испытания велись не поблизости от завода, что позволило бы опекать их и что-то подсказывать, а в Ульяновске, куда после первых месяцев наблюдения работники завода не показывались годами, и эксплуатация была самой рядовой (включая командировки на целину и т.д.).
Применение гидромеханической передачи увеличивает долговечность и других, кроме трансмиссии и двигателя, узлов автомобиля. Исследованиями ВКЭИавтобуспрома установлено, что применение гидромеханической передачи уменьшает уровень вибраций кузова автобуса, из-за чего увеличивается его долговечность.
10. СРЕДНЯЯ СКОРОСТЬ ДВИЖЕНИЯ
При переключении передач в механической трансмиссии на время переключения неизбежно прерывается поток мощности, подводимой к ведущим колесам автомобиля. Происходит некоторое снижение скорости автомобиля. Это снижение скорости тем больше, чем в более трудных дорожных условиях происходит переключение передач — когда ухудшается «накат» автомобиля. За счет потери скорости при переключениях передач уменьшается и средняя скорость движения автомобиля, во многом определяющая его производительность.
На автомобиле с гидромеханической передачей поток мощности за время автоматического переключения передач не прерывается. Потери скорости и, следовательно, средней скорости движения, при этом не происходит.
При проведении на ЗИЛе сравнительных испытаний автопоездов ЗИЛ-130 В было установлено, что при движении по равнинному свободному шоссе средние скорости обоих поездов были практически одинаковыми. При движении же в городе, на холмистом шоссе и на горных дорогах средние скорости движения автомобиля с гидромеханической передачей были на 3,5…11% выше (тем выше, чем сложнее дорожные условия).
11. ТОПЛИВНАЯ ЭКОНОМИЧНОСТЬ (первая особенность)
Существует мнение, что автомобили с гидромеханической передачей расходуют больше топлива, чем автомобили с механическими коробками передач. Иногда это так, а иногда и не так — в каждом случае надо разбираться конкретно, опираясь на имеющий опыт.
При многолетних испытаниях гидромеханических передач фирмы Аллисон, о которых сказано выше, расход топлива на автомобиле с гидромеханической передачей был таким же, как на автомобиле с механической коробкой передач.
При сравнительных испытаниях грузовых автомобилей ЗИЛ на Симферопольском шоссе автомобили с гидромеханическими передачами по отношению к автомобилям с механическими коробками передач имели экономию топлива около 3%, а при испытаниях этих же автомобилей на менее загруженном Каширском шоссе автомобили с гидромеханической передачей расходовали топлива на 2% больше. Это еще раз говорит о том, что по расходу топлива гидромеханические передачи более эффективны в трудных условиях движения.
Говоря о расходах топлива, надо иметь в виду, что стоимость топлива при эксплуатации автомобилей составляет 14-18% общих эксплуатационных расходов. Если допустить перерасход топлива на 3%, то при прочих равных условиях это увеличило бы общие эксплуатационные расходы на 0,42-0,54%. Такое увеличение многократно перекроется снижением расходов на ремонты и замены агрегатов трансмиссии и других агрегатов, не говоря уже о трудно учитываемом, но несомненно ощутимом эффекте от улучшения экологических показателей и от повышения безопасности движения.
Расход топлива на любом автомобиле зависит от квалификации водителя. Американские исследователи по заказу армии США провели специальные испытания по оценке влияния квалификации водителя на расход топлива при различных видах автомобильной трансмиссии. Заказчик хотел узнать, как скажется на расходах топлива то, что в армейских условиях за руль садятся солдаты с различной водительской квалификацией. За эталон брался расход топлива, получавшийся у водителя высокой квалификации. Оказалось, что на автомобиле с гидромеханической передачей расход топлива у водителя невысокой квалификации был почти таким же, как у водителя высокой квалификации, а при механической трансмиссии водитель невысокой квалификации расходовал топлива значительно больше. Это позволяет считать, что во многих случаях использования гидромеханической передачи скорее можно говорить о равенстве расходов топлива или даже о его экономии, а не о его перерасходе.
12. СТОИМОСТЬ (вторая особенность)
Стоимость гидромеханической передачи надо сравнивать со стоимостью комплекта, который она заменяет — коробки передач, сцепления, усилителя сцепления и системы управления переключением передач. И в этом случае, однако, гидромеханическая передача дороже механической. Само по себе это ни о чем не говорит. Лучшее качество стоит денег. Сравнивать надо конечные результаты.
В приведенном выше конкретном примере с автопоездом ЗИЛ-130 В1 превышение стоимости гидромеханической передачи над стоимостью механической трансмиссии надо сравнивать с суммарной стоимостью 4-х коробок передач, 13-ти дисков сцепления, 4-х ремонтов коробок передач и 1-го ремонта двигателя. Сюда надо добавить стоимость простоев, вызванных этими заменами и ремонтами. Очевидно, что все эти затраты и неудобства значительно превышают разницу в стоимости сравниваемых агрегатов.
Учитывая все вышеизложенное, можно утверждать, что применение гидромеханических передач обеспечивает целый ряд преимуществ автомобилям всех классов.
Наиболее разительно эти преимущества проявляются в легковых автомобилях, на которых гидромеханические передачи получили наибольшее распространение. Применительно к легковым автомобилям из перечисленных выше преимуществ стоит выделить легкость управления, благодаря чему:
· облегчилось и ускорилось обучение управлению автомобилем;
· управление автомобилем стало доступно людям, для которых оно раньше было затруднено, в том числе женщинам всех возрастов и людям с физическими недостатками;
· увеличилась комфортабельность езды:
· уменьшилась утомляемость от управления автомобилем и от поездок в нем.
Существенным преимуществом является также повышение надежности и долговечности агрегатов автомобиля.
Комплексное управление гидромеханической регулируемой трансмиссией
Гидромеханическая регулируемая трансмиссия (HMT) имеет преимущества непрерывного изменения и высокой эффективности. Так что это одна из идеальных трансмиссий для тяжелых автомобилей. Процесс непрерывного изменения скорости включает регулирование скорости в диапазоне и сдвиг диапазона. В данной статье предлагается интегрированная стратегия управления HMT. Получен алгоритм стратегии управления скоростью асимметричной насыщенной инкрементальной пропорциональной интегральной производной (ПИД) в условиях диапазона и сдвига диапазона.В этой статье представлена логика переключения диапазонов и стратегии управления переключением диапазонов. Модель контроллера строится в Matlab Simulink и симулируется с моделью транспортного средства, оснащенного двухдиапазонным HMT. Создан прототип HMT-платформы аппаратного моделирования (HILS) для интегрированной стратегии управления. Результаты HILS показывают, что процесс переключения диапазона плавный и колебаний скорости не происходит. На стадии стабилизации дроссельной заслонки частота вращения двигателя регулируется до близкой к оптимальной, а правила ее изменения соответствуют результатам моделирования.Стратегия интегрированного контроля разумна.
1. Введение
С развитием автомобильной промышленности заказчики повышают требования к комфорту и топливной экономичности. Передачи важны для удовлетворения требований [1, 2].
Основные характеристики и характеристики передаточного числа HMT показаны на рисунке 1. Входная мощность делится на две части: гидравлическую мощность и механическую мощность в блоке разделения мощности. Гидравлическая трансмиссия включает в себя гидравлический насос переменного рабочего объема и двигатель постоянного рабочего объема.Изменяя рабочий объем насоса, скорость двигателя постоянно изменяется от минимальной (отрицательной) до максимальной (положительной), что определяется как ход. Каждый ход соответствует рабочему режиму механической трансмиссии, который определяется как диапазон. Наконец, два потока мощности сходятся в непрерывно регулируемый поток мощности в блоке слияния.
(a) Основы HMT
(b) Характеристики передаточного числа
(a) Основы HMT
(b) Характеристики передаточного числа
HMT — новая бесступенчатая трансмиссия.Это заставляет двигатель работать в высокоэффективной области, поэтому он имеет преимущество высокой эффективности. И он мог передавать большую нагрузку, чем бесступенчатая трансмиссия ременного типа (CVT). Следовательно, HMT — одна из идеальных трансмиссий для большегрузных автомобилей [3]. И его успешно применяли на большегрузных автомобилях [4–6].
На основе большого количества исследований по проектированию и моделированию HMT был разработан ряд методов проектирования и анализа. Линарес и др. [5] объяснил основы всех типов трансмиссии CVT и описал конструктивные параметры и основы системы разделения мощности.Макор и Россетти [7] оптимизировали конструкцию HMT и получили хорошую сходимость по скорости и высокий средний КПД. Чтобы разработать систему управления HMT, Чжан и Чжуо [8] построили модель HMT, используя принцип динамики. Choi et al. [9] провели тренажер для трактора с ГМТ в режимах работы и движения. И скорость трактора, и частота вращения двигателя могли поддерживаться на желаемых значениях. По сравнению с технологиями проектирования и анализа HMT, контроль HMT все еще находится на ранней стадии разработки.
Процесс изменения скорости состоит из регулирования скорости по диапазону и смещения диапазона. Следовательно, необходимо регулировать скорость в диапазоне, время переключения диапазона и методы переключения. Множество исследований касалось регулирования скорости в диапазоне и компонентах управления. Юань и др. [10] и Wei et al. [11] разработал ПИД-регулятор с переменным параметром и изучил систему управления скоростью на HMT. В их исследованиях может быть реализовано отслеживание соотношения скоростей цели. Но их исследования были сосредоточены только на регулировании передаточного числа по дальности.Hu et al. [12] исследовали возможность переключения без отключения электроэнергии. Чжан и Чжо [13] представили метод изменения скорости и сдвига диапазона для достижения самого широкого диапазона скоростей и избежания повторяющегося переключения. Savaresi et al. [14] разработали систему управления, включающую сервоконтроллер на клапане, сервоконтроллер на гидравлическом передаточном числе и синхронизатор. Но улучшение характеристик трактора было достигнуто только за счет замены нынешних насосов / двигателей и датчиков скорости. Tanelli et al. [15] разработали систему управления для трактора, оснащенного HMT, включающую управление переключением одного и двух диапазонов сцепления, а также улучшенное качество переключения.В статье представлен комплексный метод управления HMT. Модель контроллера создается в Matlab Simulink и симулируется с моделью транспортного средства, оснащенного HMT. Проведен тест HILS HMT.
2. Стратегия интегрированного управления HMT
Двухдиапазонный HMT показан на рисунке 2 и процитирован для иллюстрации метода управления. Двухдиапазонный HMT включает в себя три планетарных редуктора (, и), два тормоза (), один насос переменного рабочего объема () и один двигатель постоянного рабочего объема ().На рисунке 2 это входная скорость HMT и выходная скорость HMT. Когда тормоз включен, а тормоз отпущен, планетарный ряд работает, а HMT работает в гидравлическом диапазоне (). Когда тормоз включен и тормоз отпущен, планетарный редуктор включается и работает, а HMT работает в гидромеханическом диапазоне (HM).
Скоростные характеристики HMT состоят из нескольких связанных бесступенчато регулируемых диапазонов. Следовательно, интегрированная стратегия управления должна включать управление скоростью в диапазоне, логику переключения диапазона, условия переключения диапазона и стратегии управления переключением.
Скорость HMT регулируется в зависимости от скорости автомобиля и открытия дроссельной заслонки. HMT заставляет двигатель и транспортное средство работать различными способами в соответствии с выбранным режимом для достижения ожидаемых характеристик.
3. Стратегия управления скоростью в диапазоне
Стратегия управления скоростью в диапазоне изменяет управляющий ток гидравлического насоса в соответствии с разницей между частотой вращения двигателя и идеальной скоростью. Стратегия регулирования скорости в диапазоне изучалась в течение многих лет, в основном в области ПИД-регулирования, управления отслеживанием передаточного числа и т.д. [10–13].
В определенных дорожных условиях ускорение автомобиля с HMT ограничено крутящим моментом двигателя и максимальным крутящим моментом двигателя. Максимальный крутящий момент двигателя определяется максимальным давлением при условии, что двигатель выбран.
Когда ошибка между фактической частотой вращения двигателя и целевой скоростью больше во время ускорения транспортного средства, градиент диапазона управляющего тока насоса переменного рабочего объема увеличивается в соответствии с алгоритмом PID. И градиент скорости вращения двигателя и сопротивление ускорению транспортного средства увеличиваются, из-за чего гидравлический блок теряет способность ускорять транспортное средство после того, как давление поднимается до максимального давления.Следовательно, когда автомобиль ускоряется, необходимо установить верхний предел насыщения. Когда транспортное средство быстро замедляется, передаточное число HMT должно быстро уменьшаться. Таким образом, нижний предел насыщения при замедлении транспортного средства должен быть больше, чем при ускорении транспортного средства. То есть пределы насыщения асимметричны. В этой статье предлагается стратегия инкрементального ПИД-регулирования скорости асимметричного насыщения HMT в диапазоне, и выводятся общие алгоритмы в каждом диапазоне.
3.1. Универсальный алгоритм инкрементального ПИД-регулирования
Контроллер HMT относится к цифровому блоку управления ПИД-регулятором, и его приращение где означает приращение при, а означает ошибку при; ,, и — коэффициенты соответственно, где,,; относится к коэффициенту масштабирования и относится к интегральному коэффициенту; относится к производному коэффициенту,; означает производную постоянную времени, означает интегральную постоянную времени и означает период выборки.
Результатом является сумма).
3.2. Стратегия инкрементального ПИД-регулирования с асимметричным насыщением в диапазоне
Ошибка контроллера HMT находится где и — это частота вращения двигателя и идеальная частота вращения, соответственно.
Уравнение (2) можно было бы выразить следующим образом, если заменить и током насоса и приращением: где «» определяется рабочими диапазонами HMT. В диапазонах прямой пропорциональности, если передаточное число берется, знак плюс; в противном случае принимается знак минус. В диапазонах обратной пропорции, если передаточное число, берется знак минус; в противном случае используется знак плюса.В двухдиапазонном HMT диапазон H является прямо пропорциональным диапазоном. В положительной половине диапазона, первая буква «±» в (4) принимает знак «плюс». А в отрицательной половине диапазона, вторая принимает знак минус. Диапазон HM — это диапазон обратной пропорции. Аналогично, первый «±» в (4) принимает знак минус, а второй — знак плюс. относится к току накачки при. и — верхний и нижний пределы тока накачки. В двухдиапазонном HMT гидравлический насос с регулируемым рабочим объемом представляет собой аксиально-поршневой насос Sauer Danfoss серии 90, где и mA (предназначен для устранения нулевой мертвой зоны механизма управления рабочим объемом).и являются асимметричными насыщенными верхним и нижним пределами градиента управляющего тока, которые зависят от рабочего объема насоса / двигателя, передаточного отношения, сопротивления транспортного средства и так далее.
На рисунке 2 выходная скорость HMT является функцией скорости двигателя. И подходящие параметры PID, и в (5) для каждого диапазона должны быть выбраны с помощью большого количества моделирования и экспериментов, чтобы уменьшить колебания скорости двигателя. В результате теоретических расчетов и моделирования параметры ПИД-регулятора выглядят следующим образом:,, в диапазоне,,, в диапазоне HM, мА и мА.
4. Логика сдвига диапазона
Логика сдвига диапазона — это порядок диапазонов. Для реализации бесступенчатой трансмиссии элементы переключения диапазонов HMT, такие как тормоза, должны управляться последовательно, и HMT может работать в последовательном диапазоне. Логика сдвига диапазона двухдиапазонного HMT показана в таблице 1.
|
5.Условия сдвига диапазона
Сдвиг диапазона относится к процессу перехода между двумя соседними диапазонами. Чтобы улучшить качество переключения, условия переключения следующие: (1) Конечная выходная скорость HMT в текущем диапазоне должна быть равна исходной точке целевого диапазона. В каждом диапазоне применяется управление с обратной связью для управления скоростью двигателя. Идеальное время переключения достигается в соответствии с частотой вращения двигателя и частотой вращения двигателя. Целевая скорость двигателя достигается в идеальной точке переключения, где скорости ведущего и ведомого дисков целевого тормоза равны.В двухдиапазонном HMT вычисляется идеальная скорость от диапазона H до диапазона HM: где,, и — количество зубьев шестерен от входного вала до соответственно; ,, и являются характеристическими параметрами трех планетарных передач. (2) Отклонение частоты вращения двигателя (абсолютное значение) должно быть больше минимального установленного значения. Во избежание повторения переключения необходимо установить минимальное отклонение частоты вращения двигателя. Только тогда, когда отклонение частоты вращения двигателя больше, чем оно может быть разрешено, переключение диапазона разрешено. (3) Условие переключения на более высокую передачу должно быть выполнено.В зависимости от дорожной обстановки водитель выбирает больший диапазон с помощью переключателя диапазонов, чтобы ограничить скорость автомобиля. Только тогда, когда переключателем диапазона разрешено переключение на более высокую передачу, будет выполнено переключение на более высокий диапазон.
Подводя итог, условия переключения с диапазона H на диапазон HM равны
Условия переключения с диапазона HM на диапазон находятся где установленное значение переключателя диапазонов. Если, выходная скорость HMT равна 0; если, HMT может работать только в диапазоне; и когда HMT может работать в диапазоне HM.- минимальное отклонение частоты вращения двигателя.
6. Стратегии переключения диапазона
В процессе переключения диапазона тормоз текущего диапазона отпускается, и включается тормоз целевого диапазона. Последовательность переключения тормоза определяется логикой сдвига диапазона, а время начала сдвига диапазона определяется условиями сдвига диапазона.
Направление вращения двигателя постоянно во время сдвига диапазона. Но изменение направления крутящего момента двигателя приводит к замене контуров высокого и низкого давления.Между тем, поток мощности в гидравлической системе меняется на противоположный. Скорость двигателя колеблется из-за резкого изменения давления и объемного КПД гидроагрегата. При этом резко меняются скоростные характеристики HMT и изменяются силовые характеристики, что приводит к появлению шума и вибрации.
Именно стратегии переключения диапазонов отвечают за идеальное включение и выключение тормозов, чтобы уменьшить время переключения и ударные нагрузки, а также минимизировать колебания входной и выходной скорости [10].Стратегии сдвига диапазона относятся к параметрам управления и их управляющим сигналам, включая изменение, время начала и время остановки. Стратегии смены диапазона в этой работе включают следующее: (1) Время перекрытия между двумя тормозами. относится ко времени начала включения встречного тормоза и относится ко времени начала отпускания выходящего тормоза. Время перекрытия между тормозами равно (2) Масляный буфер во время отпускания тормоза. На него влияют время начала, время окончания, максимальная ширина импульса и изменение ширины импульса сигнала пропорционального предохранительного клапана.(3) Регулировка рабочего объема насоса. Он определяется временем начала, временем окончания и изменением тока смещения.
Указанные выше время начала и время окончания являются приращениями времени относительно времени начала сдвига диапазона.
Время и изменение управляющих переменных стратегий переключения диапазонов должны определяться посредством ряда моделирования и экспериментов и связаны со следующими факторами: (1) Схема механической трансмиссии. Из-за совпадения зубцов в конструкции механической трансмиссии фактическое передаточное число каждого диапазона не может быть равным идеальному передаточному отношению HMT, которое тесно связано с изменением тока смещения.(2) Характеристики отклика и объемный КПД замкнутого гидравлического контура. Изменение тока смещения может быть достигнуто только при сдвиге диапазона и может вызвать удар, если его синхронизация неверна. То есть ток смещения может изменяться после выключения отходящего тормоза. Его время начала больше нуля, а время окончания связано с характеристиками отклика замкнутого гидравлического контура. На изменение тока смещения влияет объемный КПД замкнутого гидравлического контура.(3) Параметры тормоза. На время перекрытия влияют диаметр гидроцилиндра и ход выходящего и встречного тормозов. На процесс изменения ширины импульса и максимальную длительность импульса пропорционального предохранительного клапана влияют коэффициент крутящего момента фрикционного диска, жесткость и начальное смещение возвратной пружины в выходящем тормозе. Диаметр и длина гидравлического контура управления тормозом также влияют на управляющие сигналы.
Хотя стратегии сдвига диапазона различаются для разных схем HMT, существует несколько универсальных правил, а именно: (1) В процессе переключения с диапазона H на диапазон HM изменение тока смещения отрицательное, в то время как в процессе переключения с диапазона HM на более низкую передачу Диапазон H, положительный.(2),, и определяются временем запаздывания механизма управления гидронасосом переменной производительности и временем заполнения тормоза маслом. Если, то. Если, то и. Если, то и; немного меньше. (3) Минимальное давление масла для амортизации давления масла должно быть больше минимального давления масла для перемещения поршня тормоза.
Согласно результатам моделирования, стратегии сдвига диапазона из диапазона в диапазон HM следующие:,, и; мА; , как показано на рисунке 3. Управляющие сигналы от диапазона HM к диапазону такие же, как и при переключении на повышенную передачу по значению и времени, за исключением мА.
7. Моделирование стратегий управления
В соответствии со стратегиями управления модель контроллера построена в Matlab Simulink (рис. 4) и смоделирована с моделью транспортного средства, оснащенного двухдиапазонным HMT. Модель автомобиля построена на MSC Easy5 [16]. Результаты показаны на Рисунке 5.
Когда коэффициент сопротивления качению равен 0,02, открытие дроссельной заслонки показано на Рисунке 5 (a). Управляющие сигналы и скорости показаны на рисунках 5 (b), 5 (c) и 5 (d).
Перед открытием дроссельной заслонки двигателя (раньше) тормоз включается, а другой отключается. Двигатель находится в режиме холостого хода, HMT находится в нейтральном диапазоне, а автомобиль припаркован. При открытии дроссельной заслонки () сигнал управления начинает усиливаться, HMT переходит на диапазон, и автомобиль трогается с места.
Во время, условия сдвига диапазона HMT удовлетворяются от диапазона к диапазону HM, и контроллер начинает запускать стратегии сдвига диапазона (показанные на рисунке 3). Во время переключения диапазона () сигнал торможения уменьшается, а сигнал торможения постепенно увеличивается.Ток смещения уменьшается на 14 мА (), а частота вращения двигателя слегка колеблется. После сдвига диапазона HMT переходит в диапазон HM. При уменьшении рабочего объема гидронасоса автомобиль ускоряется в отрицательной половине диапазона HM. Во время HMT проходит нулевую точку в положительную половину диапазона HM, в которой смещение равно нулю. В положительной половине диапазона HM, когда рабочий объем гидравлического насоса увеличивается в обратном направлении, автомобиль ускоряется.
Когда дроссельная заслонка уменьшается, а целевая частота вращения двигателя уменьшается, ток смещения увеличивается в обратном направлении, пока фактическая частота вращения двигателя не станет ниже ее целевой частоты вращения.В момент времени скорость автомобиля начинает снижаться. В момент, когда дроссельная заслонка двигателя закрывается, целевая частота вращения двигателя изменяется, и ток смещения сильно изменяется. В момент, HMT возвращается к положительной половине диапазона HM, и автомобиль непрерывно замедляется. В момент, когда HMT входит в смещение диапазона от диапазона HM к диапазону H, управляющий сигнал тормоза постепенно уменьшается с увеличением управляющего сигнала торможения. Ток смещения увеличивается на 14 мА (), частота вращения двигателя также немного колеблется, и HMT переходит в диапазон H.В момент времени HMT возвращается в нейтральный диапазон.
На Рисунке 5 управляющий ток гидравлического насоса не колеблется в пределах диапазона. Повторяющегося сдвига нет. Двигатель падает до холостого хода после того, как HMT возвращается в нейтральное положение.
Идеальная и фактическая частота вращения двигателя показаны на Рисунке 5 (c). Пуск ракеты-носителя занимает 1,2 с (от 5 до 6,2 с). После запуска транспортного средства, очевидно, больше, чем. От s, поскольку нагрузка на двигатель больше, быстро падает до немного выше.После этого держится около, а максимальная разница составляет 44 об / мин (за исключением нулевых точек гидронасоса и переключения диапазонов). падает до менее чем после закрытия дроссельной заслонки. быстро снижается до. Из-за инерции автомобиля фактическая частота вращения двигателя сохраняется в течение некоторого времени (около 10,1 с) с регулировкой HMT. Когда скорость автомобиля приблизительно равна нулю, двигатель быстро переходит на холостой ход.
Скорость автомобиля показана на Рисунке 5 (d). При трогании с места, ускорении, замедлении и остановке транспортного средства не происходит колебаний скорости во время переключения диапазонов или в нулевых точках.
8. Аппаратное обеспечение в моделировании контура
HILS HMT — это метод тестирования, основанный на системе компьютерного моделирования. В тесте HILS объект HMT заменяет модель HMT в схеме моделирования. И он напрямую управляется контроллером через устройства ввода / вывода и интерфейсную схему.
Благодаря тому, что объект HMT подключен к схеме моделирования, этот тест может дополнительно подтвердить надежность результатов моделирования. Этот метод позволяет проверить правильность стратегии управления на основе компьютерного моделирования HMT и точно настроить параметры управления.Он также может проверить правильность имитационной модели HMT. Это особенно эффективно для использования модели серого ящика для описания HMT, которую трудно описать математической моделью.
На основе испытательного стенда динамического моделирования мощностью 330 кВт исходные объекты нагрузки приводят в движение и нагружают HMT в соответствии с динамическими характеристиками двигателя и транспортного средства посредством модели вождения в реальном времени. В этой системе HMT является материальным объектом, а все остальные части являются моделями или управляются моделями.Система HILS показана на рисунке 6. И некоторые объекты теста HILS показаны на рисунке 7.
Программное обеспечение HILS HMT состоит из модели контроллера HMT, модели двигателя, моделей автомобилей в реальном времени, и целевые окна в реальном времени. Под управлением модели двигателя в реальном времени компонент нагрузки 2 испытательного стенда динамического моделирования, который работает в соответствии с характеристиками двигателя, обеспечивает питание HMT. Под управлением модели транспортного средства в реальном времени компонент нагрузки 1 загружает HMT в соответствии с характеристиками движения транспортного средства.Модель контроллера осуществляет управление HMT в реальном времени в соответствии со стратегиями управления. HMT регулирует передаточное число в соответствии с изменением условий работы транспортного средства, что позволяет двигателю работать примерно с оптимальной скоростью (наилучшая экономия топлива или наилучшая производительность).
Входными данными модели двигателя в реальном времени является крутящий момент нагрузки, а выходными данными — частота вращения двигателя. На испытательном стенде динамического моделирования компонент нагрузки 2, моделирующий двигатель, находится под управлением режима постоянной скорости.Детектор скорости и крутящего момента 2 передает крутящий момент нагрузки обратно на компьютер моделирования. Результат расчета модели двигателя в реальном времени передается компоненту нагрузки 2.
Модель двигателя в реальном времени может быть описана следующим образом: где — инерция смоделированного двигателя, — статический выходной крутящий момент смоделированного двигателя, — крутящий момент нагрузки по обратной связи. датчика крутящего момента, является выходной скоростью компонента нагрузки 2, является управляющим напряжением контроллера компонента нагрузки 2, и является коэффициентом линейного преобразования управляющего напряжения компонента нагрузки 2.
В компьютерной имитационной модели входными и выходными данными модели транспортного средства являются выходная скорость и крутящий момент нагрузки HMT, соответственно. На испытательном стенде динамического моделирования компонент нагрузки 1, моделирующий транспортное средство, находится под управлением режима постоянного крутящего момента. Чтобы обеспечить соответствие входных и выходных данных расчетам в имитационной модели, необходимо ввести «виртуальную ось» в модель транспортного средства в реальном времени.
Выходной крутящий момент модели транспортного средства в реальном времени: где — жесткость на кручение виртуальной оси, — это демпфирование виртуальной оси, — это выходной крутящий момент модели транспортного средства в реальном времени, — это сигнал скорости обратной связи датчика скорости, — угловая скорость эквивалентной инерции транспортного средства, — управляющее напряжение контроллера компонента нагрузки 1, и — коэффициент линейного преобразования управляющего напряжения компонента нагрузки 1.
Под нагрузкой компонент 1, работающий без нагрузки в ручном режиме управления, результаты теста сдвига диапазона HMT показаны на рисунке 8. Рисунки показывают, что процесс переключения диапазона плавный и колебаний скорости не происходит. Это показывает, что стратегия управления сдвигом диапазона, определяемым скоростью двигателя, является разумной. Когда нагрузка увеличивается, выходная скорость явно колеблется в процессе сдвига диапазона. В нем говорится, что стратегии управления сдвигом диапазона необходимы.
Когда компоненты нагрузки 1 и 2 управляются автоматически, кривая дроссельной заслонки двигателя показана на рисунке 9 (a), а отклики HMT показаны на рисунке 9 (b).Основные показатели эффективности показаны на рисунках 9 (c) и 9 (d). Как показано на рисунке 9, при изменении дроссельной заслонки двигателя передаточное число HMT изменяется под управлением модели контроллера. На стадии стабилизации дроссельной заслонки частота вращения двигателя регулируется до близкой к оптимальной, а правила ее изменения соответствуют результатам моделирования. Благодаря регулировке мощности двигателя и инерции автомобиля двигатель может работать на максимальной скорости в течение длительного времени.
9. Выводы
(1) Предлагается интегрированная стратегия управления HMT.Получен алгоритм стратегии асимметричного насыщенного инкрементального ПИД-регулирования скорости в условиях диапазона и сдвига диапазона. В этой статье представлена логика переключения диапазонов и стратегии управления переключением диапазонов. (2) Модель контроллера построена в Matlab Simulink и смоделирована с моделью транспортного средства, оснащенного двухдиапазонным HMT. Результаты моделирования показывают, что под управлением предложенных стратегий двигатель работает со скоростью, близкой к идеальной, и транспортное средство соответствует требованиям вождения с изменением дроссельной заслонки.(3) Выполняется HILS-тест HMT. Результаты испытаний показывают, что процесс переключения диапазона плавный и колебаний скорости не происходит. На стадии стабилизации дроссельной заслонки частота вращения двигателя регулируется до близкой к оптимальной скорости, а правила ее изменения соответствуют результатам моделирования. (4) Результаты демонстрируют, что модель HMT верна, а стратегия управления разумна. Система HILS работает надежно и соответствует требованиям исследования динамических характеристик HMT.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.
Благодарности
Эта работа поддержана Национальным фондом естественных наук Китая (грант № 51175449) и Программой научных исследований высшего образования провинции Хэбэй (грант № Z2015081).
Проектирование и управление гидромеханической трансмиссией вездехода
https://doi.org/10.1016/j.mechmachtheory.2020.104052Получить права и содержаниеОсобенности
- •
Гидромеханическая силовая установка Предлагается прототип системы.
- •
В системе могут использоваться метод разделения мощности и рекуперативное торможение.
- •
Подробно обсуждается метод расчета параметров гидромеханической системы.
- •
Управление ADRC адаптировано для управления соотношением скоростей системы.
- •
Движущей силой транспортного средства можно управлять с помощью определенного коэффициента смещения.
Abstract
Исследуется гидромеханическая бесступенчатая трансмиссия вездехода.Коробка передач с одинарной планетарной передачей и входным дифференциалом. Гидравлический насос с регулируемой регулировкой и гидравлический двигатель оснащены для увеличения диапазона скоростей. Анализируется влияние параметров на скорость и крутящий момент. Изучен метод расчета параметров системы. Алгоритм управления активным подавлением помех с упреждающей компенсацией принят для управления соотношением скоростей. Создан прототип гидромеханической бесступенчатой трансмиссии. Динамические характеристики транспортного средства и регулировка передаточного числа исследуются путем моделирования и экспериментов.Проверяются и обсуждаются характеристики вождения и торможения автомобиля. Результаты показывают, что ускорение и замедление транспортного средства можно контролировать, изменяя коэффициент смещения. Управление активным подавлением помех с упреждающей компенсацией эффективно при управлении соотношением скоростей. Он снижает погрешность передаточного отношения бесступенчатой трансмиссии и обладает хорошей адаптируемостью. Результаты могут быть использованы для оптимизации конструкции и стратегии управления гидромеханической бесступенчатой трансмиссией.
Ключевые слова
Гидромеханическая
Бесступенчатая трансмиссия
Гидростатическая трансмиссия
Управление ADRC
Рекуперативное торможение
Передаточное число
Рекомендуемые статьи Цитирующие статьи (0)
Полный текст© 2020 Elsevier Ltd. .
Рекомендуемые статьи
Ссылки на статьи
(PDF) Модульная конструкция гидромеханических трансмиссий для мобильных рабочих машин
Номенклатура
Количества
Обозначение Обозначение Единица
C Стоимость [-]
D
Гидравлическое смещение [см/ об]
F Усилие [кН]
i Передаточное число [-]
м Количество режимов [-]
P Мощность [кВт]
R Передаточное число планетарной передачи [-]
v Скорость автомобиля [км / ч]
w Весовой коэффициент [-]
ε
Относительное смещение [-]
λ
Весовой коэффициент [-]
Индексы
Обозначение Обозначение
г Глобальный
л Местный
Справочные документы
[1] Томас Андерл, Юрген Винкельхаке и Маркус
Шерер.Коробки передач для строительства
Машины. В 8-й Международной конференции по гидроэнергетике —
ence, стр. 189–201, Дрезден, Германия, 2012 г.
[2] Д. Микеска и М. Ивантисынова. Виртуальный прототип
приводов с разделением мощности. В семинаре по миссии Power Trans-
и управлению движением, страницы 95–111, Бат, Великобритания,
2002.
[3] П. Казоли, А. Вакка, Г. Л. Берта, С. Мелети и
М. Весковини. Численная модель для моделирования
трансмиссии с разделением мощности дизель / вариатор.На 8-й национальной конференции Inter-
по двигателям для автомобилей, Капри,
Неаполь, Италия, 2007.
[4] Торстен Кохмашер. Modellbildung, Analyze und Aus-
legung Hydrostatischer Antriebsstrangkonzepte. PhD
диссертация, RWTH Aachen, Aachen, Germany, 2009.
[5] Александр Краусс и Моника Ивантисынова. Мощность
Раздельные передачи по сравнению с гидростатическим составным двигателем
Концепции — сравнительный анализ. SAE Transactions,
113 (2), 2004.
[6] Блейк Карл и Моника Ивантысынова. Сравнение
эксплуатационных характеристик в непрерывной передаче с разделением мощности —
. In Commercial Vehicle
Инженерный конгресс и выставка, Чикаго, Иллинойс,
США, 2006.
[7] С. Шембри Вольпе, Г. Карбоне, М. Наполитано и
Э. Седони. Оптимизация конструкции входа и выхода
Бесступенчатые передачи с разделением мощности с сопряженной мощностью.
Журнал механического проектирования, 131 (11): 111002, 2009.
[8] Аларико Макор и Антонио Россетти. Оптимизация
Гидромеханических трансмиссий с разделением мощности. Mech-
анизм и теория машин, 46 (12): 1901–1919, 2011.
[9] Антонио Россетти и Аларико Макор. Многоцелевой
Оптимизация гидромеханических трансмиссий с делением мощности
. Механизм и теория машин, 62: 112–128,
April 2013.
[10] Карл Петтерссон и Петтер Крус. Оптимизация конструкции
сложных гидромеханических трансмиссий.ASME
Journal of Mechanical Design, 2013. Принято к публикации.
[11] Альберто Хосе и Мишель Толленэре. Модульные и Plat-
формы Методы проектирования семейств продуктов: Literat-
ure Analysis. Journal of Intelligent Manufacturing,
16 (3): 371–390, 2005.
[12] К. Штейндорф. Методы сравнительного анализа эффективности
мобильных рабочих машин и большегрузных транспортных средств. В
6-я Международная конференция по гидроэнергетике, страницы 197–
207, Дрезден, Германия, 2008 г.
[13] Бобби Франк, Леннарт Ско и Матс Алакюла. На колесном погрузчике
разница в топливной эффективности из-за распределения поведения оператора
. На 2-м Международном симпозиуме по технологиям коммерческих автомобилей
, CVT2012,
Кайзерслаутен, Германия, 2012 г.
[14] Рино Филла. Количественная оценка работоспособности рабочих станков Ma-
. Докторская диссертация, Университет Линчёпинга, Линчёпинг,
Швеция, 2011.
[15] Карл Петтерссон и Петтер Крус.Оптимизация и
Concept Чувствительность бесступенчатых дромеханических трансмиссий Hy-
. На 8-й Международной конференции
по передаче и регулированию гидравлической энергии,
ICFP13, Ханчжоу, Китай, 2013 г.
[16] Bosch Rexroth AG. Каталог продукции Mobilhydraulik.
http://www.boschrexroth.com/mobile-hydraulics-catalog/,
2013.
[17] Петтер Крус и Йохан Андерссон. Оптимизация Optimiz-
для оптимизации дизайна.В ASME Design Engin-
eering Technical Conferences and Computers и In-
в Engineering Conference, Чикаго, Иллинойс,
США, 2003.
Анализ и проверка характеристик передачи мощности гидромеханической трансмиссии для сельскохозяйственных тракторов
CE Goering, ML Stone, DW Smith и PK Turnquist, Принципы разработки внедорожных транспортных средств , Американское общество инженеров сельского хозяйства (ASAE), Майами, США (2003).
Книга Google ученый
Т. Муто, Х. Като, К. Сакамото и Ю. Ямада, Цифровое управление системой гидростатической трансмиссии, управляемой дифференциальной широтно-импульсной модуляцией, Транзакция Японского общества инженеров-механиков, серия C , 61 (590) (1995) 3983–3990.
Артикул Google ученый
Г. Х. Ли, Д. С. Ким и Д. С. Юнг, Концептуальный дизайн HCVT (бесступенчатая трансмиссия гидромеханического типа) для городских автобусов, Конгресс и выставка инженеров коммерческого транспорта SAE , Иллинойс, США (2004 г.) ).
Google ученый
Дж. Х. Кресс, Гидростатическая трансмиссия с разделением мощности для колесных транспортных средств — Классификация и теория работы , SAE 680549 (1968).
Книга Google ученый
Дж. Пичард и Б. Бессон, Примеры проектирования и применения гидростатических трансмиссий с разделением мощности, Journal of Engineering for Power , 103 (1) (1981) 168–173.
Артикул Google ученый
А. Хедман, Метод анализа систем механической передачи , Отчет № 1985-11-08, Отдел машинных элементов, Технологический университет Чалмерса, Гетеборг, Швеция, 9-13 (1985) .
Google ученый
А. Хедман, Компьютерный анализ общих систем механической трансмиссии — некоторые примеры, Вторая международная конференция по новым разработкам в области силовых агрегатов и шасси , Страсбург, Франция (1989) 10–13.
Google ученый
DH Sung, HE Kim, GH Lee and HS Kim, Характеристики передачи мощности гидромеханической трансмиссии, Сделки Корейского общества инженеров-механиков A , 25 (11) (2001) 1854– 1862 г.
Google ученый
DH Sung, HE Kim, GH Lee and HS Kim, Анализ силовых характеристик гидромеханической трансмиссии с учетом потерь потока HSU, Transactions of the Korean Society of Mechanical Engineers A , 26 (6) (2002) ) 1149–1158.
Артикул Google ученый
Д. Сунг, С. Хван и Х. Ким, Проектирование гидромеханической передачи с использованием сетевого анализа, Proc. IMechE. , 219 (2005) 53–63.
Артикул Google ученый
Н. Ким, Дж. Ким и Х. Ким, Управление двухрежимной трансмиссией с разделением мощности для гибридного электромобиля, The World Electric Vehicle Journal , 2 (4) (2008) 118–127 .
Google ученый
С. Ан, Дж. Чой, С. Ким, Дж. Ли, К. Чой и Х. Ким, Разработка интегрированного алгоритма управления двигателем и гидромеханической трансмиссией для трактора, Advanced in Машиностроение , 7 (7) (2015) 1–18.
Артикул Google ученый
K. Pettersson, K.-E. Ридберг и П. Крус, Сравнительное исследование многорежимных трансмиссий с разделением мощности для колесных погрузчиков , Двенадцатая Скандинавская международная конференция по гидравлической энергии, Тампере, Финляндия (2011).
Google ученый
С. Меркати, Ф. Паниццоло и Г. Профумо, Гидромеханическая регулируемая трансмиссия с разделением мощности (HVT) для внедорожных транспортных средств, 10-я Международная конференция по гидроэнергетике , Дрезден, Германия (2016).
Google ученый
П. Й. Ли и Ф. Менсинг, Оптимизация и управление гибридным гидравлическим пассажирским транспортным средством на основе гидромеханической трансмиссии, 7-я Международная конференция по гидроэнергетике , Ахен, Германия (2010).
J. Looman, Zahnradgetriebe – Grundlagen, Konstruktionen, Anwendungen in Fahrzeugen , Springer, Berlin, Germany (2009).
Google ученый
Д. Х. Сун, Характеристики мощности и конструкция системы передачи с разделением мощности , неопубликованная докторская диссертация, Университет Сунгюнкван, Сувон, Корея (2007).
Google ученый
KISSSoft AG, KISSSoft Release 03/2012 Руководство пользователя , Бубикон, Швейцария (2013).
Mathers Hydraulics Technologies Pty Ltd
Приводы трансмиссии для грузовых автомобилей и легковых автомобилей
M Использование коробки передач с технологией HMT открывает значительные преимущества, поскольку коробка передач может быть спроектирована таким образом, чтобы предлагать предохранительную муфту, регулируемые передаточные числа, гидравлическую регенерацию на любой скорости движения, вспомогательные приводы для компрессоров, генераторов переменного тока и т. Д.
Эта коробка передач будет конкурировать с любой механической, автоматизированной механической или полностью автоматической коробкой передач.Система позволит поддерживать относительно постоянные обороты двигателя, что дает системе управления двигателем наилучшие шансы обеспечить топливную экономичность. Регенерация гидравлической энергии через трансмиссию обеспечивает более высокий КПД, чем большинство систем, потому что мы можем управлять насосом / двигателем на скоростях, лучше подходящих для высокопроизводительной работы. Некоторые системы регенерации хвостового вала не имеют передаточных чисел и не могут переключаться в горячем режиме, что ограничивает их относительно низкими скоростями.
Стоимость Эффективность и Регенерация энергии
Потенциально автоматизированный HMT с гидравлической регенерацией будет лишь частью стоимости существующих систем.Автобусный парк является значительным, и многие компании разрабатывают гидравлическую регенерацию, но ни одна из них не может предложить функциональные возможности, соотношение цены и качества и удельную мощность, которые предлагает эта система. Энергию следует повторно использовать в точках наибольшей потребности в топливе, то есть в моменты инерции и высокого ускорения.
Секция муфты HMT также может быть спроектирована для подачи гидравлической энергии к другим источникам, таким как передние колеса автобусов и тяжелых транспортных средств. Путем приложения некоторого тягового усилия к управляемым колесам, когда это необходимо в снегу, ледяной грязи и т. Д., увеличивает мобильность и безопасность. Такой вариант будет привлекателен для городского транспорта и оборонной техники.
Для получения информационного пакета, включающего рабочий DVD-диск о приводе гидромеханической трансмиссии (HMT), обратитесь в отдел продаж компании Mathers Hydraulics.
Одним из основных отличий является добавление электронной системы управления двигателем (EEC), которая постоянно выявляет и предупреждает летные экипажи о нескольких уровнях неисправностей, которые могут повлиять на работу двигателя.Летные экипажи обнаружат, что новая PCS выглядит и ощущается во многом как системы предыдущих моделей, но при этом представляет собой улучшение работоспособности, возможностей, надежности и ремонтопригодности этих систем. Кроме того, обслуживающие бригады обнаружат, что в систему встроено много полезных для них инструментов. Электронное управление двигателем — ключевая особенность усовершенствованной системы управления двигательной установкой (PCS) на всех самолетах 737 следующего поколения. Устанавливаемый на двигатели CFM56-7 самолетов 737-600, 737-700, 737-800 и 737-900, этот новый тип PCS разработан для обеспечения максимальной производительности двигателя, оптимальной работоспособности двигателя и эффективной интеграции с другими системами самолета. Полнофункциональные электронно-цифровые системы управления двигателем (FADEC) не новы; первая такая система поступила в коммерческую эксплуатацию на Боинг 757 в 1984 году, и большинство новых авиалайнеров имеют такую возможность. FADEC в PCS на 737 следующего поколения заменяет гидромеханическое управление на моделях 737-100 / -200 и электронно-диспетчерское управление на моделях 737-300 / -400 / -500. (Различные типы систем управления двигателями описаны в выпуске журнала Airliner за апрель-июнь 1988 г.) Основные различия между PCS в 737 следующего поколения и более ранних 737 делятся на три. категории: 1.Компоненты и установки.
Основным элементом управления двигательной установкой является электронное управление двигателем (EEC) (рис. 1). EEC установлен на корпусе вентилятора каждого двигателя. EEC получает входные данные от датчиков самолета и двигателя, вычисляет желаемую тягу двигателя с точки зрения скорости вращения вентилятора (N 1 ) и отправляет электрические команды различным исполнительным механизмам двигателя, чтобы заставить двигатель ускоряться или замедляться до желаемого значения N 1 — быстро, точно и без скачков, превышения скорости вращения ротора или других нестабильностей. Помимо управления работой двигателя, EEC собирает, обрабатывает и выводит данные для дисплеев в кабине экипажа и для технического обслуживания; обнаруживает и устраняет неисправности, которые в противном случае нарушили бы работу двигателя; и может работать в интерактивном режиме обслуживания. ГИДРОМЕХАНИЧЕСКИЙ АГРЕГАТ (ГМУ). HMU содержит дозирующий клапан топлива, который управляет подачей топлива в камеру сгорания, и другие регулирующие клапаны, которые приводят в действие регулируемые лопатки статора, регулируемый спускной клапан промежуточного компрессора, систему управления активным зазором турбины и ступенчатое переключение топливных форсунок. HMU также содержит запорный клапан высокого давления топлива (HPSOV), который закрывается непосредственно от команды CUTOFF пускового рычага полетного отсека. ГЕНЕРАТОР EEC. Генератор EEC приводит в действие EEC при частоте вращения двигателя более 12% N 2 . На меньших скоростях EEC использует 115 В переменного тока от электросистемы самолета.Когда двигатель заглушен, питание отключается.
Для летного экипажа органы управления двигателем в проходе-стойке (рис. 4) остались без изменений, но конструкции внутри проходной трибуны и под полом были полностью переработаны. Для каждого двигателя шатун передает команду рычага тяги летному экипажу на узел автоматической дроссельной заслонки, где блок двойного резольвера передает команду электрической тяги на каждый канал EEC. (Когда автомат тяги включен, серводвигатели устанавливают оба резольвера, перемещая рычаги тяги в обратном направлении через шатуны, так что рычаги тяги отражают команду автомата тяги.) Для переключения тяги после посадки летный экипаж поднимает рычаги реверса. Электроуправляемый «затвор» блокирует каждый рычаг в положении реверсивного холостого хода до тех пор, пока не сработают реверсоры тяги. Затем каждый блокиратор снимается, чтобы можно было выбрать полностью реверсивную тягу. Этот затвор с электроприводом заменяет блокировку троса управления тяговым усилием, использовавшуюся на предыдущих 737-х. Рычаги запуска двигателя больше не управляют механическими тросами. Электрический переключатель, управляемый пусковым рычагом, подает сигнал на соленоид отсечного топливного клапана высокого давления (HPSOV).Два новых индикатора ENG VALVE CLOSED на топливной панели показывают состояние HPSOV (открыто, закрыто или находится в пути). ИНТЕРСИСТЕМНЫЕ ИНТЕРФЕЙСЫ. ДВИГАТЕЛЬНО-УПРАВЛЯЮЩИЕ ОПЕРАЦИИ.
Персонал по техническому обслуживанию должен выполнять периодические проверки статуса диспетчерского управления двигательной установкой.Поскольку логика EEC обнаруживает и устраняет множество неисправностей, двигатель может нормально работать при наличии неисправностей. Например, полный отказ одного канала EEC не оказывает немедленного влияния на работу двигателя, поскольку второй канал вступает во владение. Индикаторы ENGINE CONTROL и сообщения на экранах обслуживания FMC / CDU сообщают об этих неочевидных неисправностях. Органы управления двигательной установкой имеют четыре основных уровня работоспособности, перечисленных ниже в порядке повышения возможностей:
На рис. 7 показана верхняя страница технического обслуживания двигателя 1 на FMC / CDU. Страницы меню CDU позволяют обслуживающему персоналу проверять наличие неисправностей в каждой категории диспетчеризации; выполнять функциональные тесты; проверьте, не превышены ли обороты двигателя или температура; контролировать входные сигналы EEC; и просмотрите конфигурацию управления двигателем. ДРУГИЕ САМОЛЕТНЫЕ СИСТЕМЫ. ПОВЫШЕННАЯ СКОРОСТЬ И ПОВЫШЕННАЯ ТЕМПЕРАТУРА ДВИГАТЕЛЯ. Резюме |
Новая гидромеханическая вариаторная трансмиссия
Инженеры Dana Rexroth Transmission Systems завершили окончательные контрольные испытания гидромеханической регулируемой трансмиссии R2 (HVT), начало производства которой ожидается в третьем квартале 2015 года.По данным компании, полевые испытания работающих автомобилей показали экономию топлива до 25% по сравнению с традиционными конструкциями трансмиссии, с дополнительной экономией, возможной за счет дальнейшей оптимизации подсистем оборудования. Являясь продуктом совместного предприятия Dana Holding Corp. и Bosch Rexroth, HVT R2 имеет модульную конструкцию, которая может быть адаптирована для различных внедорожных применений с полезной потребляемой мощностью от 135 до 195 кВт (от 180 до 260 л.с.), включая фронтальные погрузчики, автогрейдеры, промышленные погрузчики, ричстакеры, трелевочные тракторы и другие внедорожные машины.HVT от Dana Rexroth сокращают расход топлива за счет снижения частоты вращения двигателя в течение рабочего цикла и на холостом ходу, когда частота вращения может быть снижена до 600 об / мин. Анализ приложений демонстрирует возможность дополнительной экономии без снижения производительности за счет уменьшения размера двигателя.
Dana Rexroth HVT обеспечивают чувствительное и точное позиционирование автомобиля с бесступенчатым приводом, который обеспечивает улучшенное ускорение при сохранении тягового усилия. Они оптимизируют рабочую точку дизельного двигателя, отделяя частоту вращения двигателя от скорости движения, а затраты на техническое обслуживание снижаются за счет использования гидростатического торможения и неизнашиваемого реверсирования без сцепления.
HVT R2 — это модульная платформа, которая предоставляет полный набор опций конфигурации и программных средств управления, таких как прямой или удаленный монтаж, гибкость в управлении переключением передач и параметрах стратегии привода, а также развертывание до трех насосов отбора мощности.