Коробка передач роботизированная: 6 правил, о которых мало кто знает :: Autonews

Содержание

Роботизированная коробка передач — плюсы и минусы

Покупатели при выборе автомобиля большое значение уделяют коробке передач, помимо других его характеристик. Естественно желание людей — ездить с комфортом.

В последнее время современные технологии представляют вниманию новые способы управления автомобилем. На смену механики приходит автоматика. Одним из новшеств является роботизированная коробка переключения передач.

Что это такое и как работает?

Роботизированной коробкой передач считается механическая КП, которая имеет автоматизированные функции управления сцеплением и переключением передач. По другому ее называют коробка-робот. Такие коробки имеют электрический или гидравлический привод сцепления и передач. Зависит от конкретного производителя.

Стоит для начала разобраться, как работает роботизированная коробка передач. Принцип её работы такой же, как у механической. Различие в том, что работой сцепления и выбором передач занимаются сервоприводы (актуаторы).

В составе которых находится электромотор с редуктором и исполнительный механизм. Также есть и гидравлические актуаторы.

1 — блок управления; 2 — сервопривод сцепления; 3 — сервопривод переключения передач; 4 — датчик частоты вращения первичного вала.

В чем заключаются основные особенности управления роботизированной коробкой передач?

Роботизированная коробка передач имеет свои особенности управления. К основной можно отнести следующий фактор: управление производится путем использования специального блока на электронной основе, который воздействует на два актуатора.

Первый сервопривод отвечает за сцепление, а второй руководит работой синхронизаторов, которые отвечают за включение нужных передач. Этот подход позволяет освободить водителя от нажатия на педаль сцепления. Все функции берет на себя электроника.

Работа умной коробки может осуществляться в:

  • автоматическом;
  • ручном режимах.

При автоматическом, смена передач происходит по команде компьютера, который учитывает многие показатели (обороты двигателя, скорость, данные систем ABS, ESP и других). При ручном режиме, человек с помощью рычага селектора или подрулевых переключателей подает команду на переключение.

Видео: принцип работы сцепления и переключения передач на роботизированной коробке передач.

Плюсы и минусы использования роботизированной коробки передач

Появилась такая возможность управления коробкой передач относительно недавно, но при этом довольно быстро приобрела своих приверженцев. Ведь ездить на роботизированной коробке передач по отзывам некоторых — удобно и комфортно.

Но, использование роботизированной коробки передач имеет свои плюсы и минусы, как и любой другой вариант. Естественно, о них следует знать, при выборе варианта управления. Выявить такие моменты позволили многочисленные тестирования коробки-робота.

Плюсы использования агрегата:

  1. Конструкция этой коробки передач весьма надежна. Основой ее остается механика, которая испытана временем и изучена. Вместе с этим по надежности она превосходит вариаторную и автоматическую системы.
  2. Считается, что использование роботизированной коробки передач способствует экономии топлива. Такая экономия может составлять до 30 процентов.
  3. Коробка робот требует использования меньшего количества масла, достаточно 2-3 литров, тогда как вариатору требуется порядка 7 литров. Все это приводит к большей экономии средств.
  4. Число передач соответствует количеству передач механической коробки.
  5. В основе роботизированной коробки переключения передач та же самая механика. Это дает дополнительную возможность свободного и простого ремонта, который может произвести практически любой автомобильный слесарь. Поэтому проблем с ремонтом не возникнет, по крайней мере, большую часть распространенных поломок можно ликвидировать быстро и качественно в обычной автомастерской.
  6. Ресурс сцепления увеличен почти на 40 процентов, если сравнение производить с механикой. Это весьма существенная разница. Причем дело не только в экономии, но и в повышенной безопасности.
  7. В условиях города, когда возникают постоянные пробки, и на крутых подъемах весьма кстати будет функция ручного переключения передач, которая присутствует в коробке-роботе. Эта функция позволяет вспомнить о обычной механике, по которой многие автовладельцы скучают.

Наряду с достоинствами имеются и недостатки данного вида коробки передач. К ним можно отнести:

  1. Главным недостатком многие автовладельцы считают невозможность перепрограммировать агрегат, с целью увеличить динамику или сэкономить ресурсы. Это также не позволяет подстроить коробку передач под свой стиль езды. Следует привыкнуть к манере работы определенной конструкции, чтобы использовать ее с удобством. Но русские умельцы находят выход из любой ситуации. После срока гарантийного использования автомобиля они просто меняют прошивку в блоке электронного управления.
  2. Скорость переключения передач робота несколько снижена, реакция замедленная. Это связано с некоторыми издержками программирования, как в любом автомате.
  3. При поездке по городу, в условиях пробок и по неровной местности необходимо переключаться на ручное управление. Иначе происходит быстрый износ сцепления и срок эксплуатации роботизированной коробки передач существенно снижается.
  4. В некоторых случаях при переключении передач можно ощутить рывки. Это объясняется тем, что не сбрасывается газ перед моментом переключения. Устранить эту неприятность можно, если нажимать педаль газа не полностью.
  5. На горке зачастую размыкается сцепление — это объясняется его перегревом. Поэтому для подъемов также лучше использовать ручной режим переключения.

Видео: как правильно ездить на роботизированной коробке передач.

Советы по выбору

Прежде чем покупать автомобиль с коробкой-роботом, стоит собрать как можно больше информации по работе конкретной модели. Некоторые из них имеют постоянные, ставшие уже нормой «глюки». Например, «задумчивость» некоторых роботов составляет около 2 секунд¸ то есть переключение передач происходит с определенным опозданием.

К проблемам можно отнести и излишнюю индивидуальность агрегатов. Даже одинаковые роботизированные коробки передач могут существенно отличаться. Такие серьезные отличия «лечатся», как правило, с помощью перепрошивки. Причем не стоит надеяться, что все само пройдет, лучше сразу обратиться к специалисту.

Но не всё так сумрачно. Например, по отзывам о роботизированной коробке передач Лада-Гранты больше половины владельцев этого автомобиля довольны таким вариантом управления. Считая, что с ним машина экономичнее и быстрее.

Видео: на АВТОВАЗе запущено производство LADA Granta с роботизированной КПП (АМТ).

Заключение. Думаю, что будущее все-таки за вариатором, а робот не приживется, к тому же он проигрывает и автомату. А вы, как думаете?!!

Загрузка…

Чем автоматическая коробка передач отличается от робота и вариатора? | Вечные вопросы | Вопрос-Ответ

Большинство легковых автомобилей оборудованы автоматической коробкой передач, некоторые дорогостоящие авто вместо АКПП имеют вариатор или роботизированную коробку передач. Все эти устройства относятся к автоматическим коробкам переключения передач, но при этом имеют разное строение и принцип работы.

Чем отличается вариатор от автомата?

Долгое время автоматы были четырёхступенчатыми. В последние годы на автомобили стали устанавливать семи- и восьмиступенчатые коробки.

В составе автомата находятся два основных узла — гидротрансформатор и редуктор. Первый позволяет плавно переключать передачи, а второй представляет собой механизм, шестеренки которого позволяют менять передаточное число. Смену передачи обеспечивает тормозная лента, она блокирует определенные шестерни редуктора.

В вариаторе такого физического переключения передач нет. Данный механизм имеет два шкива (ведомый и ведущий), которые находятся один против другого и связаны между собой металлическим ремнём. Смена передачи в вариаторе происходит за счет сдвижения и раздвижения шкивов. Когда шкив максимально раздвинут, то это соответствует первой передаче. При сдвинутом шкиве ремень проходит по большему диаметру, что равносильно пятой или более высокой передаче.

Чем отличается робот от автомата?

Роботизированная трансмиссия — это та же «механика», но переключением скоростей в ней занимается блок управления с определенным алгоритмом. В основу ее конструкции положена механическая коробка передач. Работа роботизированной коробки передач может осуществляться в двух режимах: автоматическом и полуавтоматическом. На всех роботизированных коробках предусмотрен режим ручного (полуавтоматического) переключения передач, аналогичный функции Tiptronic АКПП.

Какие плюсы и минусы есть автомата, вариатора и робота?

Автоматическая коробка передач позволяет водителю комфортно ездить по городу и не думать каждый раз о переключении передач. АКПП обеспечивает достаточно плавное переключение передач и высокую надёжность по сравнению с другими трансмиссиями. Ресурс автомата — в среднем 150–200 тысяч километров. Расход топлива у АКПП больше, чем у вариатора.

Большим плюсом вариатора является его особенная конструкция, которая позволяет автомобилю непрерывно передавать крутящий момент на колёса, а потому предельно плавно набирать скорость. Благодаря этому мотор работает в экономичном режиме, без излишних нагрузок. Также с вариатором автомобиль быстрее разгоняется. Среди других плюсов машин с вариатором можно назвать экономию топлива. Но при этом такие автомобили достаточно капризны. Их нельзя перегревать и перегружать высокой мощностью, они не работают на пиковых нагрузках и не выносят долгой пробуксовки в снегу или грязи.

Срок службы вариатора — примерно 150 тысяч километров.

Преимуществом роботизированной трансмиссии является ее невысокая стоимость и низкий расход топлива, но в пробках такую коробку лучше переводить в нейтральное положение, чтобы избежать перегрева сцепления.

Смотрите также:

Роботизированные коробки передач.


Роботизированная коробка передач или коробка-робот




Роботизированная коробка передач (РКПП, или робот) представляет собой механическую КПП, в которой функция переключения передач возлагается на сервопривод, управляемый электронным блоком управления.
Этот тип коробок передач можно отнести к автоматическим, поскольку водитель освобождается от необходимости самостоятельного выбора передач и их ручного переключения.

Автомобиль, оборудованный роботизированной коробкой передач, не имеет педали сцепления, поскольку управление сцеплением полностью возлагается на автоматический сервопривод.
Структура роботизированной КПП включает механическую коробку передач, блок управления переключением передач (актуатор переключения передач), и блок управления сцеплением (актуатор сцепления). Актуаторы робота управляются электронным блоком управления посредством сигналов, формируемых специальной программой на основании показаний различных датчиков.
Блок управления (ЭБУ) коробки передач может быть самостоятельным, либо совмещенным электронной системой управления двигателем (ЭСУД).
Актуаторы переключения передач и управления сцеплением могут быть с гидравлическими или электрическими исполнительными механизмами, и управлять однодисковым или двухдисковым сцеплением.

Гидравлические исполнительные механизмы работают благодаря давлению жидкости (масла), которое создается в системе специальным гидронасосом, т. е. такие механизмы могут образовываться парами гидроцилиндр-гидронасос, либо гидромотор-гидронасос. Воздействие на конечное звено сервопривода обычно осуществляется посредством системы рычагов или зубчатых передач. Несмотря на ряд преимуществ, этот тип сервопривода несколько дороже в производстве, чем электрический, поэтому обычно устанавливается на более дорогих моделях автомобилей.

Гидравлический привод имеют следующие конструкции коробок передач: ISR (Independent Shifting Rods) (Lamborghini), SMG (BMW), Quickshift (Renault), R-Tronic (Audi), Selespeed (Alfa Romeo).

Электрические исполнительные механизмы чаще всего используют для работы портативные электродвигатели постоянного тока, которые также воздействуют на конечное звено сервопривода через рычаги и зубчатые передачи. Однако в актуаторах сцепления обычно используется комбинированный электрогидравлический сервопривод, в котором электродвигатель через систему рычагов и передач воздействует на главный цилиндр сцепления, а дальше усилие передается рабочему цилиндру рабочей жидкостью гидропривода.

Электрический привод отличает относительно невысокая скорость работы (время переключения передач 0,3-0,5 с) и меньшее энергопотребление. Гидравлический привод предполагает постоянное поддержание давления в гидросистеме посредством насоса, который отнимает энергию у двигателя, однако он более быстрый при переключении передач, способствуя динамике разгона автомобиля. Эти качества и определяют область применения «роботов» с электрическим приводом на бюджетных автомобилях, с гидравлическим приводом – на более дорогих моделях машин.

Электрическим приводом оснащаются следующие конструкции коробок передач: Easytronic (Opel), Allshift (Mitsubishi), Dualogic (Fiat), Durashift EST (Ford), MultiMode (Toyota), SensoDrive (Citroen), 2-Tronic (Peugeot).



Актуатор управления сцеплением имеет электронную связь с педалью тормоза – нажатие на эту педаль приводит к выключению сцепления, которое затем включается при отпущенной тормозной педали.

Актуатор переключения передач коробки-робота содержит, чаще всего, два привода – один управляет перемещением рычагов выбора передачи по горизонтали (или вертикали), другой – поворачивает рычаги и валы вдоль оси в ту или иную сторону.
Согласование работы отдельных элементов управления роботизированной коробкой передач осуществляет ЭБУ, программа которого управляется многочисленными датчиками, устанавливаемыми в приводе (различные датчики положения и скорости).

При управлении автомобилем с роботизированной коробкой передач водитель нажимает на педаль тормоза, запускает двигатель, и устанавливает вручную первую (или заднюю – обозначение «R») передачу в автоматическом режиме (обозначение режима — «А», «Е» или «D»).
При отпускании педали тормоза и нажатии на акселератор автомобиль начинает движение в выбранном направлении. По мере нарастания скорости автомобиля автоматика переключает передачи на более высокие, и наоборот – по мере снижения скорости происходит включение более низких передач.
Роботизированные коробки могут использоваться и в ручном режиме (режим «М»), т. е. водитель может самостоятельно управлять переключением передач (значки «+» и «-»).
Включенная нейтральная передача обычно высвечивается значком «N» на щитке приборов.

По сравнению с гидромеханической АКПП роботизированная коробка передач имеет ряд преимуществ, которые сказываются, в первую очередь, на динамике и экономичности автомобиля. Автомобиль с роботом разгоняется, как правило, резвее, чем с АКПП. Кроме того, роботизированная коробка передач обеспечивает экономию топлива примерно на 25% в сравнении с гидравлическими АКПП, и значительно дешевле в обслуживании и ремонте.

К недостаткам РКПП можно отнести необходимость в периодических настройках сцепления по мере износа диска (или дисков) сцепления, а также более жесткое переключение передач по сравнению с АКПП. При движении в пробках и при неграмотном управлении роботизированная коробка быстрее изнашивается, а ее актуаторы могут сбиться с настроек. Тем не менее, по мере усовершенствования конструкции актуаторов и применению современных технологий и программного обеспечения, роботизированные коробки передач все чаще встречаются на легковых автомобилях разных производителей.

Ниже приведен видеоролик, в котором подробно поясняется принцип работы роботизированной коробки перемены передач.

***

***

Ступенчатые коробки передач


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

плюсы и минусы, отличие от автоматической

Автопроизводители стремятся найти оптимальные технические решения во время проектирования различных узлов транспортного средства. В результате появляются конструкционные новинки. Примером служит эволюция трансмиссии. Сейчас можно наблюдать различные варианты коробок переключения передач, которые успешно конкурируют между собой. Существуют механические, автоматические, роботизированные КПП либо бесступенчатые вариаторы.

В статье выясним, что такое роботизированная коробка передач, какими достоинствами и недостатками она обладает по сравнению с другими типами трансмиссии. Ведь часто от степени комфорта управления автомобилем зависит не только наше настроение, но и безопасность на дороге.

Что такое коробка — автомат робот

Начнем с того, что робот — это по сути механика, у которой переключаются передачи и выжимается сцепление автоматикой. Если взять, к примеру, тойоту короллу на роботе, которая выпускалась с 2007 года, то у нее роботизированная коробка — это один в один механика, у которой убрали обычный рычаг КПП и сцепление и вместо них поставили специальные сервоприводы — актуаторы. Из этого следует, что ездовые качества авто будут во многом схожи с обычной механикой, только не придется самому переключать передачи.

Работа этих КПП заключается в том, чтобы принять от водителя информацию в цифровом виде, а затем, правильно и быстро обработав ее, перевести все в механические манипуляции с шестернями и валами. Для управления выбором передач вместо обычного рычага, который соединен тросами или тягами с коробкой используется рычаг — джойстик, который лишь указывает электронике нужную передачу. За логическую часть отвечает электронный блок управления (ЭБУ).

Внешний вид рычага управления роботом на тойоте королле

Учитывая отзывы пользователей, отметим, что этот тип автомобильных редукторов обладает большинством достоинств автоматической трансмиссии и сочетает экономность и надежность автомобильной «механики». Для покупателя робот обойдется дешевле, чем классический «автомат», а это значит, появляется дополнительный позитивный аргумент в их пользу.

Большинство популярных автоконцернов занимаются выпуском моделей различных ценовых сегментов с установленными на них роботизированными узлами трансмиссии. Даже в бюджетном сегменте Renault в 2016 году выпустил автомобиль с «роботом» на борту.

Как работает роботизированная коробка

За основу роботизированного блока переключения скоростей в большинстве автомобилей взята механическая КПП. При этом манипуляции с переключением между ступенями занимаются специальные конструкционные надстройки, которые называются сервоприводами. В некоторых источниках эти переключатели имеют название – актуары. Один из них занимается включением/выключением сцепления, а миссией второго является физическое перемещение шестеренок в коробке. Это значит, что их работа помогает избавиться в салоне автомобиля от педали сцепления.

Внешний вид актуатора сцепления робота

Не все конструкции приводов одинаковые. Инженеры создали две их разновидности. В первом случае работоспособность поддерживается с помощью электричества, а во втором случае за плавность и быстроту переключений отвечает гидравлика. Обычно отзывы не всегда однозначные, поэтому опишем оба варианта.

  1. Популярным устройством является электропривод. Данная конструкция отличается меньшей стоимостью и может ставиться даже на машины бюджетного класса. В основе управления заложен электромотор с редуктором и исполнительный механизм.
  2. В гидравлической системе переключение передач выполняется с помощью цилиндров, толкаемых силой электромагнитных клапанов. Принцип работы в этом случае схож с классическим «автоматом». Вторым названием таких устройств является «электрогидравлический привод». Конструкция дороже обычного электропривода, но это компенсируется быстротой переключения между передачами. Также водитель не ощущает возникновение каких-либо резких провалов. Блок ставится на более дорогие автомобили.

Управление всеми операциями возложено на встроенный компьютеризированный узел. Он проводит контроль за оборотами двигателя, текущей скоростью автомобиля, получает информацию от ABS, антизаносной системы и отдает команды на исполнительный механизм.

Устройство сцепления в роботе

Первые «роботы» в автомобилях устанавливались с одним сцеплением. Эксперимент получился неоднозначным. Выявилось достаточное количество недостатков такой конструкции. В результате разработок появились КПП с удвоенным сцеплением. Рассмотрим эти типы коробок и их работу.

Устройство робота с двумя сцеплениями

  1. Одно сцепление. Основой коробки переключения скоростей являются два вала: первичный и вторичный. На первичный (ведущий) вал подается вращение от двигателя. С мотором его разделяет сцепление. От вторичного (ведомого) вала посредством шестерен вращение передается на колеса. По команде электроники первый сервопривод разъединяет сцепление, а второй после разрыва занимается перемещением синхронизаторов так же, как это бы делал водитель рычагом на механической коробке. Однако, электроника «бережет» сцепление, и разрыв мощности часто становится заметен в салоне (эффект «кивания головой» пассажиров, когда временно пропадает тяга).
  2. Два сцепления. Снизить эффект от негативного воздействия провалов тяги конструкторы попытались с помощью двойного сцепления. В результате появились конструкции, получившие общее название DCT (Dual Clutch Transmission). Позже концерном Volkswagen были разработаны шестиступенчатые коробки DSG (Direkt Schalt Getrieb). Эта аббревиатура, являющаяся просто товарным знаком, стала синонимом всех коробок с двойным сцеплением, также как слово «ксерокс» вошло в обиход не торговой маркой, а бумажной копией. У DSG в конструкции есть два первичных вала, один из которых находится внутри другого. Оба вала имеют соединение с мотором с помощью индивидуальных сцеплений. «Умная» коробка, запуская автомобиль в движение, включает первую скорость, но одновременно на втором валу входит в зацепление шестерня для второй передачи. Второй вал ждет замыкания своего сцепления и одновременного размыкания с первой передачей. Это экономит время переключения и обеспечивает плавность перехода между ступенями. Есть второе название таких коробок – «преселективные» (предугадывающие выбор). Например, для автомобилей Гольф время переключения роботизированной коробки составляет лишь 8 миллисекунд.

Инженеры, усовершенствую конструкцию двойного сцепления, разработали две разновидности этого узла. В первом случае было решено оставить окружение сцепления воздушным («сухой» тип), а во втором случае в узел залили рабочую жидкость («мокрый» тип). У водителей, предпочитающих агрессивный стиль вождения и резкие, глубокие нажатия на педаль газа, сухое сцепление будет часто перегреваться, что приведет к быстрому выходу его из строя.

Для снижения негативного воздействия на фрикционы в блоке залито масло. Отрицательный эффект также появился за счет проскальзывания и небольшой потери мощности в это время, но узел стал выдерживать более суровые нагрузки. Это положительно сказалось на его долговечности.

Преселективные трансмиссии в своем арсенале имеет большинство ведущих автоконцернов, среди которых Fiat, BMW, Ford, Mitsubishi. Показателем перспективности является то, что даже в Porsche признали уместность данной конструкции, ведь компания берет на вооружение только проверенные и перспективные модели. Разработки в этом направлении продолжаются.

Плюсы и минусы роботизированной коробки передач

К преимуществам относятся:

  1. Конструкция узлов скомпонована на основании проверенных временем механических коробок передач. За счет этого повышается общая надежность агрегата, которая выше, чем у вариаторов.
  2. Занимаемый объем в подкапотном пространстве существенно меньше, чем у классических «автоматов», соответственно расход на масло во время эксплуатации для данной коробки будет ниже, чем у аналогов.
  3. Работоспособность сцепления, особенно мокрого типа, у «роботов» на 25-30% выше.
  4. Также отличие роботизированной коробки передач от автоматической заключается в стоимости производства и ремонта этого агрегата, говорящее в пользу «роботов», а не «автоматов» и вариаторов.
  5. Большинство современных коробок с роботизированным управлением имеет возможность переключать ступени в ручном режиме, что схоже с Типтроником на автоматических КПП.
  6. Масса коробки-робота значительно меньше АКПП. Это дает преимущества при установках на малогабаритные авто, где масса даже в несколько десятков килограмм играет существенную роль.
  7. Расход топлива на автомобилях, агрегатированных «роботами», сопоставим с расходом на механических КПП и меньше, чем у остальных конструкций при прочих равных условиях.

К недостаткам относятся:

  1. Есть конструкции с роботизированными коробками, у которых задержка между переключениями передач достигает двух секунд. Это относится к электрическим переключателям. При такой езде теряется динамика и может возникать дискомфорт для водителя.
  2. Использование гидроприводов для ускорения переключений повышает скорость между включением ступени до 0,05 с. Однако, эта конструкция значительно удорожает весь узел. Тормозную жидкость, используемую в качестве рабочей жидкости, необходимо постоянно удерживать под высоким давлением, что отнимает часть мощности у двигателя. Гидравлика становится эффективной больше у мощных автомобилей или машин премиального класса.
  3. Более дешевые модели не обеспечивают адаптивной подстройки автоматики под стиль вождения владельца автомобиля.
  4. Преселективные модели пока еще достаточно дорогие в ремонте. Хотя механическая часть весьма надежна как и у простой механики, при недоработанных прошивках ЭБУ и неидеальной конструкции сцеплений часто случается преждевременный износ последних. А все «навесное» оборудование робота (сцепления, ЭБУ, актуаторы) стоит приличных денег. Поэтому при покупке авто с пробегом стоит проверять робот с особой тщательностью и узнать сроки последнего его обслуживания, посмотреть чеки на выполненные работы.

Но все же большинство положительных факторов достаточно легко перекрывают все негативные моменты. Поэтому для того чтобы насладиться всеми «плюсами» роботов, необходимо выбирать новые варианты конструкций, в которых основные недостатки минимизированы или полностью устранены.

Заключение

Процесс окончательного усовершенствования роботизированных коробок еще не наступил. Инженеры стремятся сделать конструкцию более надежной и быстрой, и по некоторым показателям это им удается. При этом авто с «роботами» находят своих поклонников уже сейчас.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Роботизированная коробка переключения передач.

Подробности
Категория: Трансмиссия
Опубликовано: 23 декабря 2014
Просмотров: 19761

Роботизированная коробка передач – это одна из разновидностей механической коробки передач, отличие которой состоит в том, что за включение и выключение сцепления отвечают специальные автоматизированные устройства.
В настоящее время данный вид коробки передач достаточно популярен, и по распространению может поспорить с автоматической коробкой передач.

Основные компоненты и принцип действия роботизированной коробки передач.

Для того, чтобы лучше понять принцип работы роботизированной коробки передач необходимо знать, как работает классическая механика. В обычной механической коробке передач, основу составляют два вала: первичный и вторичный. На один из валов передается усилие от двигателя, со второго вала усилие передается на ведущие колеса. Между собой валы сообщаются шестернями, но на первичном валу шестерни закреплены намертво, а на вторичном валу шестерни могут прокручиваться.

Первоначально автомобилист выжимает сцепление (первичный вал отключается от двигателя), включает необходимую передачу (на вторичном валу блокируется нужна шестерня). В дальнейшем водитель отпускает сцепление, первичный вал подхватывает крутящий момент с двигателя, и передает его на вторичный вал, и автомобиль трогается с места.

Аналогичным образом работает и роботизированная коробка передач. Главное отличие состоит в том, что за включение сцепления, и выбор передачи отвечают специальные автоматизированные устройства – актуаторы. В конструктивном плане актуатор представляет собой надежный шаговый электрический мотор, дополненный редуктором и механизмом исполнения. На некоторых моделях автомобилей (как правило, очень дорогих) актуатор выполнен в виде гидравлического мотора. Управление актуаторами происходит в полностью автоматическом режиме. Управляет ими электронной блок. Следует сказать, что электронный блок имеет несколько режимов работы (обычно «Спорт», «Город», «Эконом»).

Когда водитель переключает рукоять коробки передач (или нажимает на подруливай лепесток), привод автоматически выжимает сцепление, и выбирает передачу в зависимости от оборот двигателя. Именно благодаря этому в автомобилях с роботизированной коробкой передач отсутствует педаль сцепления – она попросту не нужна.

Надо сказать, что в современных автомобилях электронный блок управления роботизированной коробкой передач подключен к информационной сети автомобиля. Он получает и анализирует информацию от антиблокировочной системы, системы курсовой устойчивости и других вспомогательных устройств, и принимает решение о включении необходимой скорости на этих данных.

Впрочем, существует возможность переключится на псевдоручное управление, и переключать передачи с помощью рычага или под рулевых лепестков. Однако, подобное переключение достаточно условно, и электронный блок контролирует все действия водителя. Он попросту не позволит включить неправильную скорость, и исправить ошибку водителя, если он вручную включит слишком высокую или слишком низкую передачу.

Виды роботизированных коробок передач.

Классифицировать данный вид коробок передач достаточно сложно, ведь каждая крупная автомобильная компания предлагает свои собственные наработки, которые сильно отличаются от классической схемы.

Итак, как уже было сказано выше, коробка-робот может работать с помощью электрического или гидравлического мотора.

В частности, гидравлическим приводом оснащаются свои роботизированные коробки такие компании, как Fiat, BMW, Peugeot, Volkswagen, Renault, Citroen, Audi, Alfa Romeo и Ламборгини.  В свою очередь электрическим приводом оснащают свои роботизированные коробки такие крупные производители, как Toyota, Opel, Mitsubishi, Ford и Nissan. Корейские и китайские производители автомобилей пока обходят стороной данный вид коробок передач, так как он достаточно сложен в разработке и дальнейшем обслуживании.

Нельзя не сказать о роботизированных коробке передач с двумя сцеплениями. Эта технология появилась в конце 80-х годов прошлого века, и прошла серьезное испытание в автомобильном спорте и раллийных гонках. Два сцепления работают не одновременно, а попеременно. Первое сцепление включает четные передачи, а второе – нечетное. Благодаря подобной работе двух сцеплений, езда на автомобиле получается очень плавной и мягкой, однако в конструктивном плане такой агрегат достаточно сложен. Его ремонт и обслуживание может обойтись в приличную сумму денег.

Особый интерес представляет собой кулачковая роботизированная коробка передач. В автомобилях оснащенных такой коробкой имеется педаль сцепления, но используется она лишь, когда автомобиль трогается с места. В дальнейшем переключаться можно как в спортивном мотоцикле – не пользуясь педалью сцепления. Это самая быстрая из всех видов роботизированных коробок, так как можно переключить скорость всего лишь за 0,15 секунды, а это отличный показатель для любителей быстрой езды.

Отличия коробки-робота от коробок передач других видов.

  • Отличия от автоматической коробки передач. Главное отличие в том, что автоматическая коробка передач включает в себя сложнейшую планетарную передачу, которая не только увеличивает стоимость агрегата, но и повышает его массу. Коробка-автомат работает полностью самостоятельно и не дает водителю возможности переключать скорости в ручном режиме.
  • Отличия от вариатора. Как известно коробка-вариатор вообще не имеет передач. В конструктивном плане данная коробка полностью отличается от коробки-робота. Также можно отметить, что вариатор, из-за своей гидромуфты, имеет достаточно низкий коэффициент полезного действия, и «отъедает» до 10% от общей мощности автомобиля. Естественно, это повышает расход топлива при движении.
  • Отличия от ручной коробки передач. Собственно, главное отличие состоит в том, что коробка-робот имеет в своем составе актуаторы, которые включают сцепления, и управляются с помощью электронного блока. Роботизированная коробка передач намного облегчает управление автомобилем, по сравнению с ручной коробкой, но при этом не исключены рывки и задержки при переключении скоростей.

Преимущества и недостатки роботизированных коробок передач. К достоинствам таких коробок можно отнести:

  • Не снижает мощности двигателя и не увеличивает расход топлива. Коробка-робот имеет достаточно простую конструкцию, не обремененную дополнительными агрегатами и хитроумными устройствами. Благодаря этому коэффициент полезного действия робота высок, он не отнимает мощности двигателя и тем самым не увеличивает расход топлива.
  • Потребляет меньшее количество масла. Не для кого не секрет, что классическая автоматическая коробка передач потребляет до 10 литров масла на расходный цикл. В свою очередь коробка-робот обходится всего лишь 2-3 литрами, что очень выгодно и удобно.
  • Высокий ресурс сцепления. Сцепление в механической коробке передач имеет весьма ограниченный жизненный цикл. Менять его нужно достаточно часто. Зато сцепление в роботизированной коробке живет очень долго, так как электронный блок не ошибается при переключении и не дает сцеплению «гореть».
  • Высокая ремонтопригодность. Как уже было сказано выше коробка-робот имеет простую конструкцию, которую хорошо изучили во всех сервисных центрах страны. Ремонт такой коробки не займет много времени, и не обойдется в умопомрачительную сумму.
  • Возможность ручного переключения. Коробка-робот – сочетает в себе комфортность автомата и приемистость ручной коробке. При необходимости езда будет комфортной, а при желании – агрессивной.

К недостаткам можно отнести:

  • Большинство роботов не программируется. Автомобиль не будет подстраивается под стиль езды водителя. Придется ездить всегда в одном и том же режиме, либо переходить на ручное переключение скоростей. Лишь самые новые и дорогие роботы имеют возможность программирования, но их цена пока зашкаливает.
  • Не быстрая работа. Робот не может похвастаться быстрым и отточенным переключением скоростей. Дешевые роботизированные коробки передач могут переключать скорость 2-3 секунды и это непозволительно долго. Положение исправляют агрегаты с двумя сцеплениями, но они доступны не для всех автомобилей.
  • Сбои в прошивке. Ошибки в переключении скоростей – не редкость для роботизированных коробок передач. Рывки или включение неправильной скорости достаточно распространенные явления. В этом случае проблема заключается в электронном блоке, который либо прошивается заново, либо меняется целиком.

За последние два десятилетия технологии значительно продвинулись вперед, коробки-роботы стали надежны и распространены. Они пользуются заслуженной популярностью по всему миру, и люди уже не опасаются приобретать машины с подобной коробкой передач.

«Автомат» или «робот»? (Часть 1)Преимущества и недостатки автоматических и роботизированных КП

Напомним, что на сегодняшний день в автомобилях и внедорожных машинах применяются коробки передач (КП) трех основных типов – механические, автоматические и роботизированные. Известны еще бесступенчатые коробки передач (вариаторы), но их применение весьма ограничено, а мы сегодня поговорим о преимуществах и недостатках автоматических и роботизированных КП.

Автоматическая коробка передач

Классическая автоматическая коробка передач (АКП) состоит из гидродинамического трансформатора (ГДТ), механической части, в которую входят фрикционные муфты, тормоза и планетарные механизмы, и электронной системы управления, которая переключает передачи без участия водителя. Напомним, что гидротрансформатор состоит из насосного колеса, соединенного с коленчатым валом двигателя, турбинного колеса, соединенного с входным валом механической части коробки передач, и реактора, лопасти которого направляют рабочую жидкость с насосного колеса на турбинное. Форма лопастей реактора подбирается в зависимости от того, какой нужен коэффициент трансформации (увеличения крутящего момента).

Достоинства. Одно из основных преимуществ АКП – это отсутствие разрыва потока мощности при переключении передач. Благодаря этому передачи переключаются очень плавно, поэтому существенно снижаются нагрузки на узлы трансмиссии, т. е. сокращается их износ. Повышается и проходимость машины – при прохождении сложного участка бездорожья на автомобиле с механической КП (МКП) или роботизированной КП заранее выбирается передача, и переключаться на другую в движении не рекомендуется – передача мощности на колеса прервется, а значит, автомобиль может застрять. В такой ситуации автомобиль порой долгое время идет на пониженной передаче, что вызывает перерасход топлива. На автомобиле с АКП на таком же бездорожье передачи переключаются по мере необходимости, так как поток мощности на колеса при этом не прерывается.

В гидротрансформаторе крутящий момент, который подводится от двигателя, может увеличиваться пропорционально разнице между частотой вращения насосного колеса и частотой вращения турбинного, причем плавно и бесступенчато, без механических ударов, поскольку передача крутящего момента происходит через жидкость. Детали самого ГДТ в процессе работы практически не изнашиваются.

Наибольшее увеличение крутящего момента имеет место при неподвижном турбинном колесе, т. е. в момент начала движения машины. Наличие планетарных передач в конструкции обеспечивает большое количество ступеней и больший диапазон передаточных отношений по сравнению с механической КП. Один пакет планетарных шестерен, например, в АКП Allison теоретически может обеспечить до семи передаточных отношений. В конструкцию АКП может входить три пакета планетарных передач (а в АКП серии OffRoad даже четыре!).

Эти особенности обусловливают одно из важных преимуществ машин с АКП: возможность плавно начинать движение на крутом подъеме или с большой нагрузкой на слабонесущем грунте (пример – начало движения груженого самосвала из-под экскаватора в глиняном или песчаном карьере, вечная проблема карьерного транспорта). Кроме того, благодаря улучшенной динамической характеристике можно использовать двигатель меньшей мощности, а это означает экономию на стоимости машины и расходе топлива.

При переключении переднего/ заднего хода водителю не надо полностью останавливать автомобиль (но, конечно, только на небольшой скорости, иначе быстрый рост давления выведет из строя гидравлическую систему), он заблаговременно включает клавишу, и автомобиль останавливается и меняет направление движения автоматически. Это особенно удобно при сложном маневрировании, например, при подъезде к экскаватору. Благодаря такой способности возрастает производительность пары экскаватор–самосвал: цикл погрузки идет быстрее, по некоторым оценкам, на 10…15%.

Еще одно преимущество планетарных механизмов в том, что в них не создается моментов, изгибающих валы, поэтому размеры подшипников валов меньше. В сочетании с небольшими размерами самих планетарных механизмов вся конструкция механической части АКП получается очень компактной.

Автоматической КП благодаря наличию ГДТ не требуются сцепление и связанные с ним узлы – пневмогидроусилитель и др., а следовательно, АКП избавлена от пробуксовывания, подгорания сцепления при начале движения и переключении передач и прочих неприятностей.

Не так просто научиться управлять, например, 16-ступенчатой механической КП, а при неумелом и неправильном включении передач сцепление «сгорает» быстро, и это хорошо известно руководителям автотранспортных компаний. Зато автомобили с АКП «предъявляют» менее жесткие требования к квалификации водителя (расхожая фраза: «АКП исправляет ошибки водителя»), и это решает проблему кадров.

В электронной системе управления АКП небольшое число датчиков – частоты вращения насосного, турбинного колес и выходного вала КП, давления масла, положения селектора и несколько электромагнитных клапанов. Чем меньше датчиков, тем меньше вероятность их поломки, но даже при полном выходе из строя электронной системы управления есть возможность продолжить движение хотя бы на одной передаче.

Недостатки. Некоторые специалисты считают, что АКП сложнее и дороже в обслуживании и ремонте, чем механические или роботизированные КП. Недостаток автоматических КП – изначально обусловленное конструкцией «проскальзывание» насосного и турбинного колес в ГДТ, что приводит к снижению к. п.д. и увеличению расхода топлива. В АКП грузовых автомобилей этот недостаток устранен за счет введения в конструкцию ГДТ блокировочной муфты, которая на передачах выше второй жестко соединяет насосное и турбинное колеса, исключая пробуксовывание и повышая к.п.д.

Для эксплуатации АКП требуется большее количество высококачественного масла по сравнению с роботизированными КП, и это масло необходимо охлаждать, т. е. на машине требуется разместить и радиатор охлаждения масла, который тоже увеличивает массу машины и занимает место и который надо защитить от неблагоприятных воздействий и механических повреждений. Масло необходимо периодически заменять, а это увеличивает эксплуатационные затраты. Следует отметить и затруднения в работе ГДТ при низких температурах окружающей среды из-за загустения масла, хотя современные синтетические масла избавлены от этого недостатка.

Для передачи больших крутящих моментов нужны фрикционы и планетарные механизмы больших размеров, что не позволяет создавать компактные АКП для тяжелых машин.

Порой отпугивает потребителей и высокая стоимость АКП по сравнению с «механикой» и роботизированными КП, но, например, себестоимость АКП Allison при массовом выпуске агрегатов (до кризиса – около 250 тыс. в год) снижается (по некоторым сведениям, $10 000) и приближается к себестоимости роботизированных КП. Средняя продолжительность службы АКП Allison равна сроку службы двигателя, т. е. затраченные на нее средства окупаются.

АМТ

Обычные механические КП с автоматической системой переключения передач в технической литературе называют и автоматическими (automatic), и роботизированными (robotic), и полуавтоматическими (semi-automatic), но больше распространено название «автоматизированные» от англ. Automated Manual Transmission. Аббревиатура АМТ от этого англоязычного названия широко употребляется в технической литературе. Так мы и будем обозначать роботизированные КП, чтобы не вводить новых, незнакомых читателю аббревиатур.

Вот примеры современных КП этого типа: AS-Tronic от ZF (грузовики), I-Shift от Volvo (грузовики и автобусы), AutoShift от Eaton (тяжелые грузовики), AGS от Detroit Diesel, Zeroshift от Zeroshift, Ltd.

По замыслу, АМТ должна была воплотить все преимущества механических и автоматических КП, исключив недостатки, присущие последним. Впрочем, по мнению некоторых специалистов, получилось наоборот – «роботы» вобрали в себя недостатки механических КП и даже усугубили их. Так ли это? Попробуем разобраться.

Достоинства. Преимуществом АМТ по сравнению с автоматическими КП является более высокий к.п.д. благодаря отсутствию гидротрансформатора. По некоторым данным, автомобили с АМТ экономичнее (по топливу) модификаций с АКП на 10% и более. Однако производители АКП оспаривают эти данные и приводят противоположные результаты. В дальнейшем наш журнал планирует опубликовать результаты различных сравнительных испытаний, в которых будет оцениваться экономичность транспортных средств с КП разного типа.

В конструкции некоторых роботизированных КП не используются синхронизаторы, но переключение происходит быстро и плавно за счет качественного программного управления. Благодаря этому АМТ получается компактной даже для передачи высоких крутящих моментов. Для заправки такого агрегата требуется гораздо меньше масла, что удешевляет эксплуатацию. Масса и цена АМТ существенно ниже, чем «автомата» (на это утверждение производители АКП возражают, что к массе самой АМТ следует прибавить сцепление с картером и маховик, которые не нужны при использовании АКП).

На основе одной конструкции создают роботизированные и обычные механические варианты КП, что позволяет унифицировать агрегатную базу и сократить затраты на эксплуатацию.

Недостатки. В АМТ есть сцепление со всеми присущими ему недостатками (подгорание, пробуксовка, обслуживание, замена), хотя по сравнению с механической КП роботизированная имеет явное преимущество: ресурс сцепления в основном зависит от манеры вождения водителя, а в АМТ автоматика не позволяет перегружать сцепление и исправляет ошибки человека.

Наличие сцепления обусловливает и следующий серьезнейший недостаток АМТ: разрыв потока мощности при переключении передач. В момент выключения сцепления обороты двигателя падают, грузовик идет накатом, и скорость его несколько замедляется. Дело в том, что, для того чтобы избежать рывков и повышенного износа сцепления, «робот» выключает сцепление на сравнительно «долгий» период. После включения более высокой передачи обороты двигателя надо увеличить до рабочего уровня (это выполняет электронное управление) и вновь разогнать тяжелый грузовик. Такие замедления-разгоны увеличивают расход топлива, а провалы при разгоне создают дискомфорт.

Также и при начале движения тяжело груженного грузовика, особенно на подъеме, пробуксовка и повышенный износ сцепления неизбежны, как и рывки, т. е. пиковые нагрузки в трансмиссии, что тоже ускоряет износ узлов двигателя и трансмиссии.

Еще один недостаток АМТ – при выключении сцепления на подъеме автомобиль будет скатываться назад. Чтобы предотвратить это, в систему управления вводят дополнительную функцию автоматического включения тормозов (система управления усложняется, чего не требуется для АКП).

АМТ, чтобы заменить человека и правильно выбрать алгоритм при включении-выключении сцепления, требуется довольно сложная система управления, в составе которой должно быть множество датчиков: порядка 99, обеспечивающих электронику необходимыми для управления параметрами. Чем сложнее система, тем ниже ее надежность, и выход из строя датчика, а в тяжелых условиях работы спецтехники это вполне возможно, приводит к сбоям в работе АМТ – переходу на аварийный, неэкономичный и нерабочий режим, выходу из строя системы переключения передач.

АМТ переключаются не так плавно, как автоматические КП, из-за чего быстрее изнашиваются компоненты трансмиссии.

В конструкции АМТ не используют планетарные механизмы (механический привод переключения передач сложно совместить с управлением планетарными передачами, такая конструкция получится существенно дороже).

Позже мы рассмотрим, какие технические решения предлагаются для исправления недостатков АМТ, и другие важные вопросы.

Сравнение узлов трансмиссий по массе, кг
УзелAS Tronic Mid (12 ступеней)Allison 3200AS Tronic Lite (6 ступеней)Allison 1000/ 2500
6AS700TO6AS800TO6AS1000TO
Коробка передач205260115139149150
Маховик/ переходная плита502330303015
Корзина сцепления1702527280
Картер сцепления330
Вилка выключения сцепления100ВключеноВключеноВключено0
Вал344
Выжимной подшипник
Шток222
Привод выключения сцепленияВключеноВключеноВключено
МаслоНе включеноНе включеноНе включеноНе включеноНе включеноНе включено
Радиатор охлажденияНе включено23Не включеноНе включеноНе включено9
Охлаждающая жидкостьНе включеноНе включеноНе включеноНе включеноНе включеноНе включено
Блок управления трансмиссиейВключено0,5ВключеноВключеноВключено0,5
Всего (без ретардера)315306,5175202213174,5
Интардер/ ретардер6935Не применяетсяНе применяетсяНе применяетсяНе применяется
Масло для интардераНе включеноНе включеноНе применяетсяНе применяетсяНе применяетсяНе применяется
Всего (с ретардером)384341,5

Вячеслав Топунов, инженер Volvo Trucks (комментарий к таблице):

«Я попробовал провести подобные сравнения масс для автомобиля Volvo. Начнем с того, что роботизированная КП I-shift эксплуатируется как обычная механическая, и охладитель обычно ставится только при тяжелых условиях эксплуатации – это большая масса автопоезда, эксплуатация в горах, длительное движение в сложных дорожных условиях (грязь, снег ). При эксплуатации на обычных дорогах устанавливать охладитель не требуется.

Для сравнения я взял тягач Volvo FH 6х4 с двигателем D13A мощностью 480 л.с. и крутящим моментом 2400 Н.м. На более мощные двигатели у Volvo пока не создан вариант автоматической КП. Рассчитал массу грузовика и затраты на замену масла при оснащении грузовика автоматической КП Volvo РТ2606 и роботизированной I-shift. I-shift оснастил охладителем TC-MAOh3. Рассчитал сервисные интервалы для тягача, перевозящего строительный трал с полной массой автопоезда 60 т преимущественно по грунтовым дорогам. Вот что получилось. Тягач с автоматической «коробкой» тяжелее на 110 кг (учтена полная заправка эксплуатационных жидкостей).

Межсервисные интервалы для КП: I-shift – замена масла каждые 200 тыс. км или раз в 2 года, сервис списывает на каждую замену 19 л масла. Автоматическая «коробка» РТ2606: первое обслуживание – замена фильтра после обкатки в 10 тыс. км и доливка масла, последующая замена – каждые 90 тыс. км или раз в год; сервис выделяет на замену 35 л. Конечно, используются различные сорта масла, но я думаю, что цифры показательные.

Справедливости ради надо отметить, что при сравнении машин в движении все водители отмечают плавность хода машины с автоматической КП, специалисты по сервису любят «автомат» за удобство обслуживания: по сравнению с очень компактной I-shift в «автомате» все агрегаты более доступны».

границ | Компактные редукторы для современной робототехники: обзор

Введение

Промышленные роботы составляют основу нескольких крупных традиционных производств, включая автомобилестроение и электронику. Сегодня многие регионы мира видят реальную возможность возродить обрабатывающую промышленность, внедряя роботов на малых и средних предприятиях (МСП) и в вспомогательные услуги, как правило, в здравоохранении (SPARC, 2015).

Для крупномасштабных промышленных сред с высокой степенью автоматизации преимущество роботизированных решений по сравнению с людьми-операторами в основном заключается в (i) большей доступности и (ii) способности перемещать — обычно большие — полезные грузы с исключительной точностью позиционирования и с высокой скоростью.Эти аспекты имеют решающее значение при разработке и выборе подходящих технологий для промышленного робота, особенно для первичных двигателей и трансмиссий, обеспечивающих движение этих устройств.

Применения в производстве и персональном обслуживании малых и средних предприятий бросают вызов этой традиционной парадигме робототехники. Ключ к успеху в этих новых приложениях лежит в очень высокой степени гибкости, необходимой для обеспечения безопасного и эффективного прямого сотрудничества с людьми для достижения общих целей.Эта цель требует, чтобы роботы сначала развили способность безопасно взаимодействовать с людьми в дисциплине, обычно называемой pHRI — физическое взаимодействие человека и робота.

pHRI оказывает широкое влияние на срабатывание роботов. Опыт, накопленный за последние десятилетия, в основном в области робототехники в здравоохранении, показывает, что для безопасного и эффективного взаимодействия с людьми роботы должны в основном двигаться, как люди, и, следовательно, жертвовать некоторыми из своих традиционных преимуществ с точки зрения полезной нагрузки, точности и скорости.Эта ситуация привела к обширным исследованиям в последние годы, охватывающим оптимальный выбор первичных двигателей и передач для срабатывания HRI (Zinn et al., 2004; Ham et al., 2009; Iqbal et al., 2011; Veale and Xie, 2016 ; Verstraten et al., 2016; Groothuis et al., 2018; Saerens et al., 2019).

Эти работы относятся к более широкой области исследований, изучающих оптимизацию сцепления между первичным двигателем и коробкой передач для данной задачи в автоматических машинах. Краткий обзор основных разработок в этой области дает полезные сведения, позволяющие понять влияние коробки передач на общую производительность системы. Паш и Зееринг (1983) определили важность инерции при срабатывании и предложили использовать передаточное число для согласования инерции двигателя и отраженной нагрузки в качестве средства минимизации потребления энергии для чисто инерционной нагрузки. Чен и Цай (1993) применили эту идею к области робототехники и определили результирующую способность к ускорению конечного эффектора как определяющий параметр. Ван де Стрете и др. (1998) разделили характеристики двигателя и нагрузки, чтобы распространить этот подход на общую нагрузку, и предоставили метод определения подходящих передаточных чисел для дискретного набора двигателей и коробок передач.Roos et al. (2006) изучали выбор оптимального привода для трансмиссии электромобилей, добавляя вклад КПД коробки передач. Giberti et al. (2010) подтверждают, что инерция ротора, передаточное число, КПД коробки передач и инерция коробки передач являются наиболее важными параметрами для выбора срабатывания, и предлагают графический метод оптимизации этого выбора для динамической задачи. Петтерссон и Олвандер (2009) снова сосредоточились на промышленных роботах и ​​представили метод, который моделирует коробку передач с упором на массу, инерцию и трение.Резазаде и Херст (2014) используют очень точную модель двигателя и включают фундаментальный критерий выбора полосы пропускания в дополнение к минимизации энергии. Дрессчер и др. (2016) исследуют влияние трения на планетарный редуктор, в котором кулоновское трение является доминирующим механизмом трения, и демонстрируют, как КПД редуктора обычно становится преобладающим над КПД двигателя при высоких передаточных числах.

По сравнению с исходными моделями коробок передач, использовавшихся в этих работах, где коробки передач моделировались как идеальные передаточные числа, сложность моделей постепенно возрастала.Тем не менее, необходимо сделать важные — и нереалистичные — упрощения, чтобы добиться хорошей практической применимости этих методов. Таким образом, не учитываются такие важные эффекты, как жесткость на кручение и потерянное движение, а модели инерции и эффективности коробки передач сильно упрощены. Это оправданный подход для множества приложений, где упрощенные методы могут помочь инженерам выбрать подходящие трансмиссии. Однако в HRI эти свойства слишком важны для пригодности коробки передач, и их нельзя так сильно упростить.

Следовательно, необходим другой подход, чтобы предоставить полезные рекомендации по выбору коробки передач в HRI, избегая чрезмерной сложности задач оптимизации в этой области. Предоставление подробных сведений об эксплуатационных свойствах и характеристиках различных технологий редукторов для обоснованного выбора — еще один вариант, следуя традициям таких работ, как Schempf and Yoerger (1993) или Rosenbauer (1995). Следуя этому подходу, Siciliano et al. (2010), Ли (2014), Шейнман и др.(2016) и Pham and Ahn (2018) предоставляют интересные обзоры высокоточных редукторов для современной робототехники. Однако технологии не анализируются достаточно подробно, чтобы получить хорошее представление о сложных механизмах, в которых они влияют на выполнение роботизированной задачи.

Основная цель этого обзора состоит в том, чтобы дополнить эти работы подробным анализом основных принципов, сильных сторон и ограничений доступных технологий. Помимо возможности прогнозирования будущего технологий редукторов в робототехнике, этот подход может помочь неспециалистам по редукторам определить подходящие технологии компактных редукторов для многофакторных требований новых робототехнических приложений (López-García et al., 2018). Для специалистов по коробкам передач из других областей этот анализ может помочь им получить полезную информацию о конкретных потребностях приложений HRI.

Это исследование начинается с краткого описания основных требований к будущим роботизированным трансмиссиям, чтобы затем представить систему оценки, предназначенную для оценки пригодности и потенциала конкретной технологии коробок передач для этой области. Эта структура включает сильную перспективу pHRI и новый параметр — коэффициент скрытой мощности — для оценки эффективности, присущей определенной топологии редуктора. Эта новая структура используется в первую очередь для обзора традиционных технологий редукторов, используемых в промышленных роботах, и новых технологий передачи, которые в настоящее время находятся в процессе выхода на рынок. Наконец, в конце документа приводится краткое изложение выводов, сделанных в результате этого обзора, вместе с нашими выводами и рекомендациями.

Система оценки роботизированных трансмиссий с расширенными возможностями HRI

Контроль

Управление роботизированными устройствами — очень широкая и сложная тема, которая является предметом обширной исследовательской литературы.В этом разделе мы ограничимся введением основных принципов линейности и отраженной инерции, которые являются основными для понимания влияния редуктора на управление.

Хотя в целом скорость и точность являются противоречивыми требованиями, обычные робототехнические устройства превосходны в достижении высокой точности позиционирования на высокой скорости благодаря использованию жестких приводов с очень линейным поведением (Cetinkunt, 1991). Включение роботизированной трансмиссии влияет на сложность управления в основном двумя способами: вносит дополнительную нелинейность и сильно влияет на отраженную инерцию.

Нелинейности, вызванные включением трансмиссии, принимают в основном форму люфта и / или трения и уменьшают полосу пропускания системы, создавая важные проблемы управления (Schempf, 1990). Заявление о зубчатых колесах приводит к люфту, трению и (нежелательному) соответствию, что затрудняет точное управление. (Hunter et al., 1991) сегодня так же актуально, как и почти 30 лет назад. Для некоторых технологий большие кинематические погрешности передачи и, в частности, нелинейное трение также могут вызывать значительные нелинейности.

Коробки передач также сильно влияют на отраженную инерцию системы. В роботизированном устройстве инерция первичного двигателя обычно на несколько порядков меньше, чем у полезной нагрузки, что делает систему нестабильной и создает серьезные проблемы с управлением. Добавление трансмиссии сильно снижает инерцию полезной нагрузки, которую видит первичный двигатель и которая отражается на него, в коэффициент, равный квадрату передаточного отношения трансмиссии. Таким образом, тщательный выбор трансмиссии может привести к более сбалансированной инерции на обеих сторонах трансмиссии, способствуя минимизации энергопотребления и созданию более надежной, стабильной и точной системы (Pasch and Seering, 1983).

Отраженная инерция особенно важна, когда рабочие органы претерпевают быстрые и частые изменения скорости и / или крутящего момента, что очень часто встречается в задачах автоматизации и робототехники. В этих случаях вводится перспектива пропускной способности, чтобы подтвердить способность системы отслеживать эти изменения (Sensinger, 2010; Rezazadeh and Hurst, 2014). Это лежит в основе принципа управляемости задним ходом, способности системы демонстрировать низкий механический импеданс, когда она приводится в действие с естественной выходной мощности (с обратным приводом).Это особенно важно при частом двунаправленном обмене энергией между роботом и его пользователем, что типично для реабилитационных устройств или экзоскелетов. Как демонстрируют Ван и Ким (2015), управляемость коробки передач назад включает в себя комбинированный эффект отраженной инерции, отраженного демпфирования и кулоновского трения, и, следовательно, это тесно связано с эффективностью коробки передач.

Это подчеркивает важность для оценки управляющего воздействия определенной технологии коробки передач как ее способности передаточного числа, так и нелинейностей (люфт, трение), которые она вносит.

Безопасность

Промышленные роботы традиционно размещаются за забором в хорошо структурированной среде, где они могут воспользоваться преимуществами своих быстрых и точных роботизированных движений, не ставя под угрозу целостность человека-оператора.

Безопасный pHRI, включающий способность безопасно перемещаться в неструктурированной / неизвестной среде, обязательно тесно связан с управляемостью. Текущая стратегия, используемая робототехниками для достижения этой цели, состоит из формирования механического импеданса (Calanca et al., 2015), то есть позволяя контроллеру соответствия управлять сложным динамическим соотношением между положением / скоростью робота и внешними силами (Hogan, 1984).

Принцип прост: чтобы обеспечить хорошую адаптацию к неопределенной среде, а также целостность человека-оператора / пользователя во время взаимодействия с роботизированным устройством, последний должен двигаться согласованно, подобно человеку (Karayiannidis et al. др., 2015). Это подчеркивает важность импеданса и внутреннего соответствия (De Santis et al., 2008) и объясняет появление нового типа гибких исполнительных механизмов для pHRI (Ham et al., 2009), где требуется высокая степень соответствия (Haddadin and Croft, 2016).

С точки зрения управления, инерция полезной нагрузки, отраженная к первичному двигателю, уменьшается на коэффициент, соответствующий квадрату передаточного числа. Точно так же обычно небольшая инерция ротора первичного двигателя усиливается тем же фактором при отражении в сторону полезной нагрузки, который должен быть добавлен к инерции, возникающей в результате движения роботизированного устройства и груза по соображениям безопасности, а также ограничение рабочих скоростей.

Хотя в большинстве актуаторов pHRI сегодня используются редукторы с высоким передаточным числом, некоторые известные робототехники Seok et al. (2014), Сенсингер и др. (2011) видят большой потенциал робототехники в использовании двигателей с высоким крутящим моментом (бегунок), требующих очень малых передаточных чисел. Новые производители робототехнических решений, такие как Genesis Robotics из Канады или Halodi Robotics AS из Норвегии, предлагают приводы для робототехники, основанные на этих принципах. По их мнению, увеличение инерции двигателя и уменьшение передаточного числа должно приводить к снижению инерции двигателя, отражаемой на рабочий орган, что позволяет повысить рабочие скорости и / или полезную нагрузку без ущерба для целостности оператора.Низкие передаточные числа также имеют дополнительное преимущество в пропускной способности: они имеют меньшее трение и люфт, уменьшая вклад нелинейностей от коробки передач. С другой стороны, умеренное передаточное число не может компенсировать нелинейные условия сцепления — обычно зубчатый крутящий момент (Siciliano et al., 2010).

При более внимательном рассмотрении технических характеристик этих новых двигателей возникают некоторые вопросы с точки зрения достижимой эффективности, веса или компактности, а также последствий для оборудования, возникающих в результате чрезмерной тяги к высоким электрическим токам (HALODI Robotics, 2018; GENESIS Robotics, 2020).

Подводя итог, нет полного согласия о том, как лучше всего подойти к безопасному срабатыванию для робототехники. Тем не менее, сильные естественные связи между безопасностью и управляемостью столь же очевидны, как и ключевое значение передаточного числа трансмиссии и ее нелинейностей.

Вес и компактность

Облегченная конструкция имеет первостепенное значение для обеспечения совместимости безопасности и хорошей производительности в новых приложениях робототехники (Albu-Schäffer et al., 2008). Новейшие коллаборативные роботы (коботы), такие как облегченный робот KUKA, разработанный в сотрудничестве с Институтом робототехники и мехатроники Немецкого аэрокосмического центра (DLR), живут по этому принципу и, следовательно, сильно отличаются от тяжелых и громоздких традиционных промышленных роботов.Благодаря более низкой инерции, легкие коботы обеспечивают более высокую производительность — более высокие скорости — без ущерба для безопасности пользователя.

Этот выгодный аспект облегченной конструкции имеет и другие преимущества. Для мобильных робототехнических систем меньший вес означает большую автономию. В носимых вспомогательных роботизированных устройствах, включая протезы и экзоскелеты, легкий вес также является ключевым аспектом для повышения комфорта (Toxiri et al., 2019).

Высокая компактность — еще одна характеристика, присущая этим новым роботизированным устройствам: от коботов до вспомогательных устройств, компактность дает преимущества в маневренности и удобстве взаимодействия.

В роботизированных приложениях, предполагающих тесное сотрудничество с людьми или предоставление мобильных услуг, позиции по своей природе весьма неопределенны. Легкие и компактные конструкции особенно выгодны (Loughlin et al., 2007) для этих применений с двумя последствиями: первичные двигатели и трансмиссии — обычно самые тяжелые элементы в роботизированном устройстве — должны быть легкими и компактными, но легкие конструкции имеют тенденцию требуйте более низких крутящих моментов.

В отличие от веса коробки передач, определение подходящего критерия для оценки вклада коробки передач в компактность системы является более сложной задачей. Физический объем определенно играет роль, но наш опыт показывает, что фактическая форма коробки передач имеет тенденцию иметь большее влияние. Еще один аспект, о котором стоит упомянуть, — это наличие в некоторых конфигурациях редукторов свободного пространства для размещения материала или движущихся частей, таких как электродвигатели или выходные подшипники, также могут представлять особый интерес. Поэтому мы решили включить в нашу схему оценки приблизительную форму (диаметр × длина) выбранной коробки передач, в то время как наличие дополнительного места можно напрямую оценить с помощью предоставленных цифр для каждой из конфигураций.

Эффективность и виртуальная мощность

КПД

В таких областях, как автомобильные или ветряные турбины, эффективность редукторов долгое время находилась в центре внимания. В робототехнике, с другой стороны, эффективность до недавнего времени не становилась ключевым параметром при выборе подходящей коробки передач (Arigoni et al. , 2010; Dresscher et al., 2016).

Более высокий КПД — более низкие потери — позволяют снизить потребление энергии и прямо положительно влияют как на эксплуатационные расходы, так и на воздействие машины или устройства на окружающую среду.Для мобильных и носимых роботизированных устройств повышение эффективности также помогает снизить вес системы — требуются батареи меньшего размера — и в конечном итоге приводит к большей автономности и лучшему удобству использования (Kashiri et al., 2018).

В коробках передач есть еще одно дополнительное преимущество в снижении потерь: большинство механических трансмиссий, используемых в робототехнике, имеют замкнутую форму и используют какой-то контакт зубьев для передачи крутящего момента и движения между первичным двигателем и рабочим органом. Благодаря этому кинематическое соотношение между входной ω In и выходной скоростями ω Out заблокировано количеством зубцов и определяет его передаточное отношение i K . В коробке передач без потерь передаточное отношение i τ между выходным и входным крутящими моментами τ точно соответствует обратной кинематической трансмиссии с противоположным знаком. Но в реальной коробке передач наличие потерь изменяет это равенство, и поскольку кинематическое передаточное число блокируется числом зубцов, абсолютное значение передаточного числа крутящего момента должно уменьшаться пропорционально потерям:

ωInωOut = iK = — η iτ = -ητOutτIn; где η представляет собой КПД системы.

Следовательно, высокие потери в коробке передач означают, что меньший крутящий момент доступен для рабочего органа и требуются более высокие передаточные числа для достижения такого же усиления крутящего момента.

Коробки передач подвержены нескольким видам потерь. Чтобы классифицировать их, мы принимаем критерии, предложенные Talbot и Kahraman (2014), и разделяем их на зависимые от нагрузки (механические) потери мощности, возникающие из-за скольжения и качения контактных поверхностей, как в контактах шестерен, так и в подшипниках, и нагрузки -независимые (спиновые) потери мощности — возникают из-за взаимодействия вращающихся компонентов с воздухом, маслом или их смесью.

Виртуальная сила

Термин виртуальная мощность, насколько известно авторам, был первоначально введен Ченом и Анхелесом (2006), но это явление, объясняющее аномально высокие потери, присутствующие в некоторых планетных топологиях, долгое время было известно под разными названиями, включая Blindleistung (Wolf, 1958; Mueller, 1998) и скрытая или бесполезная мощность (Macmillan and Davies, 1965; Yu and Beachley, 1985; Pennestri and Freudenstein, 1993; Del Castillo, 2002).

Из-за своего принципа действия коробка передач всегда включает в себя высокоскоростную сторону с низким крутящим моментом и сторону с высоким крутящим моментом и низкой скоростью. Следовательно, его внутренние зубчатые зацепления обычно подвержены либо высокому крутящему моменту и низкой скорости, либо условиям высокой скорости и низкого крутящего момента. Однако в некоторых коробках передач из-за их особой топологии некоторые зацепления шестерен могут иметь одновременно высокую скорость и высокий крутящий момент. Зубчатые зацепления могут легко достичь КПД выше 98%, но поскольку генерируемые потери примерно пропорциональны произведению относительной скорости двух зубчатых элементов и крутящего момента, передаваемого через зацепление (Niemann et al., 1975), на этих высоконагруженных сетках появляются неожиданно большие потери. Виртуальная мощность обеспечивает основу для оценки вклада этого явления, которое в дальнейшем мы будем называть топологической эффективностью коробки передач.

Некоторые из вышеупомянутых авторов предлагают методы для оценки топологической эффективности данной конфигурации и определения ее влияния на общую эффективность системы. В рамках Chen and Angeles (2006) виртуальная мощность определяется как мощность, измеренная в движущейся — неинерциальной — системе отсчета.Скрытая мощность , представленная Ю и Бичли (1985), соответствует виртуальной мощности, когда опорная рамка является несущим элементом коробки передач, а виртуальное передаточное число мощности — это соотношение между виртуальной мощностью и мощностью, генерируемой внешним крутящим моментом. применяется по ссылке. Используя эти элементы, мы определяем Latent Power Ratio топологии коробки передач как отношение между суммой скрытых мощностей во всех зацеплениях и мощностью, потребляемой коробкой передач.Таким образом, большой коэффициент скрытой мощности соответствует низкой топологической эффективности и указывает на сильную тенденцию к возникновению больших потерь за счет зацепления.

Чтобы облегчить понимание практического влияния на общую эффективность топологической эффективности, характеризующейся скрытым коэффициентом мощности, данной конфигурации редуктора, мы используем на этом этапе уравнения, предложенные Макмилланом и Дэвисом (1965) для расчета упрощенный пример.

Полная коробка передач робототехники обычно включает в себя несколько зацепляющих контактов, каждый с разными рабочими условиями и параметрами, что приводит к различной эффективности зацепления.Эти КПД очень высоки в оптимизированных зубчатых зацеплениях — часто выше 99% — и позволяют упростить наши расчеты, учитывая общую уникальную эффективность зацепления η м = 99% во всех зацепляющих контактах в нашем редукторе.

Во-первых, эталонный редуктор, идеальный с точки зрения топологической эффективности, имел бы только одно зацепление и коэффициент скрытой мощности L = 1. Таким образом, потери мощности внутри этого эталонного редуктора можно легко рассчитать как функцию входной мощности. как:

Таким образом, общая эффективность зацепления всего редуктора соответствует эффективности одиночного зацепляющего контакта:

ηsys, идеально = PIN-PLossPIN = ηm = 99%;

Неидеальная коробка передач с таким же типовым η m во всех ее зацеплениях и со скрытым коэффициентом мощности L, характеризующим ее топологический КПД, указывает на то, что общие потери в коробке передач могут быть приблизительно определены следующим образом:

Ploss, L≈ PIN * L * (1-ηm)

И общая эффективность зацепления всей коробки передач теперь составляет:

ηsys, L = PIN-PLoss, LPIN≈L * ηm + (1-L)

Что для η м = 99% и для значения L = 50 дает:

Этот результат следует частично релятивизировать, потому что накопленные потери в первых зацеплениях, задействованных вдоль различных внутренних потоков мощности в коробке передач, приводят к тому, что меньшая виртуальная мощность, как предсказано этими уравнениями, будет течь через последующие зацепления. Эффект от этого состоит в том, что КПД обычно будет падать немного медленнее с коэффициентом скрытой мощности, а более реалистичное значение для предыдущего расчета обычно будет между 55 и 60%.

Чтобы частично компенсировать это большое влияние топологической эффективности на общую эффективность, конфигурации с большим скрытым коэффициентом мощности требуют чрезвычайно высокой эффективности зацепления: для достижения эффективности системы> 70% системе с L = 100 требуется средняя эффективность зацепления. выше 99.5%.

Поэтому в нашем дальнейшем анализе мы сосредоточимся только на оценке вклада топологической эффективности в эффективность коробки передач. Это позволяет нам использовать упрощенный метод для расчета коэффициента скрытой мощности, который, в первую очередь, не учитывает влияние на потери, вызванные уменьшением крутящего момента. Соответствующие расчеты, использованные для определения коэффициента скрытой мощности различных конфигураций редукторов, проанализированных в этой работе, включены в Приложение I.

Подводя итог, чтобы охарактеризовать важный эффект КПД коробки передач, мы оценим порядок величины трех параметров: (i) потери, зависящие от нагрузки, (ii) пусковой момент без нагрузки и (iii) коэффициент скрытой мощности.Хотя на него дополнительно влияет статическое трение, а не только кулоновское и вязкое трение, мы выбрали пусковой крутящий момент без нагрузки (относительно номинального крутящего момента) как практический способ характеристики потерь, не зависящих от нагрузки. Наши обмены с производителями редукторов показывают, что это обычная практика, она не зависит от входной мощности и легко доступна в технических данных производителя.

Производительность

По сравнению со специальными машинами и машинами для автоматической сборки промышленные роботы не могут достичь тех же стандартов точности и скорости.Оба аспекта должны были быть скомпрометированы, чтобы обеспечить большую степень гибкости и мобильности, а также рабочего пространства (Rosenbauer, 1995). С этой точки зрения HRI — это всего лишь еще один шаг в том же направлении: чтобы соответствовать дальнейшим потребностям гибкости и мобильности в неструктурированной среде, необходимы дополнительные компромиссы с точки зрения точности и скорости. Этот переход отражен на Рисунке 1.

Рисунок 1 . Графическое описание перехода основных задач задач от машин через промышленных роботов и коботов к людям-операторам.

Точность и повторяемость

Множество аспектов коробки передач вносят вклад в общую точность полного роботизированного устройства. Эти аспекты долгое время находились в центре внимания традиционной робототехники и сегодня хорошо изучены, так как работы, подобные работам Майра (1989), Шемпфа и Йоргера (1993) или Розенбауэра (1995), содержат очень хорошие ссылки для понимания этих сложных влияний. Эти исследования указывают на особо важную роль, которую играют потерянный ход и жесткость на кручение.

Lost Motion — это дальнейшее развитие принципа люфта, который описывает полное вращательное смещение, создаваемое приложением ± 3% от номинального входного крутящего момента.

Жесткость на кручение характеризует податливость на кручение всех элементов коробки передач, задействованных во всем потоке сил, под действием внешнего крутящего момента. Это достигается путем блокировки входа коробки передач и постепенного увеличения крутящего момента, прикладываемого на выходе, при этом регистрируются изменения жесткости на кручение, приводящие к отклонениям от идеально линейного поведения.

По своей природе точные — малые потери движения и линейная высокая жесткость на кручение — редукторы упрощают задачу управления и обеспечивают высокую точность, идеально подходят для управления положением, в то время как менее точные редукторы создают более серьезные проблемы для управления положением и могут использоваться для более гибкого срабатывания. . В технологиях редукторов, где скорость оказывает сильное влияние на потери или с особенно нелинейным трением, также необходимо учитывать вклад этих элементов в точность.

Чтобы охарактеризовать возможности точности, наша конструкция включает потерю движения и жесткость на кручение, а также субъективную оценку изменения эффективности, вызванного изменениями скорости / крутящего момента.

Скорость и полезная нагрузка

Промышленные роботы могут обрабатывать большие полезные нагрузки за счет большой инерции. Для коботов, с другой стороны, соображения безопасности подразумевают, что они не должны обрабатывать такие большие полезные нагрузки, но благодаря более легкой конструкции они действительно могут достичь большего отношения полезной нагрузки к массе.

Соображения безопасности также ограничивают степень, в которой это уменьшение массы может быть использовано для увеличения рабочих скоростей (Haddadin et al., 2009). Тем не менее, более низкий крутящий момент способствует использованию более легких и быстрых электродвигателей, что в принципе требует более высоких передаточных чисел для этих приложений.

Критерий для характеристики вклада коробки передач в скорость и характеристики полезной нагрузки должен отражать эти аспекты и побуждать нас использовать в нашей структуре (i) максимальную входную скорость, (ii) максимальный воспроизводимый выходной крутящий момент, называемый моментом ускорения, и номинальный крутящий момент, (iii ) передаточное число и (iv) отношение крутящего момента к массе как для номинального, так и для момента ускорения.

Сводка

Определение характеристик роботизированных коробок передач — сложная задача: высокая универсальность этих устройств и их сложное взаимодействие с первичными двигателями и системами управления делают прямое сравнение их характеристик особенно сложным.

Передаточное число продемонстрировало сильное влияние на производительность робототехнической системы. Это объясняет его предпочтительную роль в литературе, посвященной оптимизации срабатывания роботов, и растущий интерес робототехников к возможностям использования переменных передач (Kim et al., 2002; Карбон и др., 2004; Stramigioli et al., 2008; Жирар и Асада, 2017). Хотя мы убеждены, что трансмиссии с регулируемой передачей очень многообещающие и определенно будут способствовать формированию будущего ландшафта робототехники, мы ограничили наш анализ здесь компактными коробками передач с постоянным передаточным числом. На данный момент мы считаем, что нам лучше всего подойдет этот ограниченный объем, который может также способствовать выявлению потенциальных областей применения и подходящих технологий для трансмиссий с переменным передаточным числом.

На основе этого анализа мы предлагаем схему оценки будущих роботизированных коробок передач на основе следующих параметров:

• Передаточное число

• Ускорение и номинальный выходной крутящий момент

• Вес

• Форма: диаметр × длина

• Ускорение и номинальный крутящий момент к массе

• КПД: пиковое значение и субъективная зависимость от скорости и крутящего момента

• Топологическая эффективность: коэффициент скрытой мощности

• Пусковой момент при прямом и обратном движении без нагрузки в% от номинального входного крутящего момента

• Потери, не зависящие от нагрузки

• Потерянное движение

• Максимальная входная скорость

• Жесткость на кручение

Наша структура включает также эталонный вариант использования, характерный для множества задач pHRI согласно нашему собственному опыту: моменты ускорения более 100 Нм и передаточные числа более 1: 100, для которых необходимо оптимизировать вес, компактность и эффективность.

Обзор технологий передачи данных, используемых в настоящее время в промышленных роботах

Электродвигатели, оснащенные механическими трансмиссиями, обычно используются в качестве исполнительных механизмов в робототехнике (Rosenbauer, 1995; Scheinman et al., 2016), а также в промышленных роботах. Эти механические трансмиссии почти неизбежно основаны на какой-то зубчатой ​​передаче (Sensinger, 2013).

Благодаря их большей способности снижать общий вес и поскольку электродвигатели имеют тенденцию иметь более высокий КПД на высоких рабочих скоростях, еще одной характеристикой промышленных роботизированных трансмиссий является использование относительно больших коэффициентов передачи (передаточных чисел), обычно более 1:40 (Розенбауэр, 1995).

Планетарные редукторы

: чрезвычайно универсальная платформа

Планетарные зубчатые передачи

(PGT) — это компактные, универсальные устройства, широко используемые в силовых передачах. Благодаря характерной коаксиальной конфигурации и хорошей удельной мощности они особенно подходят для вращающихся первичных двигателей, таких как электродвигатели.

PGT

могут использовать две дифференцированные стратегии для достижения высоких коэффициентов усиления: (i) добавление нескольких ступеней обычных высокоэффективных PGT — здесь называемых редукторами и представленных на Рисунке 2 — или (ii) использование особенно компактных конфигураций PGT с возможностью получения высоких передаточные числа.

Рисунок 2 . Внутреннее расположение редуктора Neugart с указанием его основных элементов, адаптировано из Neugart (2020) с разрешения © Neugart GmbH. Он также включает схему базовой топологии.

Хотя использование нескольких ступеней редукторов позволяет наилучшим образом использовать эффективность зацепления высоких шестерен и приводит к высокоэффективным редукторам, это обычно приводит к тяжелым и громоздким решениям. Компактные конфигурации PGT с другой стороны могут достигать высоких передаточных чисел в очень компактных формах, но они страдают от удивительно высоких потерь, связанных с высокими виртуальными мощностями (Crispel et al. , 2018).

Особенно компактная конфигурация PGT для высоких передаточных чисел была впервые изобретена Вольфромом (1912) и использовалась в редукторах серии RE компании ZF Friedrichshafen AG (ZF), предназначенных для промышленных роботов (Looman, 1996). Эта конфигурация, показанная на рисунке 3, сильно зависит от Virtual Power, и ZF представляет собой единственное известное коммерческое применение конфигураций PGT, отличное от обычных редукторов. Хотя производство серии RE было прекращено в 90-х годах, Wolfrom PGT в последнее время вызывает растущий интерес сообщества исследователей робототехники, как мы резюмировали в предыдущей статье авторов (López-García et al., 2019а).

Рисунок 3 . Внутреннее устройство ZF серии RG Wolfrom PGT для роботизированных приложений адаптировано из Looman (1996) с разрешения © 1998 Springer-Verlag Berlin Heidelberg. Он также включает схему базовой топологии.

Таблица 1 представляет оценку PGT. Несмотря на завышенные размеры для нашего теста, мы использовали ZF RG350 Wolfrom PGT, чтобы попытаться оценить потенциал конфигураций PGT с высоким коэффициентом передачи, основываясь на имеющихся доказательствах его пригодности для достижения высоких коэффициентов (Арнаудов и Караиванов, 2005; Mulzer, 2010 ; Капелевич и AKGears LLC, 2013). Для редукторов мы выбрали — при поддержке производителей — подходящие решения из портфолио Wittenstein и Neugart. Стоит отметить важную роль, которую играет максимальное передаточное число на ступень в редукторе: в то время как Виттенштейн ближе к максимуму осуществимости, определяемому избеганием контакта между соседними планетами, Нейгарт выбирает в своей серии PLE (серия PLFE может достигать 1: 100 соотношений только в два этапа) более ограничительный подход и, следовательно, для достижения общего усиления 1: 100 требуется три этапа вместо двух для Виттенштейна.Это приводит к менее компактным решениям и более низкой эффективности для приложения 1: 100, но позволяет Neugart достичь более высокого выигрыша — до 1: 512 — без фундаментальных изменений веса, размера или эффективности.

Таблица 1 . Схема оценки решений с планетарной зубчатой ​​передачей.

Редукторы

имеют вес около 4 кг, что нельзя напрямую сравнивать с увеличенными размерами RG350. RG350 имеет форму с большим диаметром и меньшей длиной, чем редукторы.Что касается отношения крутящего момента к весу, значения обоих решений кажутся относительно близкими.

Редукторы

имеют сильное преимущество в их хорошем КПД (более 90%), который также менее чувствителен к изменениям рабочих условий, а пусковые моменты холостого хода очень низкие. Конфигурации с высоким коэффициентом полезного действия показывают, насколько сильно ограничивается топологическая эффективность, что приводит к снижению эффективности. Это, вероятно, объясняет, почему редукторы сегодня являются доминирующей технологией PGT в робототехнике.

PGT

показывают самые высокие входные скорости (до 8 500 об / мин), но их потери хода также самые большие (4–6 Arcmin) в обычных редукторах. В робототехнике PGT широко использовались в первых промышленных роботах, в то время как в последние десятилетия их использование сильно сократилось, в основном из-за их ограничений, связанных с уменьшением люфта. Несмотря на то, что существуют механизмы, ограничивающие изначально более значительную обратную реакцию PGT, на практике они основаны на введении определенной предварительной нагрузки, отрицательно влияющей на их эффективность (Schempf, 1990).

Гармонические приводы: без люфта, легкий редуктор с деформационной волной

Редуктор Strain Wave был изобретен Массером (1955) и нашел широкое применение в 70-х годах, первоначально в аэрокосмической отрасли. Его основное космическое применение было в качестве элемента механической передачи в аппарате лунохода Аполлона-15 в 1971 году (Schafer et al., 2005).

Его название происходит от характерной деформации Flexspline , нежесткой, тонкой цилиндрической чашки с зубьями, которая служит выходным отверстием.Flexspline входит в зацепление с фиксированным сплошным круглым кольцом с внутренними зубьями шестерни Circular Spline , в то время как он деформируется вращающейся эллиптической заглушкой — волновым генератором , как это видно на рис. 4. Этот тип коробки передач является наиболее распространенным. обычно называют Harmonic Drive © (HD) из-за очень эффективной стратегии защиты IP.

Рисунок 4 . Внутренняя конфигурация коробки передач Harmonic Drive CSG (слева), адаптированная из Harmonic Drive (2014) с разрешения © 2019 Harmonic Drive SE, и редуктора E-Cyclo (справа), адаптированная из SUMITOMO (2020) с разрешения © Sumitomo Drive, 2020 Germany GmbH. Также включена схема лежащей в основе топологии KHV, используемой для расчета его скрытого коэффициента мощности в Приложении I.

Для нашего сравнительного анализа мы выбрали два подходящих редуктора Harmonic Drive, CSD-25-2A, предназначенный для интеграции в роботизированное соединение, чтобы обеспечить адекватные структурные граничные условия, и сверхлегкий редуктор CSG-25-LW, представляющий конструктивно достаточное решение. что может быть более прямо по сравнению с другими технологиями. Совсем недавно SUMITOMO представила новый редуктор E-CYCLO, работающий также на принципе действия волны деформации.SUMITOMO предоставил нам доступ к своему самому последнему каталогу (SUMITOMO, 2020), что позволило нам включить его в наш тест (Таблица 2). Еще одна интересная волна деформации, очень похожая на гармонический привод, недавно была также представлена ​​GAM в своей серии коробок передач для робототехники, которая включает также планетарные зубчатые передачи и циклоидные приводы (GAM, 2020).

Таблица 2 . Схема оценки решений волн деформации.

Выбранная модель CSG имеет значительно больший крутящий момент, чем предполагалось в нашем тесте.Форма имеет больший диаметр, чем длина, а вес значительно ниже, чем у других технологий, и обеспечивает лучшее соотношение крутящего момента к весу среди проанализированных технологий. Действительно, характерное зацепление с несколькими зубьями обеспечивает большее сопротивление крутящему моменту, чем в PGT, что делает эту технологию очень подходящей для соединений, расположенных ближе к рабочему органу, где они часто встречаются в современных промышленных роботах.

Пиковый КПД ниже, чем у редукторов, и ближе к RG350, а КПД особенно чувствителен к условиям эксплуатации.Поезда Strain Wave демонстрируют большие потери, не зависящие от нагрузки, и пусковые моменты без нагрузки, особенно в условиях обратного движения, которые становятся особенно критическими для высоких скоростей и / или низких крутящих моментов (Harmonic Drive, 2014). Для роботизированных устройств HRI, подверженных частым изменениям скорости и полезной нагрузки в сочетании с обменом энергией между роботизированным устройством и пользователем, это означает, что средняя эффективность быстро падает ниже 40–50% (López-García et al., 2019b). Также стоит отметить их большой коэффициент скрытой мощности, указывающий на одновременное присутствие высоких крутящих моментов и скоростей в зацеплении зубьев, что также помогает объяснить относительно низкий КПД.

Еще раз, благодаря зацеплению с несколькими зубьями, можно достичь потерянных движений ниже 1 угловой минуты, что дает этому редуктору сильное преимущество, которое помогает гармоническим приводам находить широкое применение в промышленных роботах. Они смогли вытеснить PGT из многих приложений, особенно после значительного улучшения характеристик в результате новой геометрии зубьев, представленной этой компанией в 90-х годах, что также улучшило линейность их жесткости (Slatter, 2000).

Максимальная входная скорость раньше была сильным ограничением для использования редукторов HD (Schempf, 1990), но новые достижения и улучшения конструкции позволяют им теперь достигать 7500 об / мин.

Циклоидные приводы: для высокой прочности и жесткости на кручение

С момента своего изобретения Лоренцем Брареном в 1927 году (Li, 2014) циклоидные приводы нашли применение в основном в лодках, кранах и некотором крупном оборудовании, таком как прокатные станы или станки с ЧПУ. В циклоидных приводах эксцентричное входное движение создает шаткое циклоидальное движение одиночного большого планетарного колеса, которое затем преобразуется обратно во вращение выходного вала и приводит к высокой редукционной способности (Gorla et al., 2008), см. Рисунок 5.

Рисунок 5 . Внутренняя конфигурация циклоидных приводов SUMITOMO Fine Cyclo F2C-A15 и Fine Cyclo F2C-T155, идентифицирующая их основные элементы, адаптирована из SUMITOMO (2017) с разрешения © Sumitomo Cyclo Drive Germany GmbH, 2017. Он также включает схему лежащих в основе топологий.

Таблица 3 включает лидера рынка (NABTESCO RV) в этом сегменте и основных претендентов (SPINEA и SUMITOMO). RV от NABTESCO и серия Fine-Cyclo T от SUMITOMO включают в себя обычную ступень PGT с предварительным зацеплением.Полезная нагрузка этих устройств больше, чем требуется для нашего теста, и приводит к большому весу. Это уже дает ценную информацию: более компактные решения недоступны на рынке и, согласно информации, предоставленной некоторыми производителями, менее интересны, поскольку для них потребуется высочайшая точность производства и, в конечном итоге, приведет к высоким затратам.

Таблица 3 . Схема оценки решений для циклоидных приводов.

Формы аналогичны коробкам передач с волновой деформацией, а по весу больше и ближе к весам PGT по вышеупомянутым причинам.Отношение крутящего момента к массе больше, чем у PGT, но немного ниже, чем у редукторов с деформационной волной. Основное преимущество циклоидных приводов заключается именно в их способности выдерживать большие нагрузки и особенно ударные нагрузки, а также в минимальных требованиях к техническому обслуживанию.

Пиковый КПД выше, чем у редукторов с волновой деформацией, и ближе к КПД PGT, но КПД сильно зависит от условий эксплуатации (Mihailidis et al., 2014), и пусковые моменты холостого хода, и коэффициент скрытой мощности высоки, как аналогично редукторам с волновой деформацией.

Хотя они, как правило, имеют некоторый люфт, который, если его конструкция часто компенсирует, достигают уровней, сопоставимых с уровнями редукторов с волновой деформацией, вероятно, за счет немного более высокого трения. Их жесткость на кручение — самая большая из проанализированных технологий редукторов.

Приводам

Cycloid присуще ограничение на работу с высокими входными скоростями, вызванное наличием большого и относительно тяжелого планетарного (кулачкового) колеса, что приводит к большим инерциям и дисбалансу.Это мотивирует использование, как правило, двух планетарных колес, расположенных последовательно и смещенных на 180 градусов друг к другу, для устранения дисбаланса, уменьшения вибраций и обеспечения большей входной скорости. Это объясняет, как благодаря объединению циклоидных приводов со ступенями предварительного зацепления, состоящими из обычных ступеней PGT, циклоидные приводы получили широкое распространение в робототехнике. Такое расположение повышает эффективность, снижает чувствительность к высоким входным скоростям и обеспечивает легкую адаптацию их передаточных чисел.В 90-х годах гармонические приводы доминировали на рынке роботизированных коробок передач, но усовершенствования в технологии циклоидов позволили циклоидным приводам начать покорять бездорожье, сначала в Японии, а затем в других местах (Rosenbauer, 1995). В настоящее время такие производители, как NABTESCO, SUMITOMO или NIDEC, предлагают циклоидные гибриды с интегрированным передаточным механизмом PGT, которые покрывают более 60% рынка роботизированных коробок передач и, следовательно, стали новой доминирующей технологией, особенно для проксимальных суставов, подверженных более высоким нагрузкам и меньшим ограничениям по весу (WinterGreen Исследования, 2018).

Наконец, стоит упомянуть наличие относительно большой пульсации крутящего момента, которая вносит нелинейности и усложняет их регулирование. Эта пульсация крутящего момента связана с необходимостью использования циклоидных профилей зубьев, чтобы избежать столкновения зубьев между большим планетарным колесом (-ами) и зубчатым венцом, что делает эти устройства чрезвычайно чувствительными к изменениям межцентрового расстояния, возникающим даже из-за небольших производственных ошибок. Существует несколько попыток улучшить эту ситуацию, используя эвольвентные зубья, менее чувствительные к изменениям межцентрового расстояния, с уменьшенными углами давления и / или коэффициентами контакта для минимизации радиальных сил и повышения эффективности (Морозуми, 1970), а также с использованием других форм нестандартных зубьев. -инволютные зубы (Коряков-Савойский и др., 1996; Хлебаня, Куловец, 2015).

Обзор новых технологий передачи для робототехники

Усилитель крутящего момента REFLEX

Genesis Robotics привлекла большое внимание в сообществе робототехники с появлением их двигателя с прямым приводом, LiveDrive © . Согласно Genesis, LiveDrive в двух доступных топологиях — радиальном и осевом потоках — обеспечивает сравнительные характеристики в соотношении крутящего момента к массе. Двигатель с осевым магнитным потоком может достигать 15 Нм / кг, в то время как радиальный поток ограничен максимум 10 Нм / кг.

Чтобы расширить спектр применения, Genesis Robotics представила совместимую коробку передач под названием Reflex , показанную на рис. 6. Эта литая под давлением сверхлегкая пластиковая коробка передач предназначена для легких роботов, хотя изначально она была разработана для совместной работы с LiveDrive. и поэтому он нацелен на передаточные числа ниже 1:30, он также способен обеспечивать передаточные числа до 1: 400 (GENESIS, 2018).

Рисунок 6 . Внутренняя конфигурация и основные элементы редуктора Reflex адаптированы из GENESIS Robotics (2020) с разрешения © 2019 Genesis Robotics.Он также включает схему базовой топологии.

Базовая топология — топология Wolfrom PGT с несколькими меньшими планетами (Klassen, 2019), в которой реактивное (неподвижное) зубчатое колесо разделено на две части для балансировки в соответствии с конструкцией, первоначально предложенной Россманом (1934) и используемой в качестве хорошо в аппарате Hi-Red Tomcyk (2000).

В редукторе Reflex выходное кольцо также разделено для облегчения сборки с косозубыми зубьями. Еще одним интересным аспектом этой конструкции является заклеенная лентой форма планет, которая, как подозревают авторы, связана с возможностью предварительной нагрузки системы для достижения нулевого люфта, который, как утверждает Genesis, возможен с этой коробкой передач.По заявлению компании, гибкость пластиковых планетарных колес также дает преимущество в уменьшении люфта.

К сожалению, пока нет независимых тестов для подтверждения заданных характеристик, и никаких официальных данных, особенно по эффективности, от Genesis пока нет, поэтому в Таблицу 4 включено только значение Latent Power Ratio, полученное в результате его топологии.

Таблица 4 . Схема оценки новых технологий редукторов.

Таким образом, хотя лежащая в основе топология Wolfrom указывает на то, что эффективность, безусловно, будет сложной задачей, этот инновационный редуктор демонстрирует большой потенциал, доступный для переосмысления существующих технологий и их адаптации к будущим потребностям робототехники. Genesis Robotics недавно вступила в интересное партнерство с известными промышленными компаниями, такими как Koch Industries Inc. и Demaurex AG.

Проезд Архимеда

IMSystems из Нидерландов является дочерней компанией Делфтского технологического университета, созданной в 2016 году для использования изобретения Archimedes Drive (Schorsch, 2014).

Привод Архимеда снова повторяет топологию редуктора Wolfrom (также с разрезным реактивным зубчатым венцом в некоторых его конструкциях), но включает в себя революционное новшество в использовании роликов вместо шестерен для замены зубчатых контактов контактами качения, см. Рисунок 7. Контролируемая деформация планетарных роликов позволяет передавать крутящий момент между планетами аналогично колесам транспортного средства.

Рисунок 7 . Внутренняя конфигурация привода Архимеда с деталями, показывающими его планеты Flexroller, адаптирована из IMSystems (2019) с разрешения © 2019 Innovative Mechatronic Systems B. V., со схемой лежащей в основе топологии.

Характеристики, представленные в таблице 4, взятой из брошюры компании (IMSystems, 2019) и доступной по запросу, показывают, что использование топологии Wolfrom дает этому устройству возможность достигать очень высоких передаточных чисел в компактной форме, но это также приводит к низкой топологической эффективности. Согласно IMSystems, замена контакта зубчатого колеса на контакт качения способствует минимизации потерь в контакте, которые, в частности, при передаче крутящего момента между планетарной передачей и кольцевыми роликами должны компенсировать высокое латентное соотношение мощности и приводить к максимальному КПД. около 80% (IMSystems, 2019).Никаких данных о пусковых моментах или потерях, не зависящих от нагрузки, не предоставляется.

Чтобы обеспечить передачу высокого крутящего момента без проскальзывания, необходимо строго контролировать деформацию роликов планетарного механизма, а также производственные допуски коробки передач. Это представляет собой одну из основных технологических проблем, и это ядро ​​инноваций, вносимых этой технологией (Schorsch, 2014).

NuGear

STAM s.r.l. — частная инженерная компания из Генуи, которая помогла разработать роботизированный сустав для гуманоидного робота I-Cub.Их NuGear — это нутационная коробка передач, которая изначально была задумана (Барбагелата и Корсини, 2000) для космических приложений, но могла бы развить свой потенциал для робототехники также за счет исследования альтернативных производственных средств.

Пока нет общедоступной информации о рабочих характеристиках этой коробки передач, что означает, что мы можем предоставить здесь только предварительный анализ ее топологии и результирующих характеристик, которых можно ожидать на основе ограниченной информации, доступной в основном из проекта Caxman EU ( CAxMan, 2020), для которого NuGear был вариантом использования, и из доступных патентов (Barbagelata et al., 2016).

На рисунке 8 внутренняя структура NuGear представлена ​​с использованием эквивалентной конфигурации PGT — для облегчения понимания абстрагируется аспект нутации. Таким образом становится ясно, что NuGear напоминает два PGT Wolfrom, для которых несущая используется в качестве входа, соединенных последовательно, и где каждый из них соответствует одному из двух этапов, определенных в Barbagelata et al. (2016). Это еще раз указывает на то, что в этой коробке передач будет присутствовать относительно высокий коэффициент скрытой мощности.Для передаточного числа 1: 100 и при условии сбалансированного усиления 1:10 на каждой из двух ступеней, как предложено в Barbagelata et al. (2016), мы получаем, используя уравнения, полученные в Приложении I, коэффициент скрытой мощности, равный 32, что указывает на топологическую эффективность, аналогичную таковой у Wolfrom PGT.

Рисунок 8 . Внутренняя конфигурация двухступенчатой ​​коробки передач NuGear для версии с оппозитными контактами планет адаптирована из CAxMan (2020) с разрешения © Stam S.r.l. Он также включает схему базовой топологии.

Еще предстоит подтвердить, в какой степени использование методов аддитивного производства может помочь STAM s. r.l. снизить большие затраты на производство конических зубчатых колес, а также определить, сможет ли операция нутации достичь достаточной надежности и более компактной формы, которые могут открыть дверь для ее использования в области робототехники (CAxMan, 2020).

Двусторонний привод

Компания FUJILAB в Иокогаме предложила в Fujimoto (2015) коробку передач с высокой степенью управляемости для робототехники, которая особенно подходит для работы без датчика крутящего момента (Kanai and Fujimoto, 2018).

Как видно на Рисунке 9, конфигурация этого устройства опять же аналогична Wolfrom PGT. При такой топологии Fujimoto et al. смогли достичь при передаточном числе 1: 102 КПД при движении вперед 89,9% и КПД при движении задним ходом 89,2%. Пусковой крутящий момент без нагрузки в обратном направлении составил 0,016 Нм в коробке передач с внешним диаметром ~ 50 мм (Kanai and Fujimoto, 2018). Стратегия достижения такой высокой эффективности с топологией Wolfrom заключается в оптимизации коэффициентов сдвига профиля (Fujimoto and Kobuse, 2017).

Рисунок 9 . Внутренняя конфигурация двустороннего привода, высокоэффективной коробки передач, способной обеспечивать передаточное число 1: 102 с использованием топологии Wolfrom, любезно предоставлено © Ясутака Фудзимото.

Эти многообещающие результаты — см. Таблицу 4 — показывают, что выравнивание соотношений подвода и углубления посредством оптимизации коэффициентов смещения профиля может привести к чрезвычайно высокой эффективности зацепления. Насколько известно авторам, эта стратегия была первоначально предложена Хори и Хаяши (1994) и особенно интересна в топологии Wolfrom, где она может в конечном итоге обеспечить эффективность выше 90% в сочетании с высокими передаточными числами и компактными топологиями.

Привод подшипника шестерни

Вслед за новаторской работой в этой области Джона М. Враниша из НАСА, результатом которой стало изобретение планетарной шестерни без водила во Вранише (1995) и подшипников с частичными зубьями (Враниш, 2006), NASA Goddard Space Летный центр представил свою концепцию нового зубчатого подшипника в Вайнберге и др. (2008).

Северо-Восточный университет в Бостоне продолжил разработку этого нового привода для применения в роботизированных соединениях.Как можно увидеть на Рисунке 10, он включает в себя редуктор Wolfrom, адаптированный для включения конструкции Vranish без опоры и подшипников редуктора. Подшипники шестерен представляют собой контакты качения, которые предусмотрены для каждой пары зацепных шестерен в соответствии с их делительным диаметром и уменьшают нагрузку на подшипники коробки передач (Brassitos et al., 2013). Эта топология обеспечивает удобную интеграцию электромотора, который, следовательно, встроен в полость внутри большого солнечного зубчатого колеса в конфигурации, специально предназначенной для космических приложений (Brassitos and Jalili, 2017).

Рисунок 10 . Внутренняя конфигурация зубчатого подшипника, включая встроенный бесщеточный двигатель, адаптирована из Brassitos and Jalili (2017) с разрешения © 2017 Американское общество инженеров-механиков ASME. Справа также показана основная топология Wolfrom с расщепленным реакционным кольцом.

В Brassitos and Jalili (2018) металлический прототип привода с зубчатым подшипником с передаточным числом 1:40 характеризуется жесткостью, трением и кинематической погрешностью.Измерения полностью соответствуют данным FUJILAB и подтверждают низкий пусковой крутящий момент без нагрузки в этой конфигурации (0,0165 Нм для внешнего диаметра коробки передач ~ 100 мм). После экспериментального измерения жесткости, трения и кинематической погрешности их привода (Brassitos and Jalili, 2018) интегрировали эти значения в динамическую модель, которая затем была смоделирована и сравнена с откликом скорости разомкнутого контура системы при свободном синусоидальном движении, показав хорошие результаты. корреляция и предлагает очень удобную высокую линейность передачи.

Предварительные измерения показали хороший комбинированный КПД двигателя и коробки передач Wolfrom с передаточным числом 1: 264 (Brassitos et al. , 2013), что не очень хорошо коррелирует с рассчитанным скрытым коэффициентом мощности 196. КПД не был определен. снова в центре внимания недавних статей авторов, и мы, к сожалению, не смогли на данный момент подтвердить окончательные уровни эффективности, которых могут достичь новые прототипы.

В любом случае, привод с зубчатым подшипником дает очень интересные возможности для использования потенциала топологии Wolfrom в робототехнике.Возможность удаления несущей конструкции и встраивания электродвигателя в коробку передач в общем корпусе позволяет получить впечатляюще компактные конструкции. Возможность использования продольных роликов зубчатых подшипников для уменьшения радиальной нагрузки на подшипники также является многообещающим вариантом для повышения компактности и повышения эффективности (Brassitos et al., 2019).

Галакси Драйв

Schreiber and Schmidt (2015) защищает основные инновации, включенные в Galaxie Drive, коробку передач, которую WITTENSTEIN в настоящее время выводит на рынок прецизионных коробок передач через свой стартап Wittenstein Galaxie GmbH, созданный в апреле 2020 года.

Хотя таблица данных и подробная информация еще не доступны, также раскрыты принцип работы и ожидаемая прибыль. Galaxie Drive представляет новый кинематический подход, основанный на линейном наведении одиночного зуба в зубчатом каркасе Teeth Carrier , но, по мнению этих авторов, его топология напоминает топологию деформационно-волнового механизма, см. Рис. 11. Гибкая линия заменена зубцами. Держатель, включающий два ряда отдельных зубцов, выполнен с возможностью радиального перемещения и зацепления с круговым шлицем в качестве вращающегося многоугольного вала выполняет роль генератора волн с многоугольным периметром (Schreiber and Röthlingshöfer, 2017).Следовательно, несколько отдельных зубцов входят в зацепление одновременно с круговым шлицем — так же, как в Harmonic Drive. По словам производителя, это вместе с двухточечным контактом с высокой устойчивостью к крутящему моменту между каждым отдельным зубом и зубчатым каркасом обеспечивает этому устройству характерный нулевой люфт, высокую жесткость на кручение и эталонное соотношение крутящего момента к весу.

Рисунок 11 . Деталь зацепления зубьев коробки передач Galaxy (R) DF, адаптированная из Schreiber (2015) с разрешения © 2020 Wittenstein Galaxie GmbH.Он включает схему базовой топологии KHV.

В ходе прямого обмена мнениями представители Виттенштейна подтвердили, что очевидная проблема трения между отдельными зубьями и их направляющим круговым кольцом решена, и Galaxie может достичь максимальной эффективности выше 90%. Из-за лежащей в основе конфигурации KHV ожидаются большие коэффициенты скрытой мощности, но пока невозможно получить дальнейшее представление об эффективности зацепления, которая будет результатом радиального движения зубьев, которое включает новую логарифмическую спиральную боковую поверхность зуба (Мишель, 2015).

Изначально привод Galaxie Drive предназначался для высокоточного оборудования, где высокая жесткость и сопротивление крутящему моменту могут помочь увеличить скорость и производительность. В будущем мы, безусловно, сможем оценить потенциал этой инновационной технологии также для робототехнических приложений.

Обсуждение

Новое поколение робототехнических устройств меняет приоритеты в выборе подходящих коробок передач. Вместо высочайшей точности на высоких скоростях эти устройства предъявляют более строгие требования к легким и очень эффективным устройствам с механическим усилением.

Сверхлегкие приводы деформационных волн (HD, E-cyclo), безусловно, находятся в очень хорошем положении для удовлетворения этих потребностей, что подтверждается их нынешним доминированием в области коботов. При рассмотрении привода деформационной волны для роботизированной задачи pHRI работа при низких крутящих моментах и ​​скоростях должна быть сведена к минимуму, если эффективность должна быть максимальной. Хотя их оптимизированная геометрия зубьев способствует более линейной жесткости на кручение, трение остается в значительной степени нелинейным и зависит от направления, вызывая также определенные ограничения использования.Храповик как следствие ударной нагрузки — еще одно ограничение, которое следует учитывать для этого типа редуктора, которое E-Cyclo не должен иметь (SUMITOMO, 2020).

Циклоидные приводы

прошли долгий путь, чтобы в конечном итоге стать доминирующей технологией в промышленных роботах. Благодаря технологическим достижениям, направленным на уменьшение люфта и ограничений скорости ввода, теперь они могут обеспечивать хорошую точность с приемлемой эффективностью, несмотря на высокие скрытые коэффициенты мощности, возникающие из-за базовой топологии KHV, эквивалентной топологии приводов с волновой деформацией.Использование ступени перед зацеплением также вносит важный вклад в достижение этой цели за счет повышения базовой топологической эффективности. Сверхлегкие конструкции, подобные конструкции SPINEA, демонстрируют интересный потенциал, но в конечном итоге потребуются более прорывные подходы, такие как пластиковые материалы, чтобы удовлетворить потребности в более легких коробках передач и более высоких передаточных числах, необходимых для HRI. Пока это не станет возможным, циклоидные приводы можно рассматривать только для больших полезных нагрузок, когда их больший вес и возникающая инерция не критичны для работы. Когда исключительная точность не требуется, можно избежать мер компенсации люфта в пользу повышения эффективности и более низких пусковых моментов. В любом случае следует позаботиться о том, чтобы адекватно управлять пульсацией крутящего момента, и, вероятно, необходимо будет остаться на этапе перед включением, чтобы обеспечить высокие скорости входного двигателя.

Невозможность планетарных редукторов уменьшить люфт при сохранении хорошей производительности и ограничения жесткости на кручение ограничили их использование в промышленной робототехнике. Тем не менее, PGT чрезвычайно универсальны, что демонстрирует их широкое использование во множестве современных промышленных устройств.И они по своей сути эффективны, надежны и относительно просты — дешевы — в производстве. Это может объяснить недавний интерес специалистов по робототехнике к PGT и почему пять из шести изученных здесь принципиально инновационных коробок передач основаны на конфигурации PGT с высоким передаточным числом: топологии Wolfrom. Лучшая топологическая эффективность в сочетании с улучшением эффективности зацепления за счет модификации профиля или даже еще одного шага вперед по замене зубьев контактами качения являются многообещающими характеристиками. В сочетании с возможностями, открываемыми их полой топологией, эти элементы потенциально могут привести к возвращению PGT в робототехнику.

Наше исследование показывает, что большая универсальность технологий редукторов, используемых в робототехнике, представляет собой серьезную проблему для прямого сравнения их характеристик. Как показывают примеры люфта и максимальной входной скорости, адекватные модификации конструкции могут надлежащим образом компенсировать большинство исходных слабых мест определенной технологии за счет компромиссов в других аспектах, обычно включая эффективность, размер, вес и стоимость. Точно так же большие скрытые коэффициенты мощности указывают на существенный топологический недостаток с точки зрения эффективности, но он также может быть — по крайней мере частично — компенсирован соответствующими модификациями. Таким образом, обучающий эффект заключается в том, что выбор подходящей технологии редуктора для определенного применения pHRI является чрезвычайно сложным процессом, требующим глубокого понимания фундаментальных недостатков, возможностей улучшения и производных компромиссов каждой технологии. Наша первоначальная цель исследования — внести свой вклад в простую таблицу выбора, способную помочь неопытным робототехникам выбрать подходящие технологии редукторов для своих робототехнических устройств, поэтому не могла быть достигнута.Вместо этого в этой статье собраны и объясняются основные параметры выбора и связанные с ними проблемы в каждой из доступных технологий, с целью помочь инженерам-роботам pHRI развить необходимые навыки, необходимые для осознанного выбора подходящей, индивидуально оптимизированной коробки передач.

Два важных аспекта роботизированных редукторов для pHRI, к сожалению, не могут быть адекватно оценены в нашем исследовании на данном этапе: шум и стоимость. По мере приближения роботизированных устройств к людям шум привлекает все больше внимания робототехников. Редукторы, безусловно, представляют собой важный источник шума (переносимого воздухом и конструкцией), но, к сожалению, на данном этапе рекомендуется исключить шум из нашего анализа по двум основным ограничениям. Во-первых, большинство производителей коробок передач еще не предоставляют количественных оценок шумовых характеристик, и когда они это делают, они, как правило, следуют другим методам испытаний, которые также не особенно подходят для рабочих условий в pHRI. Во-вторых, современные технологии коробок передач еще предстоит пройти процесс оптимизации шума.

Стоимость также является важным параметром, делающим технологии pHRI более доступными, и поэтому становится важным при выборе подходящих редукторов для будущих робототехнических технологий. К сожалению, здесь научному сообществу снова доступна недостаточная справочная информация для систематической справедливой оценки крупномасштабного экономического потенциала определенной технологии редукторов. Прежде чем можно будет определить подходящую основу для оценки этого потенциала, требуется большой объем исследовательской работы, которая явно выходит за рамки нашего исследования.

Эти два ограничения очерчивают основные рекомендации авторов для интересных направлений будущих исследований. Определение стандартных условий испытаний на воздушный и конструктивный шум в коробках передач, особенно адаптированных к типичным условиям эксплуатации и потребности в pHRI, могло бы позволить прямое сравнение различных технологий и способствовать их оптимизации шума. Кроме того, составление доступных моделей затрат для производственных процессов, задействованных в производстве редукторов, и их адаптация к специфике конкретных технологий, используемых в робототехнике, позволит создать основу для оценки потенциального (и препятствия) крупномасштабных затрат разные технологии.

Авторские взносы

Все авторы принимали участие в предварительной работе, связанной с этой темой исследования, и внесли свой вклад в концептуализацию структуры, представленной в рукописи. PG работала над разработкой подходящей системы оценки для проведения анализа коробки передач и взяла на себя инициативу в написании рукописи и преобразовании ее в ее текущую форму. PG и ES в равной степени внесли свой вклад в определение потенциально подходящих технологий и их анализ с помощью фреймворка.Все корректуры авторов прочитали и внесли свой вклад в окончательную версию статьи.

Финансирование

SC, ES (доктор философии) и TV (доктор наук) являются научными сотрудниками Исследовательского фонда Фландрии — Fonds voor Wetenschappelijk Onderzoek (FWO). Эта работа частично финансируется программой исследований и инноваций Европейского Союза Horizon 2020 в рамках Соглашения о гранте № 687662 — проект SPEXOR.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы хотели бы поблагодарить профессора Ясутака Фудзимото из Йокогамского национального университета, а также компании Neugart GmbH, Harmonic Drive SE, Sumitomo Drive Germany GmbH, Genesis Robotics, Innovative Mechatronic Systems B. V., Stam s.r.l. и Wittenstein Galaxy GmbH за любезную поддержку и полученные объяснения, а также за разрешение использовать прилагаемые изображения их устройств.

Дополнительные материалы

Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/frobt.2020.00103/full#supplementary-material

Список литературы

Альбу-Шеффер, А., Эйбергер, О., Гребенштейн, М., Хаддадин, С., Отт, К., Вимбок, Т., и др. (2008). Мягкая робототехника. Робот IEEE. Автомат. Mag. 15, 20–30. DOI: 10.1109 / MRA.2008.927979

CrossRef Полный текст | Google Scholar

Arigoni, R., Cognigni, E., Musolesi, M., Gorla, C., and Concli, F. (2010). «Планетарные редукторы скорости: эффективность, люфт, жесткость» в Международной конференции VDI по зубчатым колесам (Мюнхен).

Google Scholar

Арнаудов, К., Караиванов, Д. (2005). «Планетарные зубчатые передачи с высшим составом» в Международная конференция VDI по зубчатым колесам , Vol. 1904 (Мюнхен: VDI-Bericht), 327–344.

Барбагелата А. и Корсини Р. (2000). Riduttore Ingranaggi Conici Basculanti . Патент Италии № IT SV20000049A1. Рим: Ufficio Italiano Brevetti e Marchi.

Барбагелата А., Эллеро С. и Ландо Р. (2016). Планетарный редуктор .Европейский патент № EP2975296A2. Мюнхен: Европейское патентное ведомство.

Брасситос, Э., Джалили Н. (2017). Проектирование и разработка компактного высокомоментного роботизированного привода для космических механизмов. J. Mech. Робот. 9, 061002-1–061002-11. DOI: 10.1115 / 1.4037567

CrossRef Полный текст | Google Scholar

Брасситос, Э., Джалили, Н. (2018). «Определение характеристик жесткости, трения и кинематической погрешности в трансмиссиях с зубчатыми подшипниками», в ASME 2018 International Design Engineering Technical Conference и Computers and Information in Engineering Conference (Квебек: цифровая коллекция Американского общества инженеров-механиков). DOI: 10.1115 / DETC2018-85647

CrossRef Полный текст | Google Scholar

Brassitos, E., Mavroidis, C., and Weinberg, B. (2013). «Зубчатый подшипниковый привод: новый компактный привод для роботизированных соединений», на Международной конференции по проектированию и проектированию ASME 2013, а также на конференции «Компьютеры и информация в инженерии» (Портленд, Орегон: цифровая коллекция Американского общества инженеров-механиков). DOI: 10.1115 / DETC2013-13461

CrossRef Полный текст | Google Scholar

Брасситос, Э., Вайнберг, Б., Цинчао, К., и Мавроидис, К. (2019). Контактная система изогнутого подшипника . Патент США № US10174810B2. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

Google Scholar

Каланка, А., Мурадор, Р., Фиорини, П. (2015). Обзор алгоритмов совместимого управления жесткими и фиксированными роботами. IEEE / ASME Trans. Мех. 21, 613–624. DOI: 10.1109 / TMECH.2015.2465849

CrossRef Полный текст | Google Scholar

Карбоне, Г. , Mangialardi, L., и Mantriota, G. (2004). Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. мех. Мах. Теория 39, 921–942. DOI: 10.1016 / j.mechmachtheory.2004.04.003

CrossRef Полный текст | Google Scholar

Cetinkunt, S. (1991). Проблемы оптимального проектирования в высокоскоростных высокоточных сервосистемах движения. Мехатроника 1, 187–201. DOI: 10.1016 / 0957-4158 (91)

-A

CrossRef Полный текст | Google Scholar

Чен, К.и Анхелес Дж. (2006). Потери виртуальной мощности и механические потери мощности в зубчатых зацеплениях планетарных зубчатых передач. ASME J. Mech. Des. 129, 107–113. DOI: 10.1115 / 1.2359473

CrossRef Полный текст | Google Scholar

Чен, Д. З., и Цай, Л. В. (1993). Кинематический и динамический синтез редукторных робототехнических механизмов. J. Mech. Des. 115, 241–246. DOI: 10.1115 / 1.2

3

CrossRef Полный текст | Google Scholar

Crispel, S. , López-García, P., Verstraten, T., Convens, B., Saerens, E., Vanderborght, B., and Lefeber, D. (2018). «Представляем составные планетарные передачи (C-PGT): компактный способ достижения высоких передаточных чисел для носимых роботов», на Международном симпозиуме по носимой робототехнике (Пиза), 485–489. DOI: 10.1007 / 978-3-030-01887-0_94

CrossRef Полный текст | Google Scholar

Де Сантис А., Сицилиано Б., Де Лука А. и Бикки А. (2008). Атлас физического взаимодействия человека и робота. мех.Мах. Теория 43, 253–270. DOI: 10.1016 / j.mechmachtheory.2007.03.003

CrossRef Полный текст | Google Scholar

Дель Кастильо, Дж. М. (2002). Аналитическое выражение КПД планетарных зубчатых передач. мех. Мах. Теория 37, 197–214. DOI: 10.1016 / S0094-114X (01) 00077-5

CrossRef Полный текст | Google Scholar

Дрессчер, Д., де Врис, Т. Дж., И Страмиджоли, С. (2016). «Выбор мотор-редуктора для повышения энергоэффективности», Международная конференция IEEE 2016 по усовершенствованной интеллектуальной мехатронике (AIM) (Банф, AB: IEEE), 669–675. DOI: 10.1109 / AIM.2016.7576845

CrossRef Полный текст | Google Scholar

Фудзимото Ю. (2015). Эпициклический зубчатый привод и метод его проектирования . Патент Японии № JP2015164100. Токио: Патентное ведомство Японии.

Fujimoto, Y., and Kobuse, D. (2017). «Роботизированные приводы с высокой управляемостью назад», на международном семинаре IEEJ по обнаружению, срабатыванию, управлению движением и оптимизации (SAMCON) (Нагаока), IS2–1.

GAM (2020 г.). GSL Коробка передач деформационной волны .Каталог.

ГЕНЕЗИС (2018). Усилитель крутящего момента Reflex — движущая сила будущего . Tech Update Общайтесь.

Гиберти Х., Чинквемани С. и Леньяни Г. (2010). Влияние механических характеристик трансмиссии на выбор мотор-редуктора. Мехатроника 20, 604–610. DOI: 10.1016 / j.mechatronics.2010.06.006

CrossRef Полный текст | Google Scholar

Жирар, А., Асада, Х. Х. (2017). Использование естественной динамики нагрузки с приводами с регулируемым передаточным числом. Робот IEEE. Автомат. Lett. 2, 741–748. DOI: 10.1109 / LRA.2017.2651946

CrossRef Полный текст | Google Scholar

Горла К., Даволи П., Роза Ф., Лонгони К., Чиоцци Ф. и Самарани А. (2008). Теоретический и экспериментальный анализ циклоидного редуктора скорости. J. Mech. Des. 130: 112604. DOI: 10.1115 / 1.2978342

CrossRef Полный текст | Google Scholar

Groothuis, S. S., Folkertsma, G.A., и Stramigioli, S. (2018). Общий подход к достижению стабильности и безопасного поведения в распределенных роботизированных архитектурах. Фронт. Робот. AI 5: 108. DOI: 10.3389 / frobt.2018.00108

CrossRef Полный текст | Google Scholar

Хаддадин, С., Альбу-Шеффер, А., и Хирцингер, Г. (2009). Требования к безопасным роботам: измерения, анализ и новые идеи. Внутр. J. Робот. Res , 28, 1507–1527. DOI: 10.1177 / 0278364

3970

CrossRef Полный текст | Google Scholar

Хаддадин, С., Крофт, Э. (2016). «Физическое взаимодействие человека и робота», в Springer Handbook of Robotics (Cham: Springer), 1835–1874. DOI: 10.1007 / 978-3-319-32552-1_69

CrossRef Полный текст | Google Scholar

HALODI Robotics (2018). ДВИГАТЕЛЬ с прямым приводом Revo1 ™ [Брошюра], Moss. Доступно в Интернете по адресу: https://www.halodi.com/revo1 (по состоянию на 30 апреля 2020 г.).

Хэм, Р. В., Шугар, Т. Г., Вандерборг, Б., Холландер, К. В., и Лефебер, Д. (2009). Соответствующие конструкции приводов. Робот IEEE. Автомат. Mag. 16, 81–94. DOI: 10.1109 / MRA.2009.933629

CrossRef Полный текст | Google Scholar

Гармонический привод A.G. (2014) Технические данные Наборы компонентов CSD-2A . Каталог.

Хлебаня Г., Куловец С. (2015). «Разработка плоскоцентрической коробки передач на основе геометрии S-образной шестерни», в 11. Kolloquium Getriebetechnik (Мюнхен), 205–216.

Google Scholar

Хоган, Н. (1984). «Контроль импеданса: подход к манипуляции», в 1984 American Control Conference (Сан-Диего, Калифорния: IEEE), 304–313. DOI: 10.23919 / ACC.1984.4788393

CrossRef Полный текст | Google Scholar

Хори, К., и Хаяси, I. (1994). Максимальный КПД обычных механических планетарных шестерен парадокса для понижающего привода. Пер. Jpn. Soc. Мех. Англ. 60, 3940–3947. DOI: 10.1299 / kikaic.60.3940

CrossRef Полный текст

Хантер, И. В., Холлербах, Дж. М., и Баллантайн, Дж. (1991). Сравнительный анализ актуаторных технологий для робототехники. Робот. Ред. 2, 299–342.

Google Scholar

IMSystems (2019). проезд Архимеда.IMSystems — Drive Innovation [Брошюра], Делфт.

Икбал, Дж., Цагаракис, Н. Г., и Колдуэлл, Д. Г. (2011). «Дизайн носимого оптимизированного экзоскелета руки с прямым приводом», в Международной конференции по достижениям в области взаимодействия компьютера и человека (ACHI) (Гозье).

PubMed Аннотация | Google Scholar

Канаи Ю., Фудзимото Ю. (2018). «Бессенсорное управление крутящим моментом для экзоскелета с электроприводом с использованием приводов с высокой степенью обратного привода», на IECON 2018–44-й ежегодной конференции Общества промышленной электроники IEEE (Вашингтон, округ Колумбия: IEEE), 5116–5121. DOI: 10.1109 / IECON.2018.85

CrossRef Полный текст | Google Scholar

Капелевич А. и ООО «АКГирс» (2013 г.). Анализ планетарных передач с высоким передаточным числом. Передаточное отношение 3, 10.

Google Scholar

Караяннидис Ю., Друкас Л., Папагеоргиу Д. и Доулжери З. (2015). Управление роботом для выполнения задач и повышения безопасности при ударах. Фронт. Робот. AI 2:34. DOI: 10.3389 / frobt.2015.00034

CrossRef Полный текст | Google Scholar

Кашири, Н., Abate, A., Abram, S.J., Albu-Schaffer, A., Clary, P.J., Daley, M., et al. (2018). Обзор принципов энергоэффективного передвижения роботов. Фронт. Робот. AI 5: 129. DOI: 10.3389 / frobt.2018.00129

CrossRef Полный текст | Google Scholar

Ким, Дж., Парк, Ф. К., Парк, Ю., и Шизуо, М. (2002). Конструирование и анализ сферической бесступенчатой ​​трансмиссии. J. Mech. Des . 124, 21–29. DOI: 10.1115 / 1.1436487

CrossRef Полный текст | Google Scholar

Классен, Дж. Б. (2019). Дифференциальная планетарная коробка передач . Международный патент № WO2019 / 051614A1. Женева: Всемирная организация интеллектуальной собственности, Международное бюро.

Google Scholar

Коряков-Савойский Б., Алексахин И., Власов И. П. (1996). Зубчатая передача . Патент США № US5505668A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

Google Scholar

Ли С. (2014). «Новейшие технологии проектирования зубчатых передач с большим передаточным числом», в материалах Proceedings of International Gear Conference (Lyon), 427–436.DOI: 10.1533 / 9781782421955.427

CrossRef Полный текст | Google Scholar

Луман, Дж. (1996). Zahnradgetriebe (Зубчатые механизмы) . Берлин: Springer-Verlag. DOI: 10.1007 / 978-3-540-89460-5

CrossRef Полный текст

Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Конвенс, Б., Вандерборгт, Б., и Лефебер, Д. (2018). «Конструкция планетарного редуктора для активной носимой робототехники, основанная на анализе видов отказов и последствий (FMEA)», на Международном симпозиуме по носимой робототехнике (Пиза), 460–464. DOI: 10.1007 / 978-3-030-01887-0_89

CrossRef Полный текст | Google Scholar

Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019a). «Редукторы Wolfrom для легкой робототехники, ориентированной на человека», в материалах Proceedings of the International Conference on Gears 2019 (Мюнхен: VDI), 753–764.

Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019b). «Настройка планетарных зубчатых передач для поддержки и воспроизведения конечностей человека», в MATEC Web of Conferences (Варна: EDP Sciences), 01014.DOI: 10.1051 / matecconf / 201928701014

CrossRef Полный текст | Google Scholar

Лафлин, К., Альбу-Шеффер, А., Хаддадин, С., Отт, К., Стеммер, А., Вимбек, Т., и Хирцингер, Г. (2007). Легкий робот DLR: концепции проектирования и управления роботами в среде обитания человека. Ind. Робот. Int. J . 34, 376–385. DOI: 10.1108 / 01439

  • 0774386

    CrossRef Полный текст | Google Scholar

    Макмиллан Р. Х. и Дэвис П. Б. (1965). Аналитическое исследование систем раздвоенной передачи энергии. J. Mech. Англ. Sci . 7, 40–47. DOI: 10.1243 / JMES_JOUR_1965_007_009_02

    CrossRef Полный текст | Google Scholar

    Mayr, C. (1989). Präzisions-Getriebe für die Automation: Grundlagen und Anwendungsbeispiele . Ландсберг: Verlag Moderne Industrie.

    Мишель, С. (2015). Logarithmische spirale statt evolvente. Maschinenmarkt № . 18, 40–42.

    Михайлидис А., Афанасопулос Э. и Оккас Э. (2014). «Эффективность циклоидного редуктора», в International Gear Conference (Lyon Villeurbanne), 794–803.DOI: 10.1533 / 9781782421955.794

    CrossRef Полный текст | Google Scholar

    Морозуми, М. (1970). Эвольвентное внутреннее зацепление со смещением профиля . Патент США № US3546972A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Мюллер, Х. В. (1998). Die Umlaufgetriebe: Auslegung und vielseitige Anwendungen . Берлин; Гейдельберг: Springer-Verlag. DOI: 10.1007 / 978-3-642-58725-2

    CrossRef Полный текст | Google Scholar

    Мульцер, Ф.(2010). Systematik hoch übersetzender koaxialer getriebe (Докторская диссертация). Технический университет Мюнхена, Мюнхен, Германия.

    Google Scholar

    Musser, C. W. (1955). Деформационная передача . Патент США № US2

    3A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    НАБТЕКО (2018). Прецизионный редуктор серии RV — N . CAT.180410. Каталог.

    Нойгарт, А. Г. (2020). PLE Линия эконом-класса .Каталог.

    Ниманн, Г., Винтер, Х., Хён, Б. Р. (1975). Maschinenelemente, Vol. 1 . Берлин; Гейдельберг; Нью-Йорк, штат Нью-Йорк: Спрингер.

    Google Scholar

    Pasch, K. A., and Seering, W. P. (1983). «О приводных системах для высокопроизводительных машин», в Машиностроение (Нью-Йорк, Нью-Йорк: Машиностроение Общества ASME-AMER), 107–107.

    Pennestri, E., and Freudenstein, F. (1993). Механический КПД планетарных зубчатых передач. ASME J. Mech. Des . 115, 645–651. DOI: 10.1115 / 1.2

    9

    CrossRef Полный текст | Google Scholar

    Петтерссон, М., и Олвандер, Дж. (2009). Оптимизация трансмиссии промышленных роботов. IEEE Trans. Робот. 25, 1419–1424. DOI: 10.1109 / TRO.2009.2028764

    CrossRef Полный текст | Google Scholar

    Фам, А. Д., и Ан, Х. Дж. (2018). Прецизионные редукторы для промышленных роботов, способствующих четвертой промышленной революции: состояние дел, анализ, дизайн, оценка производительности и перспективы. Внутр. J. Precis. Англ. Manuf. Green Technol. 5, 519–533. DOI: 10.1007 / s40684-018-0058-x

    CrossRef Полный текст | Google Scholar

    Резазаде, С., и Херст, Дж. У. (2014). «Об оптимальном выборе двигателей и трансмиссий для электромеханических и робототехнических систем», в Международная конференция IEEE / RSJ 2014 по интеллектуальным роботам и системам (Чикаго, Иллинойс: IEEE), 4605–4611. DOI: 10.1109 / IROS.2014.6943215

    CrossRef Полный текст | Google Scholar

    Роос, Ф., Йоханссон, Х., Викандер, Дж. (2006). Оптимальный выбор двигателя и редуктора для мехатронных приложений. Мехатроника 16, 63–72. DOI: 10.1016 / j.mechatronics.2005.08.001

    CrossRef Полный текст | Google Scholar

    Розенбауэр Т. (1995). Getriebe für Industrieroboter: Beurteilungskriterien . Kenndaten, Einsatzhinweise: шейкер.

    Россман, А. М. (1934). Механизм . Патент США № US 1970251. Вашингтон, округ Колумбия: У.S. Ведомство по патентам и товарным знакам.

    Google Scholar

    Saerens, E., Crispel, S., García, P. L., Verstraten, T., Ducastel, V., Vanderborght, B., and Lefeber, D. (2019). Законы масштабирования для роботизированных трансмиссий. мех. Мах. Теория 140, 601–621. DOI: 10.1016 / j.mechmachtheory.2019.06.027

    CrossRef Полный текст | Google Scholar

    Шафер И., Бурлье П., Хантшак Ф., Робертс Э. У., Льюис С. Д., Форстер Д. Дж. И Джон К. (2005). «Космическая смазка и характеристики шестерен гармонического привода», в 11-м Европейском симпозиуме по космическим механизмам и трибологии, ESMATS 2005 (Люцерн), 65–72.

    Google Scholar

    Шейнман, В., Маккарти, Дж. М., и Сонг, Дж. Б. (2016). «Механизм и приведение в действие», в Springer Handbook of Robotics (Cham: Springer), 67–90. DOI: 10.1007 / 978-3-319-32552-1_4

    CrossRef Полный текст | Google Scholar

    Шемпф, Х. (1990). Сравнительное проектирование, моделирование и анализ управления роботизированными трансмиссиями (кандидатская диссертация). № WHOI-90-43. Кафедра машиностроения и Океанографический институт Вудс-Холла, Массачусетский технологический институт, Кембридж, Массачусетс, США.DOI: 10.1575 / 1912/5431

    CrossRef Полный текст | Google Scholar

    Шемпф, Х. и Йоргер, Д. Р. (1993). Исследование доминирующих рабочих характеристик в трансмиссиях роботов. ASME J. Mech. Des. 115, 472–482. DOI: 10.1115 / 1.2

    4

    CrossRef Полный текст | Google Scholar

    Шорш, Дж. Ф. (2014). Составной планетарный привод трения . Патент Нидерландов № 2013496. Де Хааг: Octrooicentrum Nederland.

    Google Scholar

    Шрайбер, Х.(2015). «Revolutionäres getriebeprinzip durch neuinterpretation von maschinenelementen — Die WITTENSTEIN Galaxie®-Kinematik», в Dresdner Maschinenelemente Kolloquium, DMK (Дрезден), 2015. S.

    Шрайбер, Х., Рётлингсхёфер, Т. (2017). «Кинематическая классификация коробки передач, содержащей отдельные упорные зубья, и ее преимущества по сравнению с существующими подходами», в Международной конференции по зубчатым колесам , ICG (Мюнхен).

    Шрайбер, Х., Шмидт, М.(2015). Getriebe. Патент Германии № DE 10 2015 105 525 A1. Мюнхен: Deutsches Patent- und Markenamt.

    Google Scholar

    Сенсинджер, Дж. У. (2010). «Выбор двигателей для роботов с использованием биомиметических траекторий: оптимальные критерии, обмотки и другие соображения», в Международная конференция IEEE 2010 по робототехнике и автоматизации (Анкоридж, AK: IEEE), 4175–4181. DOI: 10.1109 / ROBOT.2010.5509620

    CrossRef Полный текст | Google Scholar

    Сенсинджер, Дж.W. (2013). КПД высокочувствительных зубчатых передач, например, циклоидных передач. ASME J. Mech. Des. 135, 071006-1–071006-9. DOI: 10.1115 / 1.4024370

    CrossRef Полный текст | Google Scholar

    Сенсинджер, Дж. У., Кларк, С. Д., Шорш, Дж. Ф. (2011). «Внешний и внутренний роторы в роботизированных бесщеточных двигателях», Международная конференция IEEE по робототехнике и автоматизации, 2011 г., (Монреаль, Квебек, IEEE), 2764–2770. DOI: 10.1109 / ICRA.2011.5979940

    CrossRef Полный текст | Google Scholar

    Сеок, С., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M., et al. (2014). Принципы разработки энергоэффективного передвижения на ногах и их реализация на роботе-гепарде Массачусетского технологического института. IEEE / ASME Trans. Мех. 20, 1117–1129. DOI: 10.1109 / TMECH.2014.2339013

    CrossRef Полный текст | Google Scholar

    Сицилиано Б., Шавикко Л., Виллани Л. и Ориоло Г. (2010). Робототехника: моделирование, планирование и управление . Лондон: Springer Science and Business Media. DOI: 10.1007 / 978-1-84628-642-1

    CrossRef Полный текст | Google Scholar

    Слэттер Р. (2000). Weiterentwicklung eines Präzisionsgetriebes für die Robotik . Санкт-Леонард: Antriebstechnik.

    Google Scholar

    SPINEA (2017). TwinSpin — высокоточные редукторы — Präzisionsgetriebe . Каталог.

    Страмиджоли, С., Ван Оорт, Г., Дертьен, Э. (2008). «Концепция нового энергоэффективного привода», в Международная конференция IEEE / ASME 2008 по усовершенствованной интеллектуальной мехатронике (Сиань: IEEE), 671–675.DOI: 10.1109 / AIM.2008.4601740

    CrossRef Полный текст | Google Scholar

    СУМИТОМО (2017). Fine Cyclo® Spielfreie Präzisionsgetriebe . Каталог 9

    DE 02/2017.

    СУМИТОМО (2020). Приводы управления движением E-Cyclo®. Каталог F10001E-1.

    Талбот Д., Кахраман А. (2014). «Методология прогнозирования потерь мощности планетарных передач», International Gear Conference (Lyon-Villeurbanne), 26–28. DOI: 10.1533 / 9781782421955.625

    CrossRef Полный текст

    Томчик, Х. (2000). Регулирующее устройство с планетарной передачей . Европейский патент № EP1244880B1. Мюнхен: Европейское патентное ведомство.

    Google Scholar

    Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T., et al. (2019). «Экзоскелеты с опорой на спину для профессионального использования: обзор технологических достижений и тенденций», в IISE Trans. Ок. Эргон. Гм. Факторы 7, 3–4, 237–249.DOI: 10.1080 / 24725838.2019.1626303

    CrossRef Полный текст | Google Scholar

    Ван де Стрете, Х. Дж., Дегезель, П., Де Шуттер, Дж., И Бельманс, Р. Дж. (1998). Критерий выбора серводвигателя для мехатронных приложений. IEEE / ASME Trans. Мех. 3, 43–50. DOI: 10.1109 / 3516.662867

    CrossRef Полный текст | Google Scholar

    Вел, А. Дж., И Се, С. К. (2016). На пути к совместимым и пригодным для носки роботизированным ортезу: обзор текущих и новых актуаторных технологий. Med. Англ. Phys. 38, 317–325. DOI: 10.1016 / j.medengphy.2016.01.010

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., and Lefeber, D. (2016). «Энергопотребление мотор-редукторов постоянного тока в динамических приложениях: сравнение подходов к моделированию» в IEEE Robot. Автомат. Lett. 1, 524–530. DOI: 10.1109 / LRA.2016.2517820

    CrossRef Полный текст | Google Scholar

    Враниш, Дж.М. (1995). Планетарный привод без несущей и против люфта . Патент США № US5409431. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Враниш, Дж. М. (2006). Подшипники с частичным зубчатым колесом . Патент США № US2006 / 0219039A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Ван, А., Ким, С. (2015). «Направленная эффективность в редукторных трансмиссиях: характеристика обратного движения в сторону улучшенного проприоцептивного контроля», в IEEE International Conference on Robotics and Automation (ICRA) 2015 г. (ICRA) (Сиэтл, Вашингтон: IEEE), 1055–1062.DOI: 10.1109 / ICRA.2015.7139307

    CrossRef Полный текст | Google Scholar

    Вайнберг, Б., Мавроидис, К., и Враниш, Дж. М. (2008). Зубчатый подшипник привода . Патент США № US2008 / 0045374A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    WinterGreen Research (2018). Прецизионные редукторы деформационных волн и редукторы RV и RD: доли рынка, стратегия и прогнозы, во всем мире, с 2018 по 2024 годы . WIN0418002.

    WITTENSTEIN AG (2020 г.). Technische Broschüre SP + und TP + Getrieben. Каталог.

    Вольф, А. (1958). Die Grundgesetze der Umlaufgetriebe . Брауншвейг: Фридр. Vieweg и Sohn.

    Вольфром, У. (1912). Der Wirkungsgrad von Planetenrädergetrieben. Werkstattstechnik 6, 615–617.

    Ю. Д., Бичли Н. (1985). О механическом КПД дифференциальной передачи. ASME J. Mech. Пер. Автомат. 107, 61–67.DOI: 10.1115 / 1.3258696

    CrossRef Полный текст | Google Scholar

    Зинн, М., Рот, Б., Хатиб, О., и Солсбери, Дж. К. (2004). Новый подход к созданию роботов, удобных для человека. Внутр. J. Робот. Res. 23, 379–398. DOI: 10.1177 / 0278364

    2193

    CrossRef Полный текст | Google Scholar

    Чем отличается роботизированная трансмиссия от автоматической трансмиссии? Робот или автомат: какая коробка лучше.

    Современные автомобили оснащены коробками передач разного типа и потребителю, особенно при покупке своей первой машины, может быть сложно сделать правильный выбор среди этого разнообразия трансмиссий.

    Поэтому в этой статье мы постараемся разобраться, чем АКПП отличается от робота, именно этот вопрос волнует многих будущих автовладельцев.

    Коробка автомат. Как известно, автоматическая коробка передач состоит из двух основных компонентов — гидротрансформатора и коробки передач. Гидротрансформатор обеспечивает плавное и плавное переключение передач, по сути заменяя сцепление на автомобилях с механической коробкой передач.

    АКПП состоит из определенного набора шестерен, они зацеплены и образуют несколько ступеней: 4, 5, 6 и даже 8.

    В силу конструктивных особенностей шестерни АКПП в зависимости от частоты вращения коленчатого вала двигателя и давления нагнетаемого масла сама переключает ступени (скорости), без вмешательства водителя. Благодаря такому переключению передач электроника используется по минимуму.

    КПП робот что это? Проще говоря, на МКПП установили блок управления, который состоит из гидропривода и сервопривода (электронного блока). Этот блок без вмешательства человека отвечает за сцепление и переключение передач.

    Принцип работы робота такой же, как у механики, только все происходит автоматически — гидравлика с электронным управлением она все сделает сама.

    Чтобы лучше понять, чем автоматическая трансмиссия отличается от роботизированной, рассмотрим их тактико-технические характеристики.

    1. Автоматическая трансмиссия значительно снизила нагрузку на водителя при движении, особенно при движении в городских условиях. Современные автоматические трансмиссии (адаптивные) способны даже адаптироваться под каждого водителя, под его стиль вождения.Также автомат отличается мягким и незаметным переключением передач.

    АКПП имеет свои минусы — это повышенный расход топлива, особенно в городе и ремонт машины, который иногда бывает, обойдется в приличную сумму.

    2. Робот относится к механикам, а это значит, что обслуживание и ремонт будут дешевле, чем у машины. Расход топлива у машины с коробкой эквивалентен механической трансмиссии, а в городских условиях даже ниже, что не может не радовать.Кроме того, роботы едят меньше масла, чем автоматы.

    Роботы передают крутящий момент от двигателя на колеса машины без значительных потерь, чего нельзя сказать о машине. Большое преимущество роботизированной коробки в том, что она поддерживает ручное переключение скоростей, чего нет у многих машин.

    У робота тоже есть минусы — это медленное переключение передач и рывки с рывками при работе коробки, это случается довольно часто, если водитель очень сильно нажимает на педаль газа.Также в городских условиях при парковке необходимо переводить рычаг селектора в «нейтральное» положение.

    А зачем это нужно, вы можете узнать из этого видео, в котором рассказывается о роботе-боксе.

    Подведем итоги различий между автоматом и роботом:

    • робот — механическая коробка передач с блоком управления, автомат имеет собственную конструкцию;
    • при переключении передач автомат превосходит робота по скорости и плавности переключения;
    • робот имеет ручное переключение, и многие машины не имеют этой функции;
    • робот-бокс потребляет меньше топлива и масла, чем автомат;
    • обслуживание и ремонт роботизированной коробки дешевле автоматической коробки.

    Заключение. Мое мнение: робот — это темная лошадка, от которой можно ожидать неприятных сюрпризов. Выбираю автомат, он проработан и предсказуем в работе, тем более что новые АКПП с большим набором передач уже приближаются к механике по расходу топлива, а также эти автоматы можно настроить под каждого водителя.

    Сегодня автомобиль — это столь необходимое устройство индивидуального пользования, такое как мобильный телефон, фотоаппарат или персональный компьютер.Большинство автолюбителей, находящиеся в процессе выбора нового автомобиля, не могут полностью понять разницу между коробкой передач робота и автоматом, а также испытывают трудности с пониманием технических характеристик и терминологии представленных их вниманию моделей. Автоматические трансмиссии скоро будут заменены механическими, но мало кто знает о большом количестве их разновидностей и отличий. Однако об этом пока рано говорить, теперь необходимо разобраться, что это означает.механика роботов и что такое классический автомат.

    Есть два основных элемента «автомата»:

      — альтернатива сцеплению
    • , используется классическая коробчатая передача.
    • Редуктор выполнен из зацепленных пар шестерен. Благодаря своей конструкции раскрывается особенность автоматической системы — возможность переключать передачи без помощи водителя. Механизм практически не оснащен электроникой.

    «Робот» в принципе похож на механику, но имеет некоторые отличия.В его составе есть тип, состоящий из сервоприводов и гидроприводов, работающих на основе определенных алгоритмов. Коробка передач самостоятельно переключает систему трения сцепления, а также скорость, позволяет водителю не вмешиваться в этот процесс

    Визуальное отличие «машины» от «робота»

    Когда вы решили купить машину или уже сделали это, но понятия не имеете, какая трансмиссия установлена ​​внутри, вам нужен ответ на вопрос, чем отличается автомат от робота, почему один лучше, чем другой.Визуальная разница этих двух коробок передач — робота и автомата — выражена достаточно четко. Все, что нужно, — это обратить внимание на конструкцию канала переключения передач, именно они отличаются. Если вверху есть такое положение, как Парковка — «Р», то это АКПП АКПП, когда такого положения нет, но есть Нейтраль — «N», а также Задняя «R» , значит, вы имеете дело с роботизированным устройством.

    Принцип работы «автоматов»

    Как упоминалось ранее, автоматическая коробка передач состоит из двух частей (гидротрансформатор, коробка передач).Теперь давайте разберемся с устройством и принципом работы коробки. Коробка передач передает мощность через систему шестерен, которые в различных вариациях зацепляются друг с другом. Именно благодаря этой позиции усилия меняются. Гидротрансформатор отвечает за плавное переключение с одной скорости на другую, а также выполняет функции, аналогичные функциям сцепления на механике.

    Автоматическая коробка передач значительно упрощает управление, позволяя водителю избежать постоянного нажатия на педаль сцепления.Водителю не нужно переключать передачи рычагом и контролировать плавность движения, так как автоматика все делает за него. Благодаря этому у владельца автомобиля есть масса способов полностью контролировать любую дорожную ситуацию (чем АКПП отличается от МКПП). Гидротрансформатор как агрегат здесь намного надежнее, чем механическая коробка передач. Сломать его по неопытности практически невозможно. За счет этой детали создается нагрузка на ходовую часть и силовой агрегат.

    Ресурс двигателя лучше сохраняется при переключении передач на приемлемых оборотах. Топливо расходуется более экономично за счет большого количества ступеней на передаточном числе … Автомобиль никогда не катится самостоятельно, стоя на склоне, поскольку установлен пассивный режим системы безопасности.

    Даже у этого варианта управления, помимо очевидных достоинств, есть и недостатки. Автомат отличается от робота тем, что динамика увеличения скорости меньше во время езды. Менее экономичный расход топлива по отношению к большому количеству ступеней редуктора.КПД агрегата намного ниже из-за того, что гидротрансформатор поглощает часть мощности. Высокая стоимость единицы влияет на общую стоимость всего продукта. Обслуживание, замена запчастей, ремонт — дороже.

    Совет! Поскольку самой неэкономичной является коробка с четырьмя передачами, отдавайте предпочтение меньшему количеству передач при покупке автомобиля с АКПП.

    Во-первых, при наличии АКПП в штатном режиме водителю не нужно самостоятельно выбирать и включать передачу, работать педалью и т. Д.На практике это значительно упрощает процесс управления автомобилем, повышает комфорт и безопасность.

    Что касается самих АКПП, то сегодня в обиходе принято называть и (АМТ), и вариаторы «автоматом». Другими словами, есть несколько вариантов. автоматические трансмиссии, при этом по ряду причин наиболее распространенными среди них являются классические автоматические трансмиссии и «роботы».

    Читайте в этой статье

    В чем разница между «роботом» и «машиной»

    Чтобы понять, чем один вид коробки передач отличается от другого, необходимо рассмотреть их особенности и принцип работы.Сразу отметим, что и «автомат» (АКПП), и «робот» (РКПП, АМТ) дают схожий конечный результат: трансмиссия автоматически выбирает и переключает передачи во время движения, учитывая скорость автомобиля, нагрузку на двигатель, положение педали газа и т. д.

    Однако гидромеханическая автоматическая трансмиссия и роботизированная коробка передач механической трансмиссии принципиально различаются по конструкции и принципу действия. Давайте рассмотрим их особенности и отличия более подробно.

    • Начнем с «классического» гидромеханического «автомата» п. В отличие от робота, появившегося сравнительно недавно, обычный автомат появился очень давно и стал первым типом АКПП, который начали массово устанавливать на автомобили.

    В двух словах, автоматическая коробка передач — это ступенчатая коробка передач, в которой преобразователь крутящего момента (GT) действует как сцепление. В этом случае в газовой турбине передается трансмиссионная жидкость ATF.

    Клапанная пластина () и ЭБУ автоматической коробки передач отвечают за управление работой автоматической коробки передач. В пластине есть специальные каналы, по которым в нее под давлением подается трансмиссионная жидкость … Каналы закрываются клапанами (). По команде ЭБУ клапан открывается или закрывается, соответственно открывая или закрывая канал.

    Когда клапан открыт, ATF воздействует на трансмиссию, что приводит к автоматическому включению и отключению передач.

    Достоинства и недостатки АКПП. Говоря о плюсах и минусах гидромеханической АКПП, в списке основных достоинств следует выделить надежность агрегата и проверенную временем конструкцию, а также способность выдерживать достаточно большой крутящий момент.

    Из минусов отметим, что хотя АКПП работает достаточно плавно, моменты автоматического переключения передач все же ощутимы для водителя. Также переключение передач может быть «тугим», особенно на старых «автоматах».Также следует выделить большой расход топлива для автомобилей с данным типом трансмиссии.

    Что касается ремонта, то в случае выхода из строя как самой коробки, так и гидротрансформатора, следует готовиться к серьезным расходам. При этом ремонтопригодность АКПП вполне приемлема, большое количество СТО предоставляют услуги по ремонту.

    • Роботизированная трансмиссия была разработана с нуля для максимальной экономии топлива и комфорта при упрощении и снижении стоимости самого агрегата.В условиях глобального топливного кризиса и жестких экологических стандартов это решение было призвано решить ряд проблем, присущих классической гидромеханической автоматической трансмиссии.

    Проще говоря, в «роботизированной» коробке ножной привод сцепления заменен электроприводом, а переключение передач осуществляется исполнительным механизмом. Выбор и включение передачи, а также включение и выключение сцепления контролируется электронным блоком.

    Управление этими ящиками в принципе аналогично уже известному однодисковому роботу.Тут все те же сервоприводы, исполнительные механизмы и контроллер. Основное отличие состоит в том, что при включении, например, второй передачи, ЭБУ также параллельно включает третью, удерживая сцепление «выжатым». Как только наступает время переключения передач, в доли секунды отключается вторая передача и включается третья, уже включенная наполовину.

    Во время движения блок управления коробкой передач оценивает действия водителя, учитывает скорость автомобиля, положение педали газа, нагрузку на двигатель и ряд других параметров, чтобы выбрать наиболее подходящую передачу для конкретных условий.

    • Плюсы и минусы «робота» с двойным сцеплением … С точки зрения плюсов, точки переключения вверх и вниз незаметны для водителя, переключение на максимальную скорость позволяет добиться практически полного отсутствия перерыва в подаче мощности, разгон авто плавный и быстрый.

    Также сохраняется максимальная топливная экономичность, присущая всем роботизированным коробкам передач. При этом преселективные коробки наиболее экономичны по сравнению со всеми другими типами (однодисковый робот, АКПП, вариатор, механика).

    Что касается недостатков, то в первую очередь такие коробки достаточно сложные, автомобили с преселективной коробкой передач отличаются высокой стоимостью. Ресурс этих типов трансмиссий больше, чем у аналогов с одним сцеплением, но на практике он снижен по сравнению с классическими АКПП с гидротрансформатором.

    Если говорить о ремонтопригодности, то от ремонта DSG и аналогов других производителей можно отказаться довольно дорого. На практике стоимость таких работ и запчастей часто превышает качественное восстановление АКПП с гидротрансформатором в рамках сложной переборки или капитального ремонта коробки передач.

    Подведем итоги

    Как видите, у каждого из рассмотренных типов АКПП есть свои плюсы и минусы. Также, если рассматривать АКПП и робота, есть отличия как в устройстве данных КПП, так и в принципах их работы.

    Также перед покупкой автомобиля (особенно бывшего в употреблении) важно знать, какая коробка передач установлена, автомат или робот, как отличить эти типы коробок. Дело в том, что под общей концепцией АКПП сегодня могут скрываться как первый, так и второй вариант.

    Как правило, рекомендуется отдельно изучить информацию о конкретной модели автомобиля, на каком поколении и в каких годах выпуска устанавливалась та или иная трансмиссия. Следует помнить, что визуально, например, DSG не отличить от обычной АКПП с Tiptronic. Другими словами, вам нужно знать, как отличить робота от автомата в машине.

    Напоследок отметим, что однозначно ответить на вопрос, робот и машина, что лучше, довольно сложно.Если речь идет о новых автомобилях с автоматом, то КПП лучше выбирать с учетом личных предпочтений и финансовых возможностей.

    Как правило, машина с однодисковым роботом дешевле и экономичнее по расходу, однако комфорт при переключении передач по сравнению с классической АКПП может быть снижен. По этой причине оптимально перед покупкой протестировать модели с разными типами коробок передач.

    В случае преселективных роботизированных коробок передач более «продуманной» может показаться именно классическая АКПП, немного страдает комфорт при переключении передач, хуже динамика разгона и т. Д.

    Однако надежность гидротрансформатора АКПП на практике оказывается выше, такую ​​коробку зачастую проще и дешевле ремонтировать. Эти особенности стоит учитывать отдельно, особенно если вы планируете покупать подержанный автомобиль с автоматической коробкой передач.

    Читайте также

    Вождение автомобиля с автоматической коробкой передач: как пользоваться трансмиссией — автомат, режимы работы автоматической трансмиссии, правила использования этой трансмиссии, советы.

  • Почему пинает АКПП, дергается АКПП при переключении передач, возникают рывки и толчки в АКПП: основные причины.


  • Количество разновидностей АКПП постоянно растет. Не так давно просто знали о существовании АКПП — стандартной версии автомат с обычным гидротрансформатором. Чуть позже на автомобили начали активно устанавливать бесступенчатые вариаторы, а не так давно стали популярными роботизированные боксы.Сегодня мы рассмотрим, чем робот отличается от автомата в техническом и эксплуатационном плане, а также каковы плюсы и минусы этих технологий. Сравнение коробок двух разных типов часто помогает получить ценные данные для покупки различных машин.

    В зависимости от предпочтений коробки передач вы можете уточнить выбор модели при покупке автомобиля на новом транспортном рынке. Поэтому к сравнению технологий в коробках нужно относиться с пониманием сути дела.Лучше всего испытать машины с разными технологиями, чтобы иметь представление о возможностях и особенностях их работы.

    Технические отличия робота от стандартной машины

    Технически это коробки передач совершенно разные. Автоматическая трансмиссия — это конструкция с гидротрансформатором, а также электроникой для управления поведением автомобиля. Гидротрансформатор играет важную роль в этом наборе устройств, выполняя переключение передач в зависимости от частоты вращения.Эта функция позволяет стабильно работать на машине и рассчитывать на определенную реакцию.

    Роботизированная коробка передач по своей природе механическая, поэтому имеет ряд специфических преимуществ. МКПП … Коробка более гибкая, имеет довольно замечательный набор различных функций и обеспечивает экономичную езду. Основные отличия робота от стандартной автоматической коробки заключаются в следующем:

    • принцип работы надежной механической трансмиссии, простота базовой конструкции;
    • наличие большого количества электроники, управляющей сцеплением и переключением передач;
    • возможностей активно менять тип конструкции, который используют все мировые производители;
    • экономия топлива за счет отсутствия перегрузки по газу и возможности досрочного переключения передач;
    • возможность быстрого изменения настроек роботизированного ящика, дающего персонажа;
    • Технологичность
    • и современный дизайн, высокая надежность, добротность агрегатов.

    В конструкции стандартной АКПП есть и определенные плюсы. Такой ящик более надежен, не ломается и не требует дорогостоящего ремонта электроники. Конечно, гидротрансформатор — далеко не самый надежный технологический агрегат в автомобиле, но при правильной эксплуатации он оказывается долговечным и служит не меньше, чем двигатель.

    Все эти особенности говорят о том, что машина с обычным автоматом и роботизированной коробкой имеет свой характер.Действительно, разница в дизайне — не единственное различие между двумя агрегатами. Также используются коробки с индивидуальными характеристиками, которые создают определенные ощущения при путешествии разными видами транспорта.

    Особенности практической эксплуатации робота и штатной АКПП

    Роботизированный бокс не требует в эксплуатации каких-либо специальных функций. Сегодня многие уважающие себя концерны имеют брендовых роботов, а производители часто дают индивидуальные рекомендации по использованию агрегатов.Например, роботам DSG от Volkswagen рекомендуется использовать его на более низких оборотах без использования спортивного режима.

    Коробки

    Robotic PowerShift от Ford лучше всего работают в среднем диапазоне, увеличивая не только отзывчивость автомобиля, но и расход топлива. Унифицированная АКПП может выполнять самые разные задачи и работать в разных условиях … Специфика использования такого узла такова:

    • не набирайте скорость слишком резко — это приведет к повышенной нагрузке на АКПП;
    • следует избегать буксировки других автомобилей и тяжелых прицепов — работа коробки регулируется с учетом веса автомобиля;
    • при отсутствии нормального обслуживания вскоре придется менять целые узлы агрегата и прибегать к дорогостоящему ремонту;
    • Неисправности гидротрансформатора
    • часто не зависят от эксплуатации — иногда возникают неожиданно;
    • работа агрегата достаточно стабильная, часто с задержкой реагирует на нажатие педали газа;
    • Часто в автоматических системах предусмотрена возможность Kick-Down — аварийного сброса скорости на пониженную для быстрого разгона.

    Учитывая довольно чопорную работу АКПП, система может сильно раздражать и недостаточно динамична. Полностью изменится характер автомобиля с одним и тем же двигателем на механической коробке передач и с традиционной автоматической коробкой передач. Часто покупателей таких автомобилей искренне удивляет вялая и не слишком динамичная поездка на очень мощных и объемных двигателях.

    Однако стандартная АКПП традиционного типа предохраняет силовой агрегат от чрезмерного износа, поэтому двигатели с АКПП часто работают намного дольше, чем с МКПП или вариатором.А вот АКПП дороже, потому что ее все чаще можно увидеть в дизайне дорогого люксового автомобиля, а не в комплектации бюджетного транспорта. О плюсах и минусах разных типов коробок передач смотрите следующее видео:

    Подводя итоги

    Использование автоматических трансмиссий становится все более актуальным в наше время, ведь этот удобный элемент позволяет уделять больше внимания дороге и получать максимум информации об окружающей среде.Также АКПП любого типа удобны в пробках, где на ручной коробке приходится постоянно переключаться. Но современная обрабатывающая промышленность отдает предпочтение более доступным компонентам, таким как роботизированная коробка передач или вариатор.

    Робот обходится производителю дешевле традиционной машины, а в эксплуатации до 200 тысяч километров по многим параметрам показывает себя намного лучше конкурентов … Поэтому популярность данного типа КПП в последнее время сильно возросла.Есть ли у вас особые предпочтения относительно использования того или иного типа автоматической коробки передач?

    Любой автолюбитель, задумываясь о покупке новой или подержанной машины, решает, с какой коробкой передач покупать машину. И довольно часто именно этот выбор сбивает человека с толку.

    И если в вопросе выбора между автоматом и механикой все относительно ясно, то роботизированные коробки передач вызывают много вопросов у автомобилистов. Поэтому сегодня мы расскажем нашим читателям, чем отличается робот от автомата, попробуем выяснить, что лучше: робот или автомат.

    Ведь нужно учитывать все особенности автоматической и роботизированной трансмиссии, их недостатки и достоинства. Каковы, условно говоря, различия между роботом и автоматом, их плюсы и минусы. И прежде чем выбирать машину с той или иной коробкой, нужно все тщательно взвесить.

    Автоматическая коробка передач

    Автоматическая коробка передач состоит из двух основных модулей: гидротрансформатора и коробки передач. Основная функция гидротрансформатора — плавное переключение скоростей, а точнее плавное переключение передач без рывков.В определенной степени гидротрансформатор выполняет функцию сцепления, которая используется в автомобилях с механической коробкой передач.

    Коробка передач автоматической коробки передач имеет несколько зацепляющихся пар шестерен. Коробка передач АКПП имеет несколько ступеней: 4, 5, 6. А возможности АКПП, разные по количеству ступеней, совершенно разные.

    Преимущества ACP

    Автоматическая коробка передач обеспечивает легкость вождения. Не нужно выжимать и отпускать сцепление, не нужно думать о переключении передач, не нужно думать о том, как правильно трогаться.За все это отвечает автоматика, позволяя водителю уделять внимание дороге.

    Если рассматривать гидротрансформатор как аналог сцепления, становится очевидным, что, по сравнению с традиционным сцеплением, этот механизм придет в негодность, так же быстро, как это происходит с классическим сцеплением от новых драйверов, это невозможно.

    Автоматическая коробка передач не создает таких нагрузок на двигатель, как на механику. Переключение передач происходит без лишнего увеличения количества оборотов.Таким образом, срок службы двигателя не тратится зря.

    За счет использования гидротрансформатора снижается нагрузка не только на двигатель, но и на шасси автомобиля.

    Автомобили с автоматической коробкой передач имеют пассивную систему безопасности. Если машина стоит на склоне, она не может катиться.

    Шестиступенчатая автоматическая коробка передач отличается меньшим расходом топлива.

    Минусы АКП

    Автомобили с АКПП не обладают такой динамикой разгона, как автомобили с механикой.

    На четырех и пяти ступенях АКП расход топлива значительный. Особенно это заметно в четырехступенчатых автоматических трансмиссиях.

    В целом автомобили с автоматической коробкой передач имеют более низкий КПД. Это связано с тем, что в гидротрансформаторе происходят значительные потери КПД.

    Сама АКПП дорогая. Это не может не сказаться на общей стоимости автомобиля. К тому же ремонт и обслуживание АКПП стоит дорого.

    В автоматической коробке передач используется большое количество масла. К тому же масло дорогое. И все это накладывает свой отпечаток на стоимость услуг.

    Автомобиль с автоматической коробкой передач менее динамичен. Те. разгон на нем занимает гораздо больше времени, чем на механике или на автомобилях с роботизированной коробкой передач.

    При переключении передач присутствует некоторая инерция. Те. АКПП работает с небольшой задержкой.

    Если начало движения происходит на склоне, может произойти определенный откат.

    Роботизированная коробка передач

    Теперь, чтобы узнать, чем робот отличается от автомата, разберем особенности, плюсы и минусы роботизированной коробки передач.

    Все трансмиссии этого типа можно разделить на два типа. Первый тип роботизированной трансмиссии предполагает наличие, по сути, механической трансмиссии с автоматическим управлением.

    В такой коробке передач переключение передач осуществляется электронным способом. Таким образом, у такого устройства нет обычного сцепления.Одновременно с переключением передач с помощью автоматики осуществляется переключение в ручном режиме, как на обычной механике … В этом случае на транспортном средстве устанавливается сцепление.

    Эти коробки передач часто прерывают крутящий момент, поэтому при переключении передач могут возникать провалы.

    Роботизированные боксы второго типа более совершенные. Такие коробки передач используются в автомобилях спортивного класса … Именно в тех автомобилях, которые участвуют в гонках. Специфика таких роботизированных коробок в том, что за разные передачи отвечают две системы сцепления.Благодаря наличию двух систем сцепления и непосредственному включению скорость переключения передач максимальная. Это очень важно в спорте.

    Плюсы роботизированных коробок передач

    Если рассматривать первый тип роботизированных коробок передач, то их недостатки проявляются гораздо больше, чем их достоинства. Система довольно грубая.

    Но, тем не менее, он имеет свои преимущества перед АКПП.

    Роботизированные коробки передач более экономичны, чем автоматические коробки передач.Их эффективность не уступает механическим коробкам.

    Роботизированная коробка передач дешевле автоматической коробки передач, к тому же дешевле в обслуживании и ремонте. Потребляет меньше масла, чем АКПП.

    Вес роботизированных ящиков меньше, чем автоматических ящиков.

    Могут использоваться специальные системы переключения передач на рулевом колесе, которые делают переключение передач очень быстрым. Таким образом, динамика автомобиля намного выше, чем у машин с автоматической трансмиссией.

    Минусы роботизированных коробок передач

    По сравнению с автоматической коробкой передач переключение передач не такое плавное. Достаточно заметны рывки автомобиля при переключении передач.

    Есть некоторая задержка после включения правой передачи и начала ее реализации.

    Практически любая остановка требует переключения рычага в нейтральное положение, чего нельзя сказать о автомобилях с автоматической коробкой передач.

    Любое проскальзывание при движении негативно сказывается на ресурсе роботизированной коробки передач.Те. этот бокс в основном подходит для твердого дорожного покрытия.

    Во время начала движения происходит некий откат. Хотя маленький.

    Определенные выводы

    Таким образом, на вопрос, что лучше робот или автомат, не может быть однозначного ответа. Если бы один вариант был однозначно хуже другого, производители производили бы только один тип коробки передач. Другое дело, что вопрос выбора коробки передач индивидуален, и каждый автомобилист решает его самостоятельно, опираясь на свои представления об удобстве и комфорте вождения.

    735487701 Рычаг переключения передач Fiat Ducato с 2006 года роботизированная КПП

    FIAT

    FIAT Ducato 250 2006-2011 2,2 Puma

    FIAT Ducato 250 2006-2011 2,3 F1A

    FIAT Ducato 250 2006-2011 3,0 F1C

    FIAT Ducato 250 2006-2011 3,0 F1C CNG

    FIAT Ducato 250 2011-2014 2,3 F1A

    FIAT Ducato 250 2011-2014 3,0 F1C

    FIAT Ducato 250 2011-2014 3,0 F1C CNG

    FIAT Ducato 250 2014- 2,0

    FIAT Ducato 250 2014- 2,3 F1A

    FIAT Ducato 250 2014-3,0 F1C

    FIAT Ducato 250 2014- 3,0 F1C CNG

    FIAT Ducato 250 2011-2014 2,0 ​​

    CITROEN

    Citroen Jumper III 2006-2011 гг. 2,2 HDI

    Citroen Jumper III 2006-2011 гг. 3,0 HDI

    Citroen Jumper III 2011-2014 гг. 2,2 HDI

    Citroen Jumper III 2011-2014 гг. 3,0 HDI

    Citroen Jumper III 2014 г. — 2,2 HDI

    Citroen Jumper III 2014- 3,0 HDI

    Citroen Jumper III 2014- 2,0 HDI

    PEUGEOT

    Peugeot Boxer III 2 006-2011 2,2 HDI

    Peugeot Boxer III 2006-2011 3,0 HDI

    Peugeot Boxer III 2011-2014 2,2 HDI

    Peugeot Boxer III 2014-2,2 HDI

    Peugeot Boxer III 2014-3,0 HDI

    Peugeot Boxer III 2014- 2,0 HDI

    Peugeot Boxer III 2011-2014 3,0 HDI

    Доставка в ЕС

    Экономичная доставка по Европейскому Союзу

    Для соблюдения сроков доставки необходимо делать заказы до 3.00 вечера Заказы принимаются после 15:00. будет обработано на следующий рабочий день.

    Стоимость доставки экономической доставки (цены включают НДС):

    Стоимость доставки вкл. НДС
    (3-30 кг) *

    Греция (GR) кроме островов

    Стоимость доставки вкл.НДС
    (3-30 кг) *

    Доставка по всему миру

    Экспресс-доставка (Air Express Delivery)

    Для соблюдения сроков доставки необходимо делать заказы до 15:00. Заказы получены после 15:00. будет обработано на следующий рабочий день.

    Стоимость доставки экспресс-доставки (цены включают НДС):

    * В этот период (по состоянию на июнь 2020 г.) срок доставки может быть продлен в зависимости от возможностей и возможностей оператора связи. Свяжитесь с нами, если вам нужна подробная информация о доставке.

    Стоимость доставки вкл. НДС
    (3-10 кг)

    Новый роботизированный циклоидальный редуктор от GAM

    — ДЛЯ НЕМЕДЛЕННОГО ВЫПУСКА —

    Новая роботизированная циклоидальная коробка передач от GAM

    Mount Prospect, Ill.- GAM объявляет о выпуске новых циклоидальных редукторов GCL. Новые редукторы обеспечивают высокую точность и жесткость для горизонтальных и вертикальных роботизированных систем и систем управления движением.

    GCL разработан, чтобы выдерживать частые ударные нагрузки при запуске и остановке промышленных роботов и других приложений управления движением с ударопрочностью, в пять раз превышающей номинальный крутящий момент. Серия GCL доступна в широком диапазоне размеров с соотношением сторон от 36: 1 до 192: 1.

    Выходные опции для серии GCL включают коробки для компонентов с выходом со сплошным фланцем (GCLC F) или выходом с полым валом с фланцем (GCLC-H).Кроме того, выходной редуктор со сплошным фланцем доступен с крышкой и опорой двигателя (GCL-F). Серия GCL может использоваться в различных приложениях, от робототехники и автоматизации до медицинского оборудования, где требуются нулевой люфт и высокая жесткость при опрокидывании и кручении.

    Функции включают в себя:

    • Люфт 1 угл. Мин. с потерянным ходом ≤ 1 угл. Мин.
    • Выдерживает частые старт-стопные ударные нагрузки промышленных роботов с ударопрочностью в 5 раз больше номинального крутящего момента
    • Зацепление с несколькими зубьями для жесткости на кручение
    • Выходной фланец 7 размеров с номинальным крутящим моментом на выходе от 167 до 4410 Нм и передаточным числом от 57: 1 до 192.4: 1
    • Фланцевый полый выход 6 типоразмеров (сквозное отверстие до 138 мм) с крутящим моментом на выходе от 490 до 4900 Нм
    • Используется для продуктов многих конкурентов
    • Встроенная пластина адаптера двигателя, готовая к установке двигателя
    • Дополнительная встроенная предварительная ступень

    Дополнительную информацию о роботизированной циклоидальной коробке передач GAM можно найти по адресу:
    https://www.electromate.com/pub/media/assets/catalog-library/pdfs/gam/GAM_GCL-Brochure-2018_web.pdf

    За дополнительной информацией обращайтесь:

    КОНТАКТ РЕДАКЦИИ:
    Уоррен Осак
    [email protected]
    Бесплатный телефон: 877-737-8698
    Бесплатный факс: 877-737-8699
    www.electromate.com

    Теги: Gam, Серия GCL, Роботизированная циклоидальная коробка передач, Коробка передач, Циклоидальная коробка передач, Электромат

    Новая коробка передач обещает более высокую точность и повторяемость для роботизированного управления движением

    Разработчики робототехники хотят использовать меньшее количество компонентов в приводных механизмах, а также более короткую цепь и несоответствие между каждой процедурой для более высокой точности и более эффективной передачи, сказал HSOAR Precision Robotics.

    Традиционно шестерня и шестерня, шестерня и зубчатая рейка, червяк и шестерня, а также винт и гайка являются основными взаимосвязанными элементами зацепления в общей трансмиссии, согласно данным шанхайской компании. Согласно HSOAR, ошибки управления движением будут передаваться и накапливаться со стороны входа мощности на выход в соответствии с коэффициентом снижения скорости.

    Как избежать ошибок передачи

    Ошибки передачи также напрямую влияют как на резьбу на токарном станке, так и на зубчатые колеса, обработку фобблинга, сказал HSOAR.

    Под точностью трансмиссии планетарного редуктора понимается влияние точности каждого звена в цепи трансмиссии на точность и постоянство движения рабочего органа.

    Традиционный планетарный редуктор, коаксиальный редуктор и циклоидальный редуктор. Источник: HSOAR

    .

    HSOAR перечислил следующие распространенные ошибки точности передачи:

    1. Погрешность деталей трансмиссии имеет большое влияние на точность передачи оборудования.
    2. Погрешность сопряженного компонента и его качества сборки очевидным образом влияют на точность движения.
    3. Во время эксплуатации деталей трансмиссии неизбежна деформация из-за нагрева и напряжения, влияющая на конечную точность.

    Таким образом, чем длиннее цепь передачи, тем больше влияние на точность, заявили в компании.

    Технические характеристики прецизионного циклоидального шарикового редуктора

    HSOAR рекомендовал свой прецизионный редуктор с циклоидальным шариком, который фактически не включает никаких шестерен.Компания заявила, что ее механизм, в котором используются стальные шарики, катящиеся с полным контактом, может обеспечить «выдающуюся» точность и повторяемость. HSOAR заявил, что это «значительный прогресс» по сравнению со 100-летней традиционной зубчатой ​​передачей.

    HSOAR сообщил, что его прецизионная циклоидальная замена для планетарной коробки передач SD-BRG60 имеет следующие характеристики:

    • Точность: ≤2 угл. Мин.
    • Жесткость на кручение: 6 Нм / угл. Мин .; все элементы трансмиссии со стальными шариками одновременно совершают эксцентрическое движение для равномерного поглощения ударов
    • Передаточные числа: 5, 9, 10, 15, 20, 36, 41, 53, 60 для SD-BRG60F (S)
    • Номинальная и максимальная частота вращения на входе: 3000 об / мин, 6000 об / мин
    • Вес: 1.2 кг (2,64 фунта)

    Прецизионные циклоидальные редукторы. Источник: HSOAR

    .

    Компания также предоставила пример заявки:

    В этом примере применения прецизионный циклоидальный редуктор HSOAR заменяет редуктор планетарной коробки передач. Источник: HSOAR

    .

    HSOAR заявила, что получила разрешение на поставку прецизионных редукторов с циклоидальным шариком для ведущих мировых производителей роботов, и приветствует запросы.