Новые конструкции двс: Обзор 10 новых двигателей внутреннего сгорания / Блог компании НПП ИТЭЛМА / Хабр

Содержание

Обзор 10 новых двигателей внутреннего сгорания / Блог компании НПП ИТЭЛМА / Хабр

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla

Шествие двигателей внутреннего сгорания продолжается, при этом в них появляются инновации – от изменяемой степени сжатия до клапанов без кулачков.

Электрические силовые агрегаты в наши дни на пике моды, но эволюция двигателя внутреннего сгорания не замедлилась. На самом деле, новые изменения происходят быстрее, чем когда-либо.

Рассмотрим, например, этот краткий список последних инноваций двигателя: двигатель с турбонаддувом без кулачков; новый дизель с самым низким в мире коэффициентом сжатия; четырехцилиндровый двигатель с переменным коэффициентом сжатия; первый в мире бензиновый двигатель, использующий зажигание при сжатии.

Здесь мы собрали фотографии двигателей, предлагающих некоторые из последних инноваций в области силовых агрегатов.

От интеллектуальных двигателей грузовиков до крошечных моделей с турбонаддувом, мы предлагаем вам подборку основных достижений последних лет. Пролистайте следующие слайды, чтобы увидеть лучшие из них.

2,2-литровый двигатель Mazda SkyActiv-D имеет самый низкий в мире коэффициент сжатия (14,1:1) среди всех дизельных двигателей, что, как сообщается, дает потребителям множество преимуществ. Более низкие показатели сжатия идут рука об руку с более низким давлением и пониженной температурой в верхней части поршня, что способствует лучшему смешению воздуха и топлива, а также уменьшает проблемы с оксидами азота и сажей, давно ассоциирующиеся с дизельным двигателем, говорит Mazda. Более того, более низкий коэффициент сжатия SkyActiv-D обеспечивает меньшее трение и меньший вес конструкции. На нью-йоркском автосалоне на прошлой неделе японский автопроизводитель объявил, что собирается изменить антидизельные настроения последнего времени, установив новый 2,2-литровый дизельный двигатель на компактный кроссовер CX-5 2019 года.

Представьте себе полноразмерный пикап, работающий всего на двух цилиндрах. Это то, на что способен Chevrolet Silverado, благодаря добавлению в новый 2,7-литровый турбодвигатель электромеханического регулируемого распределительного вала и функции активного управления подачей топлива (Active Fuel Management). В целом, двигатель предлагает 17 различных схем отключения цилиндров, что позволяет ему справиться практически с любой ситуацией при движении. «Это все равно, что иметь разные двигатели для работы на низких и высоких оборотах», — отметил главный инженер двигателя Том Саттер в пресс-релизе. «Профиль распределительного вала и синхронизация клапанов полностью отличаются на низких и высоких скоростях». Двигатель мощностью 310 л.с. и крутящим моментом 471.8 Нм заменяет 4,3-литровый V-6 на Silverado.

Производитель суперкаров Koenigsegg Automotive AB возлагает большие надежды на технологию бескулачкового двигателя, которую он представил на концептуальном автомобиле в 2016 году. Известная как FreeValve, эта технология использует «пневмо-гидравлические-электронные» приводы для управления процессом сгорания в каждом цилиндре. Koenigsegg говорит, что с помощью этих приводов, вместо кулачковых валов, можно более точно управлять процессом сгорания в каждом цилиндре. FreeValve также позволяет люксовому автопроизводителю отказаться от других дорогостоящих автозапчастей, включая корпус дроссельной заслонки, кулачковый привод, ГРМ, выпускной клапан, предкаталитический преобразователь и систему непосредственного впрыска. По слухам, компания готовит технологию для установки на суперкар стоимостью 1,1 миллиона долларов, который будет выпущен в 2020 году. В интервью Top Gear основатель компании Кристиан фон Кёнигсегг (Christian von Koenigsegg) заявил, что FreeValve позволит ему построить автомобиль с нулевым уровнем выбросов и двигателем внутреннего сгорания. «Идея заключается в том, чтобы доказать миру, что даже двигатель внутреннего сгорания может быть полностью СО2-нейтральным», — сказал он.

Говорят, что двигатель Nissan VC-Turbo является первым в мире готовым к производству двигателем с переменным коэффициентом сжатия. VC-Turbo разрабатывался более 20 лет, и он использует усовершенствованную многозвеньевую систему для изменения коэффициента сжатия. Во время работы угол наклона многозвеньевых рычагов варьируется, что приводит к регулировке верхней мертвой точки поршней. С изменением положения поршня меняется и степень сжатия. Результат — производительность по требованию. Высокий коэффициент сжатия обеспечивает большую эффективность, в то время как низкий коэффициент сжатия увеличивает мощность и крутящий момент. VC-Turbo доступен в Nissan Altima 2019.

3,6-литровый двигатель Pentastar от Fiat Chrysler Automobiles является примером внимательного отношения к деталям и политики постоянного совершенствования. Двигатель использует две ключевые особенности для повышения топливной экономичности и крутящего момента. Первая из них — это регулируемый подъем клапана (VVL). VVL позволяет двигателю оставаться в режиме пониженного подъема до тех пор, пока водитель не потребует больше мощности. Затем он реагирует переключением в режим повышенного подъема для улучшения сгорания топлива. Вторая инновация — это рециркуляция отработавших газов с охлаждением, которая, как говорят, сокращает выбросы вредных веществ, снижает потери при прокачке и позволяет работать без стука при высоких нагрузках двигателя. Эти особенности обеспечивают Pentastar увеличение экономии топлива на 6%, при этом крутящий момент увеличивается на 14,9%. Fiat Chrysler также отмечает, что эти улучшения наблюдаются при оборотах двигателя ниже 3000 об/мин, когда повышенный крутящий момент необходим больше всего.

В наши дни производительность двигателя — это не только крутящий момент и лошадиные силы. Речь идет и об эффективности. Toyota доказала это в 2018 году, представив 2,5-литровый четырехцилиндровый двигатель Dynamic Force, который, по имеющимся данным, обладает тепловым КПД около 40%. Это большой шаг вперед, учитывая, что большинство современных двигателей приближаются к 30%, что, в свою очередь, означает, что 70% энергии сгорания топлива теряется в виде тепла. Toyota добилась этого с помощью ряда современных усовершенствований, включая длинный ход, высокий коэффициент сжатия, форсунки с двойными распылителями, интеллектуальную регулировку синхронизации клапанов и непосредственный впрыск топлива. Результат: Экономия топлива на трассе 2018 Camry составляет 29 и 41 мг, что на 26% выше по сравнению с предыдущей моделью.

1,5-литровый двигатель EcoBoost от Ford заслуживает внимания, потому что это еще один пример «умного» маленького двигателя, способного управлять относительно большим автомобилем с помощью двух цилиндров. Рядный трехцилиндровый EcoBoost выполняет эту задачу при отключении цилиндра, который определяет ситуацию, когда один цилиндр не нужен, и поэтому автоматически отключает его. Система может отключить или активировать цилиндр всего за 14 миллисекунд для поддержания плавного хода. Однако даже на трех цилиндрах она способна выдать 180 л.с. и 240 Нм крутящего момента (при сгорании 93-октанового топлива). Этот двигатель установлен в европейском Ford Fusion и американском внедорожнике Ford Escape, способном буксировать до 900 кг.

В 2018 году компания Cadillac еще больше увлеклась турбокомпрессорами, представив двигатель Twin Turbo V-8. Twin Turbo использует «горячую V-образную конфигурацию» — то есть устанавливает турбокомпрессоры в верхней части двигателя, в ложбине между головками. Таким образом, инженеры Cadillac утверждают, что они уменьшили общий размер конструкции двигателя и практически ликвидировали отставание турбокомпрессоров. Использованный на Cadillac CT6 V-Sport, новый двигатель выдает примерно 550 л.с. и обеспечивает потрясающий крутящий момент в 850.1 Нм.

Для тех, у кого есть страсть к старомодным лошадиным силам и крутящему моменту, у Dodge есть ответ в виде 6,2-литрового высокомощного двигателя HEMI V-8. Двигатель, выдающий 797 л. с. и 958.6 Нм крутящего момента, большую часть своей мощности черпает из 2,7-литрового нагнетателя — самого большого заводского нагнетателя среди всех серийных автомобилей. Наряду с нагнетателем в двигателе используются высокопрочные шатуны и поршни, высокоскоростной клапанный механизм и два двухступенчатых топливных насоса. 6,2-литровый двигатель, используемый в Dodge Challenger Hellcat Redeye, способен принимать огромное количество бензина в высокопроизводительном режиме, опорожняя бак чуть менее чем за 11 минут. Хорошая новость, однако, в том, что при нормальных дорожных условиях Hellcat все еще находится на отметке 10.69 л/100 км. Dodge хвастается тем, что Hellcat является самым быстрым в отрасли маслкаром с разгоном 0-100 км/ч в 3,4 секунды.

Поговорим о другой крупной инновации в двигателе 2018 года: Mazda выпустила двигатель SkyActiv-X, который, как говорят, является первым в мире бензиновым двигателем, использующим воспламенение при сжатии. Соединив две классические технологии, инженеры Mazda утверждают, что они объединили высокую тягу бензинового двигателя с эффективностью, крутящим моментом и реакцией дизеля.

Ключом к их реализации является технология, известная под названием Spark Controlled Compression Ignition, которая максимально увеличивает зону, в которой возможно воспламенение от сжатия, и обеспечивает плавный переход между воспламенением от сжатия и воспламенением от искры. При внедрении двигателя прошлой осенью Mazda сообщила удивительные цифры: крутящий момент повысился на 10-30%, а КПД — на 20-30% по сравнению с предшественником. Mazda говорит, что двигатель также предлагает большую свободу в выборе передаточных чисел, что еще больше увеличивает экономию топлива и ходовые качества двигателя.

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla



О компании ИТЭЛМА
Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.


Читать еще полезные статьи:

Из чего делают современные двигатели: новые материалы на службе автопроизводителей

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.

Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil, в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.

Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC), более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.

Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150–200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.

Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива. При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты. Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива. Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.
Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД. Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Версия для печати: 

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства. ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель. Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. 
Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны. Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 



 

Эффекты

  Экологичность: при сгорании водорода в двигателе образуется практически только вода

 Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети

 Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.

Оценки рынка

70 тыс. в год 

к 2027 г. составит выпуск новых водородных автомобилей в мире 

Драйверы и барьеры

  Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др.)

 В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

 Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

 Отсутствие автомобильной инфраструктуры

 Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

 Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  



 

Эффекты

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ

  Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ

Оценки рынка

40 млн ед. 

к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)

Драйверы и барьеры

 Экологичность: метанол менее биологически опасен, чем нефтепродукты

 Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства

  Простота эксплуатации: в частности, метанол не улетучивается при транспортировке

 Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ

 Высокая себестоимость производства метанола с помощью существующих технологий

 Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ). В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ). Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 





 

Эффекты

    Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах

 Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе

 Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)

 Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))

 Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 

Оценки рынка

$9,7  млрд

к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)

Драйверы и барьеры

 Ужесточение экологических стандартов

 Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.

 Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  Ряд нерешенных проблем с хранением ДМЭ

  Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива

 При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью

  При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза

  ДМЭ является наркотическим галлюциногенным веществом






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 


О двигателе внутреннего сгорания : Кафедра ДВС : АлтГТУ

Весьма скромный по габаритам, малютка в сравнении с такими монстрами энергетики, как гидравлические, тепловые и атомные станции, но далеко не простой по конструкции, впитавший в себя все лучшие мировые достижения в технологиях, материалах, нефтехимии, гидравлики, электротехники и электроники, двигатель внутреннего сгорания обеспечивает более 90% от суммарного объема мощности всех установленных энергетических агрегатов мира.

На первый взгляд, это феномен, так как мощность единичного ДВС относительно невысокая: от десятой доли киловатта до десятков тысяч. Но никакого феномена нет. Двигатель весьма востребован в деятельности человека и берет фантастическими объемами, массовостью производства. Он всюду — где человек, там и он. На земле и под землей, на воде и под водой, в околоземном пространстве и в космосе. Нет сферы деятельности человека, где бы не использовался ДВС, и в этом его первая особенность.

Вторая особенность в том, что именно ДВС, осуществляя энергообеспечение машин и механизмов, на которые он устанавливается, главным образом и обеспечивает качество и прогресс в развитии этой техники. Легендарный танк Т-34 времен Великой Отечественной войны стал эталоном боевых машин благодаря установленному на нем дизелю Д-12, производство которого осуществлялось и на барнаульском заводе «Трансмаш». Современный легковой автомобиль стал таким, какой он есть: экономичным, надежным, комфортным, безопасным, динамичным, эргономичным благодаря значительным успехам, достигнутым в конце прошлого и начале нынешнего столетия в развитии двигателестроения. Газотурбинный регулируемый и динамический наддув, непосредственный впрыск бензина, многоклапанные системы газораспределения с изменяемыми фазами, рециркуляция отработавших газов, электронные системы управления, гибридные двигатели (ДВС + электрическая машина)  — вот далеко не полный перечень мероприятий, которые позволили современному ДВС обеспечить жесткие требования ЕВРО по удельной мощности и вредным выбросам, по расходу топлива и масла, приемистости, экономичности мобильных машин. Шестьдесят киловатт мощности с литра объема цилиндра дизеля (в бензиновых еще выше), менее четырех литров топлива на 100 км пробега, разгон до 100 км/час менее чем за 5 секунд. 

Но это не предел — эволюционное развитие двигателя продолжается. Впереди новые задачи, среди них — расширение создания гибридных двигателей, использование водорода как топлива, адаптация двигателя к работе на биологическом топливе и др.

Вы, нынешние абитуриенты, а затем студенты — бакалавры и магистры, будете их решать и решите, ведь прогресс в энергетике остановить невозможно.

Научная работа кафедры двигателей внутреннего сгорания

К основным научным направлениям кафедры относится:

  • исследование судового дизелестроения, концепций конструирования судовых комбинированных двигателей новых поколений;
  • использование фундаментальной теории управления при проектировании современных дизелей;
  • математическое моделирование нестационарных процессов в цилиндре двигателя и смежных с ним систем впуска и выпуска и топливоподающей аппаратуре;
  • создание систем наддува двигателя в зависимости от величины среднего эффективного давления;
  • проблемы создания современных дизель-электрических агрегатов переменного тока с высоким качеством электроэнергии;
  • решение проблем создания адаптивных (интеллектуальных) двигателей внутреннего сгорания;
  • моделирование и совершенствование процессов формообразования и обеспечения точности в технических и технологических системах;
  • совершенствование процессов абразивной обработки ответственных изделий машиностроения;
  • создание конструкций эффективных укороченных забоек взрывных скважин.

Перечисленным перечнем научные интересы нашей кафедры не исчерпываются. В ближайшее время кафедра планирует уделить особое внимание освоению современных методов исследований по экологическим показателям двигателей, по параметрам шума и вибрации с разработкой новых идей по улучшению этих показателей. В практическое русло переводятся исследования по конкретным моделям среднеоборотных и высокооборотных двигателей с обеспечением их работы на газообразном топливе. Кафедра располагает собственной аспирантурой, где продолжают обучение наиболее одаренные выпускники кафедры. В настоящее время 10 аспирантов работают по различным научным направлениям кафедры. В последнее время интенсивная автомобилизация Дальнего Востока за счет импортных автомобилей потребовала подготовки специалистов по автомобильным ДВС. Современный автомобильный двигатель является сердцем автомобиля, самым сложным и самым главным агрегатом автомобиля. Быть специалистом по ДВС означает применение ваших знаний на любой работе в области энергетики в любом регионе мира. Профессорско-преподавательский коллектив кафедры «ДВС» ведет обучение студентов на современном оборудовании и стендах, оснащенных разнообразной измерительной аппаратурой, ЭВМ, отечественными и импортными ДВС.

В процессе обучения студенты изучают физику процессов, происходящих в ДВС, их механизмы и системы, что позволит вам в будущем правильно эксплуатировать ДВС. В учебном процессе широко используются персональные ЭВМ, локальная вычислительная сеть ТОГУ имеет выход в INTERNET. Глубокие знания студент получает по теплотехнике, гидравлике, информатике, системам ДВС, системам автоматике, теории и конструкции ДВС. Созданы несколько научных лабораторий, в том числе, лаборатория горюче-смазочных материалов, лаборатория ДВС.

Кафедра «ДВС» имеет творческие связи с ведущими Вузами России (МГТУ им. Н.Э. Баумана, МАДИ, Санкт-Петербургский ГТУ и др.), с РАН (институт автоматики и процессов управления ДВО РАН и др.). Большую поддержку в подготовке специалистов оказывает Российская инженерная академия (РИА). Там где кипит разумная и полезная обществу работа, обойтись без науки и изобретательства просто невозможно. А на кафедре с таким творческим потенциалом и с такими кадрами, решающей дела как практические (хоздоговорные работы), научные (статьи, учебные пособия, методические указания), исследовательские (разработка аспирантами совместно с руководителями новой тематики), учебные (методические семинары, конференции) – здесь без творчества не обойтись!!! Поэтому и работает при кафедре региональный семинар по вопросам создания, проектирования и эксплуатации комбинированных двигателей внутреннего сгорания. Доклад на этом семинаре – это путевка для выхода серьезной научной работы на докторский совет по защите диссертационных работ. В этом совете четыре профессора кафедры определяют направление: тепловые двигатели внутреннего сгорания. Кафедра принимает активное участие совместно с преподавателями ДВГУПС в работе второго семинара: механика твердого деформируемого тела. На фотографии представлены частично патенты и авторские свидетельства, полученные кафедрой в разные годы. Безусловно, научная деятельность определяет и качество подготовки специалистов в области двигателей внутреннего сгорания и их эксплуатации. Симбиоз науки и практики – вот основное начало в педагогической деятельности. Кстати заметим, что практически все стенды лаборатории кафедры «ДВС» были созданы руками ее сотрудников.

Актуальным направлением является разработка и внедрение в учебный процесс заданий по курсам «Начертательная геометрия. Инженерная графика», «Инженерная и компьютерная графика» и «Компьютерная графика» для компьютерного тестирования в АСТ, которое внедряется на кафедре с 2007 года.

Просто о сложном. Двигатель

Все вышло из воды

Двигатель – это устройство, которое преобразует какой-либо вид энергии в механическую работу.

Двигатели разделяют на первичные и вторичные.

К первичным относятся те виды двигателей, которые преобразуют природные энергетические ресурсы в механическую работу. Это ветряное и водяное колесо, гиревой механизм, тепловые двигатели.

Вторичные – двигатели, которые преобразуют выработанную или накопленную энергию другими источниками. К ним относят электрические, пневматические и гидравлические.

Первичные двигатели, такие как парус и водяное колесо, были известны с незапамятных времен и использовались повсеместно.

До середины XVII века человек обходился первичными двигателями и довольствовался силой воды, ветра и тяжести.

Первым шагом на пути к двигателю стала пароатмосферная машина, созданная по проектам французского физика Дени Папена и английского механика Томаса Севери, которая сама по себе не могла служить механическим приводом, и к ней необходимо было водяное колесо.

В 1763 году механик Иван Ползунов по собственному проекту изготовил стационарную паровую машину, которая хоть и была далека от совершенства, но работала без сбоев.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, которая была названа универсальным паровым двигателем.

В машине был предусмотрен жесткий поршень, по обе стороны которого поочередно подавался пар. Подача пара происходила автоматически, а поршень через кривошипно-шатунную систему вращал маховик, который обеспечивал плавность хода. Такая модификация машины Севери не была привязана к водонапорной башне и могла стать самостоятельным приводом различных механизмов. Уатт создал элементы, которые в дальнейшей истории двигателестроения в той или иной вариации входили во все паровые машины, получившие широкое распространение. Их использовали как приводы станков, экипажей для перевозки людей и грузов, судов и локомотивов на железных дорогах.

Следующим шагом в двигателестроении стала паровая турбина, изобретенная в конце XIX века, которая применялась на морских судах и на электростанциях в начале XX века.

Индустрия двигателестроения не стояла на месте, и в конце XIX века на первый план вышли двигатели внутреннего сгорания.

Первым в семействе ДВС стал механизм, созданный французским инженером Этьеном Ленуаром в 1860 году. Его конструкция представляла собой одноцилиндровый двухтактный газовый двигатель. Ленуар использовал принцип работы поршня двигателя Уатта, но рабочим телом служил не пар, а продукты сгорания смеси воздуха и светильного газа, вырабатываемого газогенератором.

Двигатель Ленуара стал первым в истории серийно выпускавшимся ДВС.

В 1897 году инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, который был впоследствии назван его именем.

Двигатели внутреннего сгорания стали основой развития автомобильного транспорта в XX веке.

В первой половине XX века были созданы новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки.

В 1834 году русский ученый Борис Якоби создал первый пригодный для практического использования вторичный двигатель – электродвигатель постоянного тока.

Двигатели можно классифицировать по источнику энергии, по типам движения, по устройству, по назначению и т.д.

Отрасль двигателестроения является одной из наиболее развивающихся. В год по всему миру подается до 50 заявок на патентование в категории «Двигатели». В основном это модификации существующих механизмов с новым соотношением элементов либо с принципиальными новинками. Новые конструкции же появляются редко.

А вместо сердца – пламенный мотор

В авиации используются в основном тепловые двигатели, которые создают тягу, необходимую для поднятия летательного аппарата в воздух.

По способу создания тяги авиационные двигатели можно разделить на три группы: винтовые, реактивные и комбинированные.

Винтовые двигатели создают тягу вращением воздушного винта, а реактивные преобразуют энергию топлива в кинетическую энергию вытекающей из двигателя газовой струи, вызывающей силу реакции, непосредственно используемой в качестве движущей силы. Воздушно-реактивные двигатели используют для сгорания кислород атмосферного воздуха.


Комбинированные создают тягу, складывающуюся из силы реакции потока продуктов сгорания, вытекающих из двигателя, и тяги, создаваемой обычным или специальным воздушным винтом. Комбинированные двигатели разделяются на турбовинтовые, турбореактивные и винтовентиляторные. Также их называют газотурбинными авиадвигателями.

Такие двигатели с легкостью поднимают в небо трансатлантические лайнеры, но их мощности недостаточно для того, чтобы поднять ракету в космос.

Для ракет используют реактивные двигатели, в них для сгорания топлива используется окислитель, транспортируемый самим летательным аппаратом.

Кроме того, сила тяги реактивного двигателя не зависит от наличия окружающей среды, а также от скорости самой ракеты.

Взлетные технологии

Развитие отрасли двигателестроения в России, стремящейся к независимости от импортных механизмов, началось в 1980-х гг. Такие предприятия, как УМПО, НПП «Мотор», рыбинское НПО «Сатурн», включились в мировую гонку за создание передового двигателя, который составит конкуренцию продукции таких гигантов промышленности, как Pratt & Whitney, которой комплектуют самолеты линейки Boeing и Airbus.

В результате многолетней кропотливой работы всех предприятий и НИИ отрасли, а также интеграции частного и государственного капитала был создан авиационный двигатель ПД-14. Он предназначен для новейшего российского среднемагистрального самолета МС-21, который в конце 2017 года совершил тестовый перелет с аэродрома корпорации «Иркут» на аэродром Жуковский для проведения дальнейших испытаний.

ПД-14 представляет собой турбореактивный двухконтурный двухвальный двигатель. Взлетная тяга ПД-14 может достигать 18 тонн.

Эксперты сравнивают ПД-14 с двигателями для среднемагистральных самолетов компаний Pratt & Whitney и Rolls-Royce.

На базе ПД-14 ведутся разработки вертолетного двигателя ВК-2500М. Подготовка демонстрационной модели двигателя нового поколения запланирована на 2021 год. Как и в ПД-14, в конструкции ВК-2500М будут использованы новейшие материалы, что позволит облегчить массу на 15% по сравнению с существующими аналогами без потери мощности.

Первая модификация указанного двигателя ВК-2500 активно вводится в эксплуатацию, а также выводится на международный рынок путем валидации сертификатов в странах-импортерах. 

Мы наращиваем объемы производства двигателей ВК-2500 в интересах государственного заказчика, а также планируем существенно нарастить экспорт. При этом сборка ведется полностью из российских комплектующих

Анатолий Сердюков, индустриальный директор авиационного кластера Госкорпорации Ростех

В отличие от своего предшественника, новый вертолетный двигатель оснащен цифровой системой автоматического управления с современным электронным блоком автоматического регулирования и новейшими датчиками. Использование современных технологий и новейших материалов позволило обеспечить поддержание режимов в более широком диапазоне температур наружного воздуха, повысить ресурсы и показатели топливной экономичности. Такие двигатели позволят вертолетам семейства Ми-17 и аналогичным расширить потенциал своих возможностей в высокогорных районах и районах с жарким климатом.

Российское двигателестроение развивается в направлении как гражданской, так и военной авиации. В апреле 2018 года завершились работы по стендовым испытаниям опытного двигателя АЛ-41Ф-1.Данная разработка предприятия «ОДК-Уфимское моторостроительное производственное объединение» является двигателем первого этапа для истребителя пятого поколения Су-57. АЛ-41Ф-1 является авиационным турбореактивным двухконтурным двигателем с форсажной камерой и управляемым вектором тяги.

Несмотря на гонку технологий, существуют системы, проверенные временем и доказавшие свою эффективность даже спустя многие годы. Ракетные двигатели РД 107/108 на протяжении более полувека являются основой пилотируемой космонавтики в России.

Именно благодаря РД 107/108 Юрий Гагарин совершил свой легендарный полет. Двигатели РД-107 устанавливаются на блоках первой ступени, а РД-108 – второй.



РД-107/108 показали себя как одни из самых надежных и удачных двигателей, поднимающих космические корабли. Они стоят на серийном производстве и доставляют на орбиту российских космонавтов, американских астронавтов и космических туристов.

Российский ракетный двигатель уже назван рекордсменом. За 60 лет использования он не утратил своего первенства в отрасли. На основе первых двигательных систем разработано 18 модификаций.

Когда в 2011 году США прекратили использование шаттлов, единственным способом отправки космонавтов на МКС остались корабли «Союз», оснащенные двигателями РД-107/108. 

Выводы

  • Отрасль двигателестроения является одной из наиболее востребованных и перспективных как для развития промышленности страны, так и для выхода на международный рынок.

  • Внедрение частного капитала и интеграция научно-технической базы предприятий, занимающихся разработкой и производством двигательных систем и комплектующих, позволили создать полный производственный цикл отечественных двигателей, способных составить конкуренцию мировым аналогам.

Рекомендации

  • Интеграция научно-технических достижений и новейших технологий в области двигателестроения для оперативного реагирования отрасли на запросы гражданской и военной авиации, а также космонавтики и своевременного ввода в эксплуатацию новых двигательных систем, отвечающих вызовам времени и не уступающих мировым аналогам.

  • Создание и поддержание научно-технической базы, способной обеспечить российскую авиационную отрасль двигательными системами отечественного производства, сокращение объемов импорта, а также вывод конкурентоспособной продукции на мировой рынок.

Перспективные направления развития двигателей внутреннего сгорания Текст научной статьи по специальности «Энергетика и рациональное природопользование»

Секция механики

УДК 502.629

Д.И. Диденко, В.И. Бутенко, А.А. Кривицкий

ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Двигатели внутреннего сгорания (ДВС), как известно, являются одним из основных источников загрязнения окружающей среды. В целом по России выбросы вредных веществ от ДВС уже в начале 90-х годов прошлого столетия составляли более 20 млн т в год. С ростом числа автомобилей, который наблюдается в последнее время и который ожидается в ближайшие годы, объем вредных выбросов может существенно возрасти. С учетом этого проблема уменьшения токсичности выхлопных газов становится чрезвычайно актуальной. Одним из направлений борьбы с негативным экологическим воздействием ДВС на окружающую среду являются их новые конструктивные и схемные решения. Перспективным направлением может быть роторный двигатель, в котором энергия сгорающих газов преобразуется в механическую с помощью ротора, совершающего вращательное движение относительно корпуса.

Так, конструкция роторного двигателя, пат. №2260130, 10.09.05, позволяет уменьшить расход топлива и массы выбросов вредных веществ с отработавшими газами путем стабилизации изохорного характера процесса горения как наиболее предпочтительного с точки зрения желаемых химических реакций. Позволяет осуществлять только рабочие ходы, а всасывание воздуха и его сжатие производятся отдельным компрессором. Предлагаемая схема обещает существенное повышение экономичности двигателя и его экологической безопасности, и поэтому она заслуживает более подробного рассмотрения. Таким образом, в роторном двигателе возможны те же рабочие процессы, которые характерны для поршневых. Особенности конструкции и работы разработанного двигателя заключаются в том, что качающиеся заслонки, размещенные в корпусе двигателя, оснащены шарнирами, посредством которых осуществляется сопряжение заслонок с роторами в процессе его вращения. Дополнительный внешний эксцентрик, закрепленный на рабочем валу, позволяет осуществлять регулировку зазоров между шарнирами качающихся заслонок и роторами за пределами камер сгорания.

Т аким образом, можно сделать следующие выводы; предлагаемый двигатель при большом крутящем моменте сжигает топливо более полно, и это делает его более эффективным и чистым. Вредные выхлопы диоксида азота, например, оцениваются в сотни раз меньше, чем у поршневого двигателя. Одним из самых значительных преимуществ данной конструкции является отсутствие вибрации. Повышаются динамические характеристики и коэффициент приспособляемости двигателя к крутящему моменту кТ = Тшах/ ТР . Может использоваться жидкое и

газообразное топливо. Компактный дизайн двигателя уменьшают размеры и вес. А малое количество деталей может снизить затраты на техническое обслуживание и повысить надежность.

Двигатель внутреннего сгорания новой конструкции обеспечивает нулевые вредные выбросы

Исследователи из Политехнического университета Валенсии (UPV) разработали новый двигатель внутреннего сгорания (ДВС), который не выделяет углекислый газ и другие газы, вредные для здоровья людей.

По словам его создателей, это «революционный» двигатель, который не только соответствует нормативам по выбросам, запланированным на 2040 год, но и обладает высоким КПД.Первые два прототипа этого двигателя будут построены в ближайшие месяцы при финансовой поддержке Валенсийского агентства по инновациям.

Технология, используемая в новой конструкции ДВС, основана на использовании керамических мембран MIEC. Запатентованные Институтом химической технологии, объединяющим центром UPV и CSIC, эти мембраны удаляют все загрязняющие и вредные для здоровья газы (NOx), улавливая собственный CO2 и CO2 в окружающей среде и сжижая его.

«Эти мембраны, включенные в двигатель транспортного средства, позволяют избирательно отделять кислород от воздуха, чтобы произвести кислородное горение.Таким образом, образуется чистый горючий газ, состоящий из воды и CO2, который можно улавливать внутри автомобиля и хранить, не выбрасывая его из выхлопной трубы », — пояснил Хосе Мануэль Серра, исследователь ITQ (UPV-CSIC). .

Технология, разработанная исследовательской группой UPV, может позволить получить двигатель с автономностью и возможностями дозаправки обычного ДВС, но с тем преимуществом, что он будет полностью чистым и без каких-либо загрязняющих веществ или выбросов парникового эффекта, как у электрического двигателя. автомобильные двигатели.

С помощью этой технологии автомобиль может также стать поставщиком CO2. Как объясняют исследователи, в обычном двигателе после кислородного горения в выхлопной трубе образуется большое количество азота и оксидов азота. Однако в случае этой новой конструкции двигателя образуется только очень высокая концентрация CO2 и воды, которые можно легко отделить путем конденсации.

«Этот CO2 сжимается внутри двигателя и хранится в резервуаре высокого давления, который может быть возвращен в качестве побочного продукта непосредственно в виде чистого высококачественного CO2 на станции обслуживания для промышленного использования.Таким образом, внутри автомобиля у нас будет один бак для топлива, а другой — для CO2, который образуется после сжигания топлива и из которого мы могли бы извлечь пользу », — сказал Луис Мигель Гарсиа-Куэвас.

Технология предназначена для производителей крупногабаритных транспортных средств для перевозки пассажиров и грузов как по суше, так и по морю, а также для авиации до определенного уровня мощности. Кроме того, его также можно использовать для преобразования существующих дизельных двигателей в специальные автомобили.

«В случае небольших транспортных средств это также может быть применено путем изолирования только части CO2 в выхлопных газах», — сказал Франсиско Хосе Арнау, научный сотрудник CMT-Thermal Motors UPV.

В настоящее время команда конструирует два прототипа в лабораторном масштабе этой «революционной системы для автомобильного сектора».

«Положительная оценка и финансирование Валенсийского агентства по инновациям означает возможность вывести концепцию на высокий уровень технологического развития. Благодаря этому можно будет привлечь внимание частных инвесторов, которые захотят получить лицензию на патент или выделить дополнительные средства, чтобы сделать эти двигатели реальностью, что изменит парадигму борьбы с изменением климата с точки зрения транспорта », сказал Хосе Рамон Серрано, исследователь CMT-Thermal Motors UPV.

Подпишитесь на электронную рассылку новостей E&T, чтобы получать такие замечательные истории каждый день на свой почтовый ящик.

Будущее конструкции двигателей внутреннего сгорания: 5 тенденций на 2020 год

Изобретение двигателя внутреннего сгорания (IC) стало благом для транспорта, повышения эффективности и всего остального Америки. Но по мере того, как технологии ИС стареют, а проблемы окружающей среды усиливаются, на их место стремятся альтернативы.

Автопроизводители и потребители в равной степени размышляют о будущем производства двигателей внутреннего сгорания и рассматривают , что заменит двигатель внутреннего сгорания — или какие детали были задействованы в порошковой металлургии (ПМ).

Подумайте, где в двигателе использовались PM. Достижения включают в себя самосмазывающиеся направляющие клапана, шатуны, регулировку фаз газораспределения и так далее.

Если посмотреть на предысторию того, что привело нас сюда, а также на новые проблемы эффективности и защиты окружающей среды, которые может помочь решить порошковый металл, это урок, который нельзя пропустить ни одному OEM-инженеру.

Будущее конструкции двигателей внутреннего сгорания

Откройте изображение в новой вкладке, чтобы увидеть полную версию этой инфографики:


1.Ограничения на выбросы CO2

Глобальный углеродный проект сообщил, что выбросы углерода во всем мире достигли рекордно высокого уровня в 2018 году, и ожидается, что в 2019 году их количество снова увеличится.

Агентство по охране окружающей среды опубликовало рекомендации по выбросам парниковых газов для легковых и грузовых автомобилей, причем Фаза 2 затрагивает модельные годы до 2025 года. Хотя Управление по охране окружающей среды, похоже, переосмысливает некоторые руководящие принципы, по-прежнему политическая и экологическая атмосфера способствует повышению эффективности двигателей внутреннего сгорания. , больше, чем потребительский спрос.

Независимо от того, согласны ли инженеры и руководители лично с изменениями в воздухе, отрасль неуклонно движется в этом направлении.

2. Как повысить эффективность выбросов двигателя внутреннего сгорания?

Управление энергоэффективности и возобновляемых источников энергии сообщает, что производители снизили выбросы загрязняющих веществ более чем на 99% за последние 30 лет. Творческие умы достигли этого, сохранив или увеличив экономию топлива.

Помимо бензина и дизельного топлива производители изучают другие способы увеличения экономии топлива:

  • Использование биодизеля
  • Использование других альтернативных или возобновляемых видов топлива
  • Комбинация двигателей внутреннего сгорания с гибридными электрическими силовыми агрегатами


3.Дизельные двигатели против. Традиционные бензиновые двигатели

Когда европейцы перешли с дизельных автомобилей на бензиновые, произошло соответствующее увеличение выбросов углекислого газа. Неожиданным поворотом стало то, что некоторые из сегодняшних автомобильных стратегий основаны на дизельных двигателях.

Многие большие дизельные грузовики на самом деле производят меньше выбросов CO2, чем небольшие газовые автомобили, свидетельствуют отчеты. Благодаря усовершенствованным технологиям были произведены дизельные двигатели, которые могут использоваться в автомобилях меньшего размера и обеспечивать:

  • Лучше расход бензина
  • Снижение выбросов углерода
  • Больший крутящий момент
  • Двигатель с длительным сроком службы


4.Конкуренция с электрическими двигателями

Вы знали, что это произойдет. Хотя бензиновые двигатели, похоже, не исчезнут полностью, они сталкиваются с жесткой конкуренцией со стороны своих электрических конкурентов.

В то время как некоторые видят будущее за электромобилями, даже BMW пока не отказывается от двигателей внутреннего сгорания.

Единственная вещь, которую опоры двигателей IC могли повесить над головами сторонников электричества, — это их аккумулятор. В частности, это:

  • Размер
  • Стоимость
  • Долговечность
  • Возможности зарядки или их отсутствие

Однако, согласно прогнозам, цены на электромобили будут конкурентоспособными уже в 2022 году, поскольку стоимость аккумуляторов резко упадет.Когда-то батарея составляла около 50% стоимости автомобиля, но к 2025 году она может упасть с до 20% и до . Эти сокращения, безусловно, происходят быстрее, чем ожидал рынок.

Опасения по поводу дальности полета в будущем для электромобилей меньше. Технология развивается, и появляется все больше зарядных станций. «Беспокойство о запасе хода» (опасения потребителей, что им негде подзарядить аккумулятор) по-прежнему остается реальной проблемой, которую OEM-производителям все еще необходимо решить.

5.Порошковая металлургия поддерживает переход к экологичности

Порошковая металлургия становится все более важным фактором при проектировании компонентов двигателей, нравится это разработчикам двигателей внутреннего сгорания или нет.

«Зеленая» технология — порошковая металлургия — идет рука об руку с экологичным автомобилем будущего. Спеченные магнитомягкие материалы с более высокой плотностью обеспечивают невиданный ранее рост производительности. Возможно, вы слышали историю о металлическом порошке раньше, но эти новые материалы отличаются от материалов Standard 35, на которые производители полагались на протяжении десятилетий.

Стандарт 35

MPIF является отличной базой для производителей порошковой металлургии, но для ваших будущих проектов могут потребоваться материалы и процессы, которые превосходят «стандартные» уровни производительности. В некоторых случаях можно даже исключить компонент из сборки , спроектировав с использованием металлического порошка.

Современная передовая технология уплотнения может быть немного дороже вначале, но в долгосрочной перспективе может значительно сэкономить производителям (и водителям).

Многие компоненты можно преобразовать в металлический порошок.Порошковая металлургия добилась больших успехов в создании мелких деталей для электродвигателей и других автозапчастей по многим причинам:

  • Уменьшает вес
  • Повышает КПД электродвигателя, включая улучшенные магнитные свойства.
  • Создает детали в форме сетки
  • Позволяет использовать современные материалы и процессы
  • Повышенная прочность и твердость

В частности, магнитомягкие композитные материалы являются лидером в создании сверхэффективного электродвигателя.

Порошковая металлургия — это больше не просто стержни и заглушки!

Куда вы пойдете дальше?

Современные услуги порошковой металлургии позволяют плавно перейти от традиционной конструкции двигателей внутреннего сгорания к более эффективным и экологически безопасным двигателям будущего. Это стало возможным благодаря развитию PM-материалов (как вы найдете ниже) и процессов (например, спекания).

Конечно, внутренние двигатели будут еще долгое время.Металлический порошок по-прежнему может принести значительные преимущества и двигателям внутреннего сгорания.

Если вы хотите увидеть, как новые материалы и процессы порошковой металлургии меняют мир двигателей, посетите наш ресурсный центр по электродвигателям:

Связанные ресурсы

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 года и недавно была обновлена.)

Какое будущее у двигателя внутреннего сгорания?

С более строгими стандартами выбросов и появлением электрических силовых агрегатов может показаться, что дни двигателей внутреннего сгорания сочтены.Но Инженерное объяснение Ведущий Джейсон Фенске считает, что внутреннее сгорание будет продолжаться — благодаря новым технологиям.

Fenske довольно оптимистично оценивает долговечность двигателя внутреннего сгорания, как из-за присущего бензину преимущества по плотности энергии над батареями, так и из-за технологий повышения эффективности. В этом видео он более подробно рассматривает некоторые из этих технологий.

Один из вариантов — воспламенение от сжатия однородного заряда (HCCI).Двигатель HCCI сжигает бензин, но использует воспламенение от сжатия, как и дизельный двигатель, а не свечу зажигания. Теоретически это обеспечивает эффективность дизеля без образования сажи и высоких уровней выбросов оксидов азота (NOx). Однако для этого требуется гораздо более точный контроль температуры на впуске, а также момента зажигания.

Феррари 488 GT Modificata

Следующая опция — воспламенение от сжатия с предварительным смешиванием заряда (PCCI). Фенске описал это как «золотую середину» между воспламенением от сжатия дизельного двигателя и HCCI, потому что он впрыскивает немного топлива раньше, чтобы позволить ему смешаться с воздухом в камере сгорания, а затем впрыскивает больше топлива позже.Это обеспечивает больший контроль времени зажигания, чем HCCI, но также может создавать очаги несгоревших побочных продуктов углеводородов, что плохо сказывается на выбросах. По словам Фенске, двигатели PCCI также имеют довольно узкий рабочий диапазон с высоким потенциалом детонации при полностью открытой дроссельной заслонке.

Наконец, у нас есть воспламенение от сжатия с контролируемой реактивностью (RCCI). Здесь используются два вида топлива: топливо с низкой реактивностью (например, бензин), которое впрыскивается через порт, и топливо с высокой реактивностью (например, дизельное топливо), которое впрыскивается напрямую.«Реакционная способность» относится к тенденции топлива воспламеняться при сжатии. По словам Фенске, этот метод приводит к значительному повышению эффективности, но по-прежнему с довольно высокими выбросами. Сложность использования двух видов топлива также может сделать его коммерчески не пусковым.

Эти альтернативные конструкции двигателей внутреннего сгорания, возможно, еще не готовы к использованию, но автопроизводители стремятся выжать каждую каплю эффективности из сегодняшних бензиновых двигателей, используя более совершенные технологии, такие как прямой впрыск. Фенске также рассказал о другой возможной будущей технологии внутреннего сгорания — начальном зажигании — в другом видео, которое также стоит посмотреть.

Разъяснение конструкции нового двухтактного двигателя

С появлением на горизонте все большего и большего количества новых электромобилей будущее двигателей внутреннего сгорания с каждым днем ​​кажется все мрачнее. Но этот новый тип сверхэффективного двигателя может продержаться еще немного.

Road & Track Участник Джейсон Фенске разбирает новый дизайн, опубликованный Обществом автомобильных инженеров, в новом видео для своего канала YouTube Engineering Explained. Несмотря на то, что в нем используются поршни и топливо, его конструкция не похожа ни на один из других традиционных двигателей внутреннего сгорания, используемых сегодня на дорогах.

В отличие от обычного двигателя внутреннего сгорания, в котором одна и та же камера используется для сжатия, смешивания и сжигания топливовоздушной смеси, входное зажигание распределяет работу между тремя разными камерами. Первый, оснащенный поршнем, сжимает воздух для создания давления и нагрева. Затем он отправляет сжатый воздух в резервуар, который поступает в другое пространство, где сжатый воздух смешивается с топливом. Затем эта горячая топливно-воздушная смесь всасывается в другую камеру с помощью скользящего клапана, где из-за тепла внутри цилиндра она воспламеняется (без использования свечи зажигания).Вот откуда взялось название «зажигание».

Мы знаем, что это много для переваривания. Фенске объясняет это более подробно в видео выше. Поскольку конструкция обеспечивает такты впуска и сгорания одновременно (помните, в разных цилиндрах), технически это двухтактный двигатель. Этот метод обеспечивает более высокую степень сжатия и более обедненное соотношение воздух-топливо, обеспечивая теоретический тепловой КПД 63 процента — на 14 процентов лучше, чем у обычного традиционного двигателя внутреннего сгорания.

Конечно, мы не собираемся в ближайшее время увидеть появление двигателей с внутренним зажиганием в дорожных автомобилях. Этот метод недоказан и несет в себе множество неизвестных в отношении охлаждения, балансировки и надежности. Тем не менее, это признак того, что в мире топливных двигателей не все потеряно.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Двигатели внутреннего сгорания | Конструкция машины


Самыми транспортабельными и прочными источниками энергии являются двигатели внутреннего сгорания.

Большинство промышленных двигателей внутреннего сгорания (IC) в диапазоне малой мощности, около 30 л.с. или меньше, работают на бензине, потому что дизельные двигатели слишком тяжелые и дорогие. Например, в небольшом водяном насосе с приводом от двигателя бензиновый двигатель будет составлять около 60% стоимости всего пакета.С дизельной мощностью стоимость будет ближе к 90%.
Таким образом, в диапазоне малой мощности выбор двигателя в значительной степени зависит от таких факторов, как выбор между четырехтактным или двухтактным режимом работы, а также между чугунной или алюминиевой конструкцией.


Четырехтактный двигатель обычно является предпочтительной бензиновой силовой установкой. Он имеет репутацию долгой безотказной работы, плавно работает на холостом ходу и хорошо работает на низких оборотах, не требует смазки в топливе и, как правило, не имеет выхлопных газов с видимым дымом.

Небольшие двигатели обычно имеют воздушное охлаждение для простоты и снижения веса. Однако вода наиболее эффективно охлаждает более крупные стационарные двигатели.

Четырехтактные двигатели мощностью до 40 л.с. обычно имеют простые клапаны с L-образной головкой, которые дешевле, чем верхний кулачок. Расположение распредвалов с верхним расположением цилиндров обеспечивает большую мощность и экономию топлива и обычно используется в более крупных двигателях.

В малых двигателях используется тот же простой дыхательный механизм и карбюратор, что и в автомобильных двигателях.Более сложный впрыск топлива и наддув предназначены для более крупных и дорогих двигателей и дизелей.

Четырехтактные двигатели мощностью более 10 л.с. обычно изготавливаются из чугуна. С двигателями меньшего размера покупатель может выбирать между чугунным литьем и литым под давлением алюминием. Алюминиевый двигатель дешевле, если его производить в больших количествах.

Утюг лучше изнашивается, но сторонники алюминиевого двигателя говорят, что он служит одинаково долго при правильном уходе. Железо более устойчиво к грязи, в то время как проглатывание грязи очень вредно для алюминиевого двигателя.

Автомобильные, морские и авиационные двигатели значительно сложнее малых промышленных двигателей, и в этих приложениях алюминий успешно используется в больших двигателях.

Двухтактный двигатель выдает значительно больше мощности, чем четырехтактный двигатель того же размера. Преимущество двухтактного режима в отношении мощности к весу составляет от 50% до 300% или более. Например, четырехтактный двигатель мощностью 40 л.с. может весить 250 фунтов, в то время как двухтактный двигатель той же мощности весит всего 65 фунтов.Один двухтактный двигатель развивает 80 л.с. при объеме всего 440 куб. См.

Из-за такого отношения мощности к массе двухтактный двигатель обычно предпочтительнее для спортивных автомобилей или тех, где двигатель необходимо поднимать, удерживать или переносить вручную. Электропилы и большинство подвесных судовых двигателей — двухтактные, как и большинство снегоходов.

Новые разработки в этой области заставили автопроизводителей переосмыслить предыдущие концепции двухтактных двигателей. Одна исследовательская компания обнаружила, что за счет тонкого распыления топлива сгорание становится более полным, выхлоп достаточно чист, чтобы обходиться без каталитического нейтрализатора, а холостой ход контролируется более тщательно.

В других областях применения двухтактный двигатель имеет неблагоприятную репутацию из-за резкого холостого хода, плохой работы на низких скоростях, темпераментного поведения и быстрого загрязнения. Поскольку они, как правило, лучше всего работают на высокой скорости, у них может быть короткий срок службы. Также в топливо необходимо добавить смазку.

К их преимуществу, первоначальная стоимость составляет примерно 70% от стоимости эквивалентного четырехтактного двигателя, произведенного в том же объеме производства. Двухтактные двигатели обычно изготавливают из алюминия в целях экономии веса.

Дизели обычно становятся конкурентоспособными с бензиновыми двигателями мощностью более 30 л.с., и они, как правило, становятся более логичной альтернативой по мере увеличения потребности в мощности. Их обычно выбирают из-за их экономичности в эксплуатации и большей прочности. В целом дизель стоит примерно в 2,5 раза дороже бензинового двигателя, но в среднем дизель работает примерно в 2,5 раза дольше. Помимо того, что дизели более дорогие, чем бензиновые, они также производят больше шума и вибрации. Дизели также работают в узком диапазоне оборотов и обычно требуют значительного переключения при использовании в автомобилях без преобразователей крутящего момента.Они требуют впрыска топлива, что способствует их более высокой стоимости.

Дизели приобрели репутацию надежных тяжелых двигателей, прежде всего потому, что они сконструированы таким образом, чтобы выдерживать высокие ударные нагрузки и высокое давление в цилиндрах, которые являются следствием высокого сжатия, необходимого для самовоспламенения.

Иногда выбор двигателя основывается не на экономических соображениях. Например, тенденция к стандартизации топлива часто диктует использование небольших дизелей на установках, уже использующих большие дизели.Тенденция к использованию больших сельскохозяйственных тракторов с дизельным двигателем, например, поощряет использование меньших дизельных двигателей для сельскохозяйственных нужд, поэтому в них хранится только один вид топлива.

Дизельное топливо менее летучее, чем бензин, и поэтому с ним безопаснее работать. А дизельное топливо меньше хищается, чем бензин, что заставляет многих строительных подрядчиков рассматривать дизельное топливо для небольших двигателей. Многие компании стандартизировали дизельную мощность для всех двигателей; Большинство двигателей, используемых на буровых установках, являются дизельными.

Географическое положение также может влиять на выбор дизельного топлива по сравнению с бензином. Европейские страны, например, сильно склонны к использованию дизельных двигателей даже для двигателей мощностью менее 30 л.с.

Как и в случае с бензиновыми двигателями, есть выбор между двухтактным или четырехтактным дизелем. Тем не менее, дизели были усовершенствованы и усовершенствованы до такой степени, что есть небольшие внешние функциональные различия между двух- и четырехтактным режимом работы с точки зрения мощности, экономии или долговечности.

Для двухтактного дизельного двигателя требуется механический нагнетатель для принудительной подачи воздуха, чтобы двигатель имел достаточную наддува.Это в дополнение к турбокомпрессорам (с приводом от выхлопа), которые часто используются как на четырехтактных, так и на двухтактных дизелях.

Двигатель Ванкеля с точки зрения функциональных характеристик, включая вес, выходную мощность, эффективность и скорость, напоминает двухтактный бензиновый двигатель. Короче говоря, Ванкель имеет тенденцию экономить немного больше веса и места по сравнению с обычным четырехтактным двигателем. Эта экономия варьируется от незначительной для небольших двигателей до значительной суммы по сравнению с большим автомобильным V8.Здесь Ванкель весит примерно вдвое меньше и имеет примерно одну треть размера четырехтактного поршневого двигателя.

В долгосрочной перспективе некоторые исследователи ожидают, что Ванкель с его четырехтактным принципом работы может оказаться лучше двухциклового. Первоначально Ванкель страдал от плохой герметизации камеры сгорания и большого расхода топлива. Но постоянные разработки привели к значительным улучшениям в уплотнении и снижению расхода топлива.

Ванкель получил признание в некоторых кругах автомобильного рынка, но в настоящее время он не претендует на промышленное применение.Однако некоторые крупные промышленные роторные двигатели были разработаны специально для комплексных применений, которые включают приводы компрессоров, генераторов и насосов. В основном эти роторные двигатели представляют собой низкооборотные агрегаты большой мощности.

Газовая турбина очень хорошо подходит для применений, где требуется значительная выходная мощность при постоянной скорости. Например, одно из их наиболее важных промышленных применений — привод огромных электрических генераторов для увеличения выработки пара при пиковом спросе энергетических компаний.Однако газотурбинные двигатели дороги как в покупке, так и в эксплуатации. Электроэнергия, вырабатываемая на уровне энергокомпании с помощью газовой турбины, стоит в три-четыре раза больше, чем вырабатываемая паровой турбиной.

Стоимость газовой турбины составляет от 15 до 35 долларов за л.с., тогда как поршневые двигатели обычно стоят от 1 до 10 долларов за л.с. Высокая стоимость турбины связана с необходимостью использования дорогих материалов, способных выдерживать высокие температуры.

Турбины имеют низкую топливную экономичность при небольшой нагрузке, и им требуется много времени, чтобы набрать скорость при ускорении.Таким образом, они, как правило, делают плохие автомобильные двигатели. Они лучше подходят для тяжелых грузовиков и автобусов, а также для мощных стационарных установок, где они обычно движутся с постоянной высокой скоростью. Несмотря на свои недостатки, армейский боевой танк M1 приводится в движение турбинным двигателем мощностью 1500 л.с. Двигатель может развивать 40-тонную машину со скоростью, превышающей 40 миль в час. Тем не менее, это приложение неординарное.

Двигатели Стирлинга внешнего сгорания в настоящее время не имеют промышленного значения, поскольку они столкнулись с жесткой конкуренцией со стороны хорошо зарекомендовавших себя двигателей внутреннего сгорания.Кроме того, двигатели Стирлинга обычно сложны, громоздки и дороги в производстве.

Тем не менее, в автомобильных кругах есть интерес к дизайну из-за присущей ему высокой эффективности и низкого уровня выбросов выхлопных газов. Правительство США, например, спонсировало программу, цель которой — сделать Stirling экономичной и экономичной альтернативой двигателю внутреннего сгорания в автомобильной промышленности. Однако первые коммерческие применения двигателя Стирлинга заключаются в портативных электрогенераторах для транспортных средств для отдыха и государственных транспортных средств.

Вывод из эксплуатации двигателей внутреннего сгорания? Это уже происходит

  • Некоторые автопроизводители уже признались, что прекратили разработку новых двигателей внутреннего сгорания.
  • Некоторые использовали многоэтапный подход, однако постепенно свертывали разработку на одних рынках раньше других.
  • Видимый проблеск конца: Cadillac заявила, что CT4 и CT5 — последние V-образные автомобили, которые он будет производить.

    Автопроизводители делают это официально — они постепенно отказываются от внутреннего сгорания и с разной степенью счастья движутся к полностью электрическому будущему.Так в какой момент действительно заканчивается более чем 120-летняя история производства и совершенствования бензиновых и дизельных двигателей? Некоторые автопроизводители заявляют, что процесс уже идет полным ходом, и больше не будут утверждены многомиллионные планы разработки двигателей.

    Stellantis опоздал на электрификацию, но в 2021 году он наверстывает упущенное, особенно после слияния Fiat Chrysler и PSA, в результате которого была создана компания. Jeep Wrangler 4xe — это подключаемый гибрид с четырехцилиндровым турбомотором и двумя электродвигателями общей мощностью 350 л.с.На вопрос, дошел ли бензиновый двигатель до конца линейки, пресс-секретарь Stellantis Лиза Барроу ответила: «Мы сказали, что для обновленного Jeep Grand Cherokee будет установлена ​​трансмиссия 4xe. Других анонсов двигателей мы пока не делали ».

    Jeep заявляет, что каждая новая модель будет иметь определенную степень электрификации.

    Stellantis

    Будет ли 4xe Grand Cherokee обладать большей мощностью, и превратится ли концепт Magneto на базе аккумуляторной батареи на базе Wrangler в серийный автомобиль, как это кажется вероятным? Бэрроу отказался вдаваться в подробности, но Jeep заявил, что каждая новая модель будет иметь определенную степень электрификации.Компания уже продает подключаемые гибридные 4xe версии Compass и Renegade, но только в Европе. Картина неоднозначна, но нынешняя эпоха, когда преобладают огромные бензиновые двигатели в автомобилях Dodge, Chrysler, Ram и Jeep, может иметь ограниченный срок службы.

    Генеральный директор Stellantis Карлос Таварес сыграл важную роль в развертывании электрического Leaf во время работы в Nissan и является горячим сторонником электрификации. В марте WardsAuto писал: «Stellantis стремится к электрическому будущему и не будет делать в будущем никаких крупных инвестиций в двигатели внутреннего сгорания, — говорит Таварес.Он будет работать с существующими двигателями меньшего размера от PSA и более крупными двигателями от FCA ».

    Так же, как электрификация Stellantis ускоряется в Европе, Ford также лидирует на этом рынке. К 2026 году, по заявлению компании, 100 процентов ее европейских легковых автомобилей будут иметь «нулевые выбросы», как полностью электрические, так и гибридные, с полной электрификацией к 2030 году. BBC Top Gear высказал мнение: «Если вы в В США ваши пикапы и Мустанги могут отдыхать немного легче, поскольку Ford электрифицировал только свой европейский модельный ряд.Но это промежуточный шаг, и даже у Mustang теперь есть электромобиль Mach-E в модельном ряду.

    И все же расписание на внутреннем рынке Форда более мутное. «Как вы знаете, мы инвестируем не менее 22 миллиардов долларов до 2025 года в поставку совершенно новых электрифицированных автомобилей», — сказал Т. Рид, директор по связям с общественностью и корпоративной политикой Ford. «Мы также видим роль эффективных и гибридных двигателей внутреннего сгорания в определенных областях применения в Северной Америке, поскольку мы работаем над выполнением нашего обязательства по снижению выбросов углерода к 2050 году.Кроме того, мы не комментируем слухи о будущих автомобилях или трансмиссиях ».

    CT6-V Cadillac 2019 года: конец эпохи?

    ДЖЕССИКА ЛИНН УОКЕР

    General Motors удивила мир объявлением в январе прошлого года о том, что к 2035 году компания планирует прекратить продажу бензиновых и дизельных автомобилей. И, по крайней мере, в одном подразделении конвейер для новых двигателей V8, кажется, иссякает. «На стороне Cadillac нет никаких будущих двигателей внутреннего сгорания, которые я мог бы прокомментировать на данный момент», — сказал представитель Cadillac Стефан Кросс.«В то время как Cadillac стремится к полностью электрическому будущему, продукты электромобилей и интегральных схем будут по-прежнему предлагаться вместе по мере появления новых альтернатив электромобилей. 4,2-литровый двигатель V8 с двумя турбинами, известный как Blackwing, доступен только в Cadillac CT6 Platinum и CT6-V с 2019 по 2020 год. В настоящее время у нас нет никаких дополнительных планов по поводу этого движка ».

    Давайте на мгновение остановимся на Cadillac и его двигателе. Хотя совершенно новый Blackwing был собран вручную в Боулинг-Грин, штат Кентукки, и никогда не предназначался для массового производства, он определенно должен был иметь более длительный срок хранения, чем сейчас.Он предлагался в том, что тогда было CT6 V-Sport (с изменением названия в какой-то момент на CT6-V). В 2019 году было произведено всего 875 автомобилей, а в 2020 году — 600. Это был медовый двигатель с мощностью 550 л.с. и крутящим моментом 640 фунт-фут.

    550-сильный двигатель Cadillac с твин-турбонаддувом и 4,2-литровым двигателем V8 попал в очень немногие автомобили.

    Кадиллак

    Когда впервые показали на шоу-каре Escala, Cadillac сказал, что новый V8 был «прототипом новой системы, разрабатываемой для будущих моделей Cadillac.Но этого не произошло, и двигатель и затраты на его разработку — это списание. Road & Track ссылается на источник, который сказал, что в Blackwing было вложено 16 миллионов долларов, при этом стоимость сборки каждого двигателя составила 20 000 долларов.

    Между тем, компания Cadillac высокого класса отошла от CT6 и включила в себя два аккумуляторных автомобиля, внедорожник Lyriq (будет доступен в начале 2022 года как модель 2023 года) и седан в стиле фастбэк Celestiq (который будет представлен позже этим летом).

    Материнская компания Cadillac, как и Ford, немного подстраховывается.«GM стремится к 2035 году исключить выбросы выхлопных газов из выхлопных труб новых легковых автомобилей и к 2040 году достичь нулевого уровня выбросов углерода в мировых продуктах и ​​операциях», — сказал Крис Бонелли, официальный представитель GM в области двигателей. «При этом у нас есть план продукта для поддержки наших основных программ внутреннего сгорания до 2035 года, который включает важные обновления наших текущих двигателей и совершенно новые конструкции двигателей, о которых еще не объявлено. Мы считаем, что можем стремиться к 2035 году и, в конечном итоге, к полностью электрическому будущему, продолжая при этом вводить новшества и развивать наши предложения IC.”

    Платформа Ultium является основой стратегии GM в области электромобилей.

    GM

    Но большие деньги на разработку в GM идут на электромобили, включая инвестиции в размере 2,3 миллиарда долларов с LG Energy Solution в завод по производству аккумуляторов Ultium в Теннесси.

    В Европе автопроизводители с меньшей охотой говорят о своих планах по поэтапному отказу от бензина и дизельного топлива. Генеральный директор Audi Маркус Дюсманн заявил немецкому изданию Automobilwoche : «Мы больше не будем разрабатывать новый двигатель внутреннего сгорания, а адаптируем наши существующие двигатели к новым директивам по выбросам.Он сказал, что новые и строгие правила выбросов Евро-7 очень ограничивают двигатели внутреннего сгорания. Генеральный директор VW Ральф Брандштеттер сказал примерно то же самое.

    Главный операционный директор Mercedes-Benz Cars Маркус Шефер, отвечающий за групповые исследования, также общался с немецкими СМИ. Он сказал Auto Motor und Sport , что у него нет планов по созданию двигателей следующего поколения IC. К 2022 году все автомобили Benz будут предлагаться в электрифицированных версиях.

    Только BMW сохраняет курс.Генеральный директор BMW Оливер Зипсе заявил, что компания не планирует прекращать разработку газовых и дизельных двигателей, и добавил, что спрос на автомобили внутреннего сгорания «останется устойчивым в течение многих лет». Но BMW также ускоряет планы по производству электромобилей и недавно выпустила электрический i4 2022 с запасом хода до 300 миль.

    Toyota заявила еще в 2017 году, что не планирует выпускать двигатели внутреннего сгорания после 2040 года, но неясно, что она думает сейчас. В 2019 году Honda объявила, что после 2022 года будет продавать в Европе только электромобили и гибриды.Возможно, мышление компании неуместно, по крайней мере, на внутреннем рынке, потому что Япония рассматривает вопрос о запрете традиционного внутреннего сгорания к середине 2030-х годов, оставив только аккумуляторные электромобили и подключаемые гибриды.

    Совершенно очевидно, что у традиционных автомобилей с бензиновым и дизельным топливом — на сегодняшний день большая часть рынка — в ближайшем будущем будет ограничен нулевой срок хранения. Корвет с батарейным питанием? Почему нет? У нас уже есть плагин Mustang.

    Неужели так быстро наступит конец пути для двигателей внутреннего сгорания ? Поделитесь своими мыслями в комментариях ниже.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    FEV успешно разработала эффективный водородный двигатель внутреннего сгорания с низким уровнем выбросов

    Основываясь на 40-летнем опыте работы в этой области, FEV — ведущий мировой инженерно-технический поставщик — набирает обороты в разработке водородных двигателей внутреннего сгорания (ДВС)

    Опираясь на 40-летний опыт работы в этой области, FEV — ведущий мировой поставщик инженерных решений — набирает обороты в разработке водородных двигателей внутреннего сгорания (ДВС).С тех пор, как в июле 2020 года ЕС инициировал «Европейский альянс по чистому водороду», водородный ДВС все чаще находится в центре внимания дискуссий транспортного сектора о решениях для двигателей с нулевым уровнем выбросов. Продолжающиеся дискуссии о сокращении выбросов CO2 более чем на 30% для грузовых автомобилей и на 50% для легковых автомобилей до 2030 года по сравнению с исходной точкой 2019 года добавляют дополнительное давление к развитию технологий с нулевым уровнем выбросов.

    «Водородный двигатель внутреннего сгорания — надежный и экономичный вариант для транспортировки с нулевым выбросом CO2.По словам профессора Стефана Пишингера, президента и генерального директора FEV Group, его можно относительно просто внедрить в существующую производственную инфраструктуру и предложить потенциал для существующих автомобилей. «Тем не менее, из-за своих специфических химических свойств, таких как широкие пределы воспламеняемости и короткая задержка воспламенения, водород создает некоторые проблемы для разработки двигателей внутреннего сгорания, с которыми FEV успешно справляется».

    Новая конструкция системы подачи водородного топлива

    Чтобы соответствовать существующим требованиям безопасности и из-за необходимости надежного постоянного давления перед форсункой, водород создает уникальную потребность в конструкции топливных рамп, питающих двигатель.«Компания FEV приобрела глубокие ноу-хау с точки зрения конструкции топливных рамп без колебаний давления с использованием нашего многоцилиндрового исследовательского двигателя», — сказал Пишингер. «Эти знания уже были успешно переданы в текущие проекты клиентов, независимо от системы впрыска — портовый топливный или прямой впрыск водорода».

    Приготовление смеси для систем прямого впрыска

    Помимо подачи водорода по магистрали, впуск через форсунки, а также процесс смешивания с всасываемым воздухом требует глубокого понимания динамики жидкости и взаимодействия.

    «Крайне важно обеспечить оптимальную однородность смеси, что в конечном итоге приводит к низким уровням выбросов NOx в сочетании с высочайшим КПД двигателя», — сказал Пишингер. «В FEV мы используем хорошо зарекомендовавший себя процесс 3D CFD (расчет движения заряда). Чтобы изучить уникальное поведение водорода в процессе инжекции и смешивания, в сотрудничестве с RWTH Aachen University был проведен широкий спектр оптических исследований в камерах инжекции под давлением. Таким образом, мы получили беспрецедентное понимание процесса впрыска и смешивания водорода с другими газами.”

    Результаты экспериментов в сочетании с хорошо зарекомендовавшими себя знаниями FEV о генерации заряда-движения позволяют компании оптимизировать взаимодействие впрыска топлива и конструкции движения заряда для обеспечения максимально возможной однородности смеси.

    Водород требует регулировки системы зажигания

    Широкий предел воспламеняемости и низкая необходимая энергия зажигания предъявляют строгие требования к конструкции системы зажигания. Ключевым моментом является подавление любых непреднамеренных разрядов.Кроме того, высокие температуры пламени приводят к повышенному износу электродов и обращают внимание на максимально возможную управляемость подаваемой энергии зажигания.

    «Вот почему мы решили тесно сотрудничать с основными поставщиками систем зажигания и производителями свечей зажигания на ранних этапах процесса», — сказал Пишингер. «Мы стремимся оптимизировать поведение этих ключевых компонентов, особенно для двигателей внутреннего сгорания на водороде, посредством обширных исследований двигателей и испытаний на долговечность.”

    Улучшенная вентиляция картера противодействует накоплению h3

    Низкая плотность водорода может привести к накоплению водорода внутри картера двигателя, что приведет к превышению нижнего предела взрываемости. В сочетании с вышеупомянутой необходимой низкой энергией зажигания этот эффект может привести к серьезному повреждению двигателя.

    «Благодаря нашим обширным исследовательским и тестовым возможностям нам удалось найти решения для устранения этого риска, который относится ко всем двигателям, которые мы когда-либо поставляли клиентам», — сказал Пишингер.

    Оптимизированные переходные характеристики и низкие выбросы NOx.

    Чтобы компенсировать задержку переходной характеристики при работе с постоянным соотношением воздух-топливо, интеллектуальные функции управления двигателем сочетают управляемость двигателя с минимальными выбросами NOx. Поэтому FEV использует свой прототип быстрого управления для разработки программного обеспечения, адаптированного для водородных ДВС, с максимальной эффективностью по времени. Для работы h3-ICE в полной автаркии без базового ЭБУ компания поставляет даже аппаратное и программное обеспечение для полного управления.

    Максимизация устойчивости к преждевременному воспламенению

    Прерывание зажигания — одна из основных проблем, ограничивающих водородные двигатели внутреннего сгорания в достижении высоких уровней среднего эффективного давления в тормозах (BMEP), подобных дизельным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *