Характеристика роторного двигателя, его плюсы и минусы
7Сравнивая два вида мотора, роторный и поршневой, очевидным является тот факт, что первый из них имеет преимущества. Простая конструкция, работа на максимальных оборотах без перегрева и значительных потерь, а также фактически отсутствие вибрации — заставляют некоторых любителей “сложных ДВС” обратить внимание на этот агрегат. Хоть широкого распространения он не получил, но все также интересует механиков, в силу своей специфики работы и строения. Для того, чтобы самостоятельно попытаться освоить “азы” строения двигателя, нужно узнать что такое роторный двигатель и по какому принципу он приводится в действие.
Что такое роторный двигательРотор — это “сердце” теплового агрегата, отсюда и название ДВС — роторный. Этим же рабочим элементом он приводится в действие. Основная отличительная техническая характеристика основывается на отсутствии возвратно-поступательных движений. Промежуточный этап полностью исключен, быстрее преобразуется энергия в двигателе, выходит на максимальное значение КПД.
Изобретение являет собой эллипсоид, внутри полого корпуса размещается насаженный на вал ротор. Лопасти ротора при вращении взаимодействуют с краями корпуса, в котором он размещен. Обычно их количество может составлять 1,2, или 3, хотя наиболее часто устанавливается 2 треугольника Рело. Давлением газа и центробежных сил пластины, создается полная герметизация камеры, за счет их прижимания к внутренней части конструкции. Таким образом, строение РПД позволяет работать без наличия дополнительных узлов и деталей — в нем отсутствуют коленвал, шатуны, противовесы, а также газораспределительная система. ГРС заменяют впускные и выпускные просеки, и сам ротор, поочередно открывающий и закрывающий эти просеки.
Принцип работы роторного двигателяРоторный ДВС имеет простой принцип работы, который основывается на высоких оборотах. Ротор вращается внутри овального корпуса.
При рабочем цикле создаются по окружности статора свободные полости, в которых и запускается двигатель. Приводится в действие движок посредством впускных/выпускных окон в боковых корпусах. В результате чего, ротор, вращаясь, открывает и закрывает их соответственно. Почему-то все сдвигают плечами и не могут понять, почему же казалось-бы такое простое строение не оправдало ожиданий и уступило дорогу поршневому движку? Если рабочий цикл состоит из постоянных преобразований по принципу:- впрыска топлива,
- сжатия,
- рабочего такта,
- выпуска газа.
Инженеры настаивают на том, чтобы все-таки дать этому мотору вторую жизнь, усовершенствовать его и запустить в обиход.
Плюсы и минусыЧтобы уяснить, почему же агрегат не стал популярным в силу всех своих “за” по мнению механиков, рассмотрим плюсы и минусы роторного двигателя. К преимуществам конструкции относят:
- Мотор подвергается гораздо меньшей нагрузке на высоких оборотах.
- Сбалансированность обеспечивает низкий уровень вибрации.
- Имеет меньше деталей и узлов.
- Он легче, компактнее, его габариты намного меньше.
- Имеет практически идеальное распределение веса по осям, что делает автомобиль более устойчивым.
Тем не менее, отмечается и ряд существенных недостатков:
- Низкие обороты “сжирают топливо по секундно”, слишком высокий расход.
- Дороговизна деталей.
- Большой расход и частая замена смазки.
- Перегрев, как основная беда ДВС. В итоге ломается цилиндр. Такая частая поломка обусловлена конструкционными особенностями.
- Форма камер не позволяет топливу сгорать полностью, и газы поступают на выхлоп. Поэтому силовая установка считается менее экологичной.
Теперь не остается сомнений, что все преимущества роторного двигателя не могут покрыть существенные минусы установки.
Система смазки и питания роторного двигателяПодача масла осуществляется под давлением к основным движущимся деталям. Система смазки работает следующим образом:
- Масляный насос всасывает масло из масляного бака.
- Через маслопровод и форсунки масло подается в замкнутый контур воздушного охлаждения.
- Масло попадает в рабочую полость, совмещается с тепловоздушной смесью, чем обеспечивает смазку узлов и механизмов, и сгорает вместе с ней.
Система питания включается после того, как стартер обеспечит устойчивость жидкостного кольца в барабане. Это происходит так:
- При вращении ротора его торцевые радиальные выступы отсекают порции топливной смеси или воздуха.
- Сжатые порции топливной смеси или воздуха поступают в камеры сгорания.
Зажигание топливной смеси происходит по-разному, это зависит от используемого принципа смесеобразования.
Испытания проводились немцами. В 1957 году инженеры Германии Феликс Венкель и Вальтер Фройде выпустили этот агрегат на обозрение, как “рабочую единицу”. Спустя семь лет, этот мощный двигатель был под капотом спорткара “Спайдер”. Новинку естественно “начали есть все автопроизводители”, в частности: “Мерседес-Бенц”, “Ситроен” и прочие. Даже Ваз испытывал ДВС Ванкеля. Но, единственный кто все-таки решился на серийное производство — это “Мазда”, она же и стала последней точкой в выпуске этого устройства. На сегодня практикуется мелкосерийное производство для мотоциклов. Но, роторный движок это идеальный вариант для гоночной машины и спорткара, а не обычной тюнингованной “Дженерал Моторс”.
Возможные проблемы и неисправности роторного двигателя
Некоторые особенности строения силовой установки влияют на возникновение неисправностей двигателя:
- Линзовидная форма имеет прямое воздействие на цилиндр. В результате работы появляется перегрев из-за сгорающего топлива в камере и преобразования в тепло. Цилиндр работает на износ, приходит в негодность.
- Быстрому изнашиванию поддаются и уплотнители. Находящиеся между форсунками прокладки поддаются высоким перепадам давления в камерах сгорания. Только капремонт силового агрегата могут исправить эту проблему.
- Вся установка в целом и ее отдельные части могут часто выходить из строя, если не проводить своевременно смену масла.
Узлы и агрегаты двигателя
Учитывая все особенности работы роторного двигателя, следует более ответственно подходить к его обслуживанию, своевременно проводить техобслуживание и ремонт. Хотя на данный момент серийное производство автомобилей с роторным двигателем не налажено, разработчики не собираются расставаться с этой идеей. Силовые установки постоянно совершенствуются, поэтому пока еще рано списывать его со счетов.
особенности, преимущества и недостатки моторов
Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.
История создания роторного двигателя
Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.
На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.
После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.
Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.
Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.
Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.
Феликс Ванкель и его первый роторный двигатель
Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.
РПД в СССР
А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.
Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.
Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.
ВАЗ с роторным двигателем (ГАИ)
РПД на Западе
На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.
Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.
Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.
Особенности роторного мотора
В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.
У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.
Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.
Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.
У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.
Достоинства и недостатки роторных двигателей
Преимущества
-
Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.
-
Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами. Поршневый в два раза больше.
-
Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.
-
Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.
-
Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.
Недостатки
-
Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.
-
Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.
-
Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.
-
Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.
-
Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.
-
Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.
Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.
Рассказываем как устроен и работает роторный двигатель
Роторный двигатель — плюсы и минусы | Огород и дача на урале
В этой статье рассмотрим принцип работы роторного двигателя, а также поговорим о его плюсах и минусах.
Главный принцип работ роторного двигателя в том, что роторный двигатель не совершает возвратно-поступательных движений – он просто крутится, вследствие чего он не совершает затрат на остановку в верхних и нижних его точках, и именно из-за этого этот двигатель является высоко-оборотистым.
Сам ротор находится в плоском цилиндре. цилиндр по своей форме не круглый, как обычно, а овальный, ротор же имеет треугольную форму.
В отличие от поршневого двигателя, ротор «освобожден» от коленвала, шатунов, ГБЦ, противовесов, благодаря чему его конструкция становится ещё проще.
Также, для того, чтобы разжечь топливо, в отличие от поршневого двигателя, нужно только две свечи из-за конструктивных особенностей камеры сгорания, мощности у такого двигателя выдаётся как у шестицилиндрового, а кпд у роторного двигателя в 2 раза больше, чем у поршневого – 40%.
К проблемам роторного двигателя относится плохая герметизация камеры сгорания, впуска-выпуска из-за небольшого контакта ротора со стенками цилиндра. без высокоточных расчетов тут никак не обойтись, и, если бы не они, то падала бы компрессия, уменьшался бы кпд при прогреве. большим недостатком является то, что роторный двигатель склонен к перегрву, чего не скажешь об обычном двигателе.
Также к недостаткам стоит отнести, то, что в камере сгорания температура выше, чем во впуске-выпуске, из-за этого цилиндр расширяется в разных местах по-разному, поэтому приходится использовать далеко недешевый высокотехнологический материал в разных местах цилиндра.
Из-за всех этих конструктивных особенностей ресурс роторного двигателя в несколько раз меньше, чем у обычного – в среднем, роторные двигатели «живут» до 80 тысяч километров. плюс ко всему, эти двигатели очень прожорливые – на «низах» они «жрут» много топлива, что важно для города, и при его маленьком объёме в 1.3 литра, расход в среднем достигает 20 литров. это не говоря о том, что обслуживать его и делать то нужно каждые 5 тысяч километров.
Принцип работы роторного двигателя, плюсы и минусы системы
Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.
Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.
Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.
Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.
Содержание статьи:
Строение и принцип работы роторного двигателяСхема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.
Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.
РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.
Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:
- сжатие смеси;
- топливный впрыск;
- поступление кислорода;
- зажигание смеси;
- отдача сгоревших элементов в выпуск.
Одним словом, шесть в одном, если хотите.
Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.
Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.
Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.
Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.
Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.
Принцип работы роторного двигателя
Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!
Роторный двигатель в разрезе Ротор роторного двигателя Камера роторного двигателяРотор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.
Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:
- Впуск
- Сжатие
- Сгорание
- Выпуск
Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.
Выходной вал роторного двигателяВыходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.
Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Строение роторного двигателя
Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.
Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.
Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.
В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.
Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.
Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.
Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.
Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.
Преимущества роторного двигателя
Меньше движущихся частей
Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.
Мягкость
Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.
Неспешность
В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.
Малые габариты + высокая мощность
Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.
Недостатки роторных моторов
Самые главные проблемы при производстве роторных двигателей:
- Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
- Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
- Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
- Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км
Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.
Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.
Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.
Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.
Разные конструкции и разработки роторных двигателей
Двигатель Ванкеля
Двигатель Желтышева
Двигатель Зуева
Принцип работы роторного двигателя авто, разновидности, плюсы и минусы
Принцип работы «обычного» ДВС знаком, наверное, почти всем. Именно такими моторами оснащается подавляющее число автомобилей, и мало кто знает о, так сказать, «параллельных» изысканиях конструкторов, ищущих другие пути создания двигателей.
В силу ряда причин, многие «новинки» в среде ДВС так и остались неизвестными широкой публике, хотя некоторые из таких «необычных» двигателей устанавливались на серийные автомобили.
Речь пойдёт о роторно-поршневых двигателях (РПД). Наибольшее внимание мы уделим описанию принципов работы роторного двигателя Ванкеля – ведь машины с именно его роторными двигателями выпускались на некоторых автозаводах (в частности, на ВАЗе).
Содержание статьи
Устройство обычного двигателя
В обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие на коленчатый вал.
Всем известно что, в обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие через кривошипно-шатунный механизм на коленчатый вал, который под воздействием усилия, передаваемого шатунами, начинает вращаться. Для того, чтобы впуск топлива/выпуск отработанных газов и момент воспламенения топлива были согласованы, требуется достаточно сложный газораспределительный механизм.
Работа роторного двигателя
Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя.
Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя, приводимым во вращение за счёт расширяющихся газов, воздействующих на ротор. Для обеспечения сжатия-расширения топливной смеси камера («цилиндр»), в которой вращается ротор, имеет сложную форму. Такую форму поверхности называют эпитрохоидальной, и для её точного изготовления требуется высокоточное оборудование. Более того, зубцы ротора и вала расположены таким образом, чтобы поршень (имеющий вид треугольника Рело), вращался по этой сожной траектории, «углами» прижимаясь к поверхности «цилиндра» – иначе не избежать прорыва газов в процессе работы двигателя.
Рисунок наглядно демонстрирует, как работает роторный двигатель. Взрывающаяся топливная смесь, впрыснутая через специальное «окно», толкает ротор, а впускное окно автоматически перекрывается стенкой поршня.
Точно также, в нужные моменты, закрывается и открывается «выпускной клапан».
Плюсы и минусы роторного двигателя
Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты.
Как видите, вся конструкция достаточно изящна. Как подсчитали эксперты, в РПД используется примерно на 1000 деталей меньше, чем в «привычных» ДВС (например, отпадает сложная конструкция газораспределительного механизма и его привода). К тому же РПД, имеющий две рабочих камеры (и, соответственно, два ротора), может за одно и то же время совершить такое же число циклов, как и V-образная «восьмёрка».
Хоть на схематическом рисунке предоставлена работа роторного двигателя внутреннего сгорания с воспламенением от искрового разряда, в РПД можно реализовать практически любой рабочий цикл – включая дизельный.
К несомненным достоинствам, такая конструкция двигателя, все вращающиеся детали работают соосно, придаёт непревзойдённую плавность работе роторного двигателя и отсутствие разрушительных вибраций.
Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты. Правда, «на холостых» он достаточно «прожорлив». Если мотор имеет два цилиндра, один из них при необходимости отключают.
КПД роторного двигателя является рекордным – 40%, но, к сожалению, он имеет также рекордно низкий ресурс некоторых деталей (зачастую вызванных «резвостью» двигателя), но частая замена моторного масла способна значительно продлить жизнь механизмов и ресурс роторного двигателя. Пока конструкторам удаётся справиться с чрезмерным износом «граней» «треугольника» путем применения высоколегированных сталей.
Другие виды роторных двигателей
Двигатель Ванкеля не явился единственной попыткой (притом, весьма удачной!) создания роторного двигателя – существуют и другие, менее известные, их варианты.
Двигатель Зуева
По сравнению с двигателем Ванкеля, двигатель Зуева достаточно громоздкая конструкция:
Роторно-лопастной двигатель
Господинн Прохоров именно роторно-лопастными двигателями планировал оснащать «Ё-мобили».
Конструкция оригинальная, но почему-то создатели данного мотора так и не явили миру её безупречно действующий образец. Кстати, г-н Прохоров именно такими моторами планировал оснащать «Ё-мобили».
Автомобили с роторным двигателем
Среди автопроизводителей, оснастивших машины РПД, наиболее известна Mazda RX-8. Но были и другие. В частности, советскими спецслужбами всячески поощрялось создание ВАЗ именно с роторными двигателями. Видимо, оперативные службы заинтересовались «резвостью» мотора.
Впрочем, кроме вышеперечисленных, роторно-поршневые двигатели уже давно «прошли обкатку» на многих авто.
схема устройства РПД, плюсы и минусы
На чтение 8 мин. Просмотров 5.7k. Опубликовано Обновлено
Чтобы понять, почему промышленники прекратили оснащение автомобилей силовыми агрегатами этого типа, полезно ознакомиться с принципом работы роторного двигателя. Зная основные характеристики, конструкцию, достоинства и недостатки, изучив разновидности РПД, можно оценить перспективы и вероятность последующего серийного выпуска таких моделей машин.
Принцип работы роторного двигателя
Роторный мотор работает по схеме, отличающейся от технологии, характерной для стандартного ДВС с поршнями в качестве основного подвижного элемента. Кроме того, силовые агрегаты имеют различную конструкцию.
По аналогии с поршневым двигателем принцип действия РПД базируется на преобразовании энергии, получаемой в результате сгорания воздушно-топливной смеси. В первом случае давление, создаваемое в цилиндрах при сжигании горючего, вынуждает поршни двигаться. Возвратно-поступательные движения шатун и коленчатый вал преобразуют во вращательные, которые заставляют крутиться колеса.
Ротор движется во внутренней полости овальной капсулы, передавая мощность сцеплению и коробке передач. Благодаря треугольной форме, он выдавливает энергию топлива, направляя через трансмиссию на колесную систему. Обязательное условие – в качестве материала используется легированная сталь.
Внутри цилиндра, где располагается ротор, происходят следующие процессы:
- воздушно-топливная смесь сжимается;
- впрыскивается очередная доза горючего;
- поступает кислород;
- топливо воспламеняется;
- сгоревшие элементы направляются в выпускное отверстие.
Треугольный ротор закрепляется на особом механизме. При запуске двигателя он выполняет специфические движения, не вращаясь, а как бы бегая внутри овальной капсулы.
Благодаря своей форме, он образует в корпусе 3 изолированные камеры.
В них наблюдаются такие процессы:
- в первую полость через впускное окно подается горючее и всасывается кислород, при перемешивании образующие воздушно-топливную смесь;
- во втором отсеке происходит сжатие и воспламенение;
- продукты сгорания вытесняются в выпускное отверстие из третьей камеры.
Схема устройства РПД
В конструкцию РПД входят следующие элементы:
- Ротор с 3 выпуклыми гранями, выполняющими функции поршня. За счет углублений увеличивается скорость вращения, образуется больше пространства для воздушно-топливной смеси.
- Пластины из металла, закрепленные на вершинах каждой из сторон. Их предназначение – формирование полостей в корпусе, где происходят рабочие процессы силовой установки.
- 2 металлических кольца на гранях ротора служат для образования камерных стенок.
- В центре конструкции располагаются 2 больших колеса с большим количеством зубьев, вращающихся вокруг шестерней меньшего диаметра. Зубчатая передача соединена с приводным устройством, закрепленном на выходном валу. Направление и траектория движения внутри камеры зависят от этого соединения.
- Корпус ротора. Изготавливается в форме условного овала. Такая конфигурация обеспечивает постоянный контакт вершин треугольника со стенками капсулы, создавая 3 изолированных объема газа.
- Окна впрыска и выхлопа. Клапанов не имеют. Впускное отверстие соединено с системой подачи топлива, а выпускное – с выхлопной трубой.
- Выходной вал с эксцентриковой конструкцией. На нем расположены особые кулачки, смещенные относительно осевой линии. На каждый из этих выступов надевается отдельный ротор. Благодаря несимметричной установке, происходит неравномерное распределение силы давления. Это приводит к образованию крутящего момента, вызывающего стабильную работу силовой установки, основанную на оборотах вала.
5 основных слоев, скрепленных по окружности длинными шурупами, составляют стандартную конструкцию двухроторного двигателя. При этом создаются условия для свободной циркуляции охлаждающей жидкости внутри системы. Движущиеся части, представленные 2 роторами и эксцентриковым выходным валом, располагаются между 2 стационарными участками.
Мощность и ресурс
По сравнению со стандартным ДВС, роторный агрегат характеризуется большей удельной мощностью, которая измеряется в л.с./кг. Это объясняется меньшей массой подвижных деталей, составляющих конструкцию РПД. Обоснование – отсутствие газораспределительного механизма, клапанной системы, коленчатого вала и шатунов.
Кроме того, однороторный двигатель преобразует энергию сгорания топлива во вращательное движение на протяжении ¾ тактов рабочего цикла. Для поршневых моторов этот показатель снижен до ¼.
В результате при вместимости цилиндров 1,3 л современный РПД серийного производства развивает мощность до 220 л.с. А если базовая конструкция дополнена турбинным надувом, то до 350 л.с.
До 2011 г. только японские промышленники концерна «Мазда» выпускали автомобили с двигателями роторного типа. А потом и они сняли агрегат с производства. Вероятная причина – заниженный ресурс силовой установки. До первого капитального ремонта транспортные средства проезжают всего 100 тыс. км. При аккуратном стиле вождения и бережном отношении пробег увеличивается до 200 тыс. км.
Уязвимое звено – уплотнители ротора, страдающие от перегрева и высоких нагрузок. Кроме этих факторов на них оказывают негативное влияние детонация и износ подшипников, расположенных на эксцентриковом валу.
Достоинства и недостатки роторного двигателя
Впервые машина с роторным силовым агрегатом вышла на трассу для тестирования в 1958 г. У истоков его создания стоит Феликс Ванкель, именем которого часто называют РПД.
Игнорируя достоинства изобретения немецкого инженера, работавшего над ним совместно с коллегой-единомышленником Вальтером Фройде, многие автопромышленники не рискнули устанавливать новинку на серийные модели своих автомобилей.
К их числу не относятся производители Mazda, выпустившие первую версию транспортного средства с роторной силовой установкой в 1967 г.
Достоинства РПД
Плюсы РПД:
- Высокий КПД, достигающий 40%. Обоснование – на 1 оборот эксцентрикового вала приходится 3 рабочих цикла.
- Упрощенная конструкция. В ней отсутствуют многие узлы, характерные для поршневых ДВС, в т.ч. газораспределительный механизм, шатуны, клапаны и т.п.
- Высокие обороты. Двигатель на базе треугольного роторного элемента раскручивается до 10 тыс. об/минуту.
- Плавная работа при полном отсутствии вибраций. Объяснение – стабильная ориентация движения ротора в одном направлении.
- Устойчивость перед детонацией. Это позволяет в процессе эксплуатации применять водород.
- Компактные размеры. По сравнению с поршневыми агрегатами габариты РПД в 2 раза меньше. Следствие этого – небольшой вес полностью укомплектованной конструкции и наличие свободного пространства для комфортного расположения водителя и пассажиров.
- Отсутствие дополнительных нагрузок при увеличении количества оборотов. С учетом указанного фактора можно разгонять транспортное средство до 100 км/ч на низкой передаче.
- Сбалансированность. Позволяет эффективнее уравновесить автомобиль, создавая стабильную устойчивость на любом дорожном покрытии.
Недостатки РПД
Конструкторы, разработавшие роторную силовую установку, так и не смогли устранить недостатки:
- Основной недоработкой создателей автомобилисты считают ограниченный ресурс двигателя, обоснованный особенностями конструкции. Постоянные изменения рабочего угла апексов вызывают их ускоренный износ.
- Срок службы заканчивается быстрее из-за перепадов температур, сопровождающих каждый такт. В комбинации с нагрузками, которым подвергаются трущиеся детали, они наносят непоправимый вред функциональным узлам и материалам. Проблему можно решить прямым впрыскиванием минеральной смазки в коллектор.
- Поскольку внутренние полости камер имеют серповидную форму, топливо в них сжигается не полностью. Ротор, вращаясь на скорости при ограниченной длине рабочего хода, выталкивает раскаленные газы в выхлопное отверстие. Присутствие фрагментов масла в продуктах сгорания приводит к токсичности выброса.
- Недостаточная герметичность конструкции, вызванная износом уплотнителей – причина утечки между отсеками с большими перепадами давления между отделениями. Результат – снижение КПД и повышение вреда окружающей природе.
- Высокий расход ГСМ. По сравнению с поршневым двигателем, роторный агрегат потребляет намного больше топлива (20 л на 100 км) и масла (1 л на 1 тыс. км). Забывчивость водителя, пропустившего очередную заправку смазкой, приводит к незапланированному капитальному ремонту или полной замене мотора.
- Для производства РПД применяется высокоточное оборудование. К качеству материалов также предъявляются повышенные требования. В результате конечная стоимость роторного двигателя увеличивается.
Машины с роторным двигателем
В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.
Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.
В число моделей с РПД входят:
- Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
- ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
- Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
- ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.
В заключение
Двигатель роторного типа – отличный вариант для спортивных и гоночных автомобилей, где не требуется большой ресурс. Высокие скоростные и мощностные показатели позволяют надеяться, что промышленники обратят на него внимание и с небольшими доработками снова начнут выпускать машины с моторами Ванкеля.
принцип работы. Плюсы и минусы роторного двигателя
Array ( [TAGS] => Двигателестроение [~TAGS] => Двигателестроение [ID] => 106412 [~ID] => 106412 [NAME] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [~NAME] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [IBLOCK_ID] => 1 [~IBLOCK_ID] => 1 [IBLOCK_SECTION_ID] => 104 [~IBLOCK_SECTION_ID] => 104 [DETAIL_TEXT] =>Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя
С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.
История возникновения агрегата
Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, – спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.
После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле». Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже. В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.
Устройство и принцип работы
Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых. В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.
Фазы работы
Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:
1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.
Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.
Недостатки и преимущества
Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС. Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.
Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов. Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия. Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.
Сложность производства деталей
Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.
Перегревы и высокие нагрузки
Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.
В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.
Ресурс
Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.
После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.
Расход масла
Также роторный двигатель очень требователен к обслуживанию.
Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.
Разновидности
На данный момент существует пять разновидностей данных типов агрегатов:
1. Роторные моторы с возвратно-вращательными движениями вала.
2. С равномерным вращением вала. При этом в его конструкции не используются какие-либо уплотнительные механизмы. Расположение камер сгорания у них спирального типа.
3. Агрегаты с пульсирующе-вращательным движением, направленным в 1 сторону.
4. С планетарным вращением вала, без уплотнительных элементов. Яркий пример тому – двигатель Ванкеля.
5. РПД с равномерной работой рабочих элементов и спиральным типом расположения камер сгорания.
Роторный двигатель (ВАЗ-21018-2108)
История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля. Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» – модели 2101 – за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.
Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй – порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.
Моторы для авиации, «восьмерок» и «девяток»
В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.
Характеристики РПД ВАЗ-414
Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества: Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд. Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров). Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил. Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах. Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.
Сегодняшняя ситуация с РПД на Волжском автозаводе
Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения. Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.
Источник: syl.ru
[~DETAIL_TEXT] =>
С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.
История возникновения агрегата
Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, – спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.
После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле». Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже. В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.
Устройство и принцип работы
Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых. В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.
Фазы работы
Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:
1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.
Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.
Недостатки и преимущества
Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС. Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.
Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов. Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия. Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.
Сложность производства деталей
Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.
Перегревы и высокие нагрузки
Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.
В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.
Ресурс
Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.
После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.
Расход масла
Также роторный двигатель очень требователен к обслуживанию.
Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.
Разновидности
На данный момент существует пять разновидностей данных типов агрегатов:
1. Роторные моторы с возвратно-вращательными движениями вала.
2. С равномерным вращением вала. При этом в его конструкции не используются какие-либо уплотнительные механизмы. Расположение камер сгорания у них спирального типа.
3. Агрегаты с пульсирующе-вращательным движением, направленным в 1 сторону.
4. С планетарным вращением вала, без уплотнительных элементов. Яркий пример тому – двигатель Ванкеля.
5. РПД с равномерной работой рабочих элементов и спиральным типом расположения камер сгорания.
Роторный двигатель (ВАЗ-21018-2108)
История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля. Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» – модели 2101 – за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.
Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй – порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.
Моторы для авиации, «восьмерок» и «девяток»
В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.
Характеристики РПД ВАЗ-414
Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества: Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд. Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров). Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил. Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах. Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.
Сегодняшняя ситуация с РПД на Волжском автозаводе
Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения. Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.
Источник: syl.ru
[DETAIL_TEXT_TYPE] => html [~DETAIL_TEXT_TYPE] => html [PREVIEW_TEXT] => С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. [~PREVIEW_TEXT] => С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. [PREVIEW_TEXT_TYPE] => text [~PREVIEW_TEXT_TYPE] => text [DETAIL_PICTURE] => [~DETAIL_PICTURE] => [TIMESTAMP_X] => 12.02.2020 08:20:10 [~TIMESTAMP_X] => 12.02.2020 08:20:10 [ACTIVE_FROM] => 12.02.2020 [~ACTIVE_FROM] => 12.02.2020 [LIST_PAGE_URL] => /news/ [~LIST_PAGE_URL] => /news/ [DETAIL_PAGE_URL] => /news/104/106412/ [~DETAIL_PAGE_URL] => /news/104/106412/ [LANG_DIR] => / [~LANG_DIR] => / [CODE] => rotornyy_dvigatel_printsip_raboty_plyusy_i_minusy_rotornogo_dvigatelya [~CODE] => rotornyy_dvigatel_printsip_raboty_plyusy_i_minusy_rotornogo_dvigatelya [EXTERNAL_ID] => 106412 [~EXTERNAL_ID] => 106412 [IBLOCK_TYPE_ID] => news [~IBLOCK_TYPE_ID] => news [IBLOCK_CODE] => news [~IBLOCK_CODE] => news [IBLOCK_EXTERNAL_ID] => clothes_news_s1 [~IBLOCK_EXTERNAL_ID] => clothes_news_s1 [LID] => s1 [~LID] => s1 [NAV_RESULT] => [DISPLAY_ACTIVE_FROM] => 12.02.2020 [IPROPERTY_VALUES] => Array ( [SECTION_META_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [SECTION_META_KEYWORDS] => роторный двигатель: принцип работы. плюсы и минусы роторного двигателя [SECTION_META_DESCRIPTION] => С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. [SECTION_PAGE_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [ELEMENT_META_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [ELEMENT_META_KEYWORDS] => роторный двигатель: принцип работы. плюсы и минусы роторного двигателя [ELEMENT_META_DESCRIPTION] => С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. [ELEMENT_PAGE_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [SECTION_PICTURE_FILE_ALT] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [SECTION_PICTURE_FILE_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [SECTION_DETAIL_PICTURE_FILE_ALT] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [SECTION_DETAIL_PICTURE_FILE_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [ELEMENT_PREVIEW_PICTURE_FILE_ALT] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [ELEMENT_PREVIEW_PICTURE_FILE_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [ELEMENT_DETAIL_PICTURE_FILE_ALT] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя [ELEMENT_DETAIL_PICTURE_FILE_TITLE] => Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя ) [FIELDS] => Array ( [TAGS] => Двигателестроение ) [DISPLAY_PROPERTIES] => Array ( ) [IBLOCK] => Array ( [ID] => 1 [~ID] => 1 [TIMESTAMP_X] => 15.02.2016 17:09:48 [~TIMESTAMP_X] => 15.02.2016 17:09:48 [IBLOCK_TYPE_ID] => news [~IBLOCK_TYPE_ID] => news [LID] => s1 [~LID] => s1 [CODE] => news [~CODE] => news [NAME] => Пресс-центр [~NAME] => Пресс-центр [ACTIVE] => Y [~ACTIVE] => Y [SORT] => 500 [~SORT] => 500 [LIST_PAGE_URL] => /news/ [~LIST_PAGE_URL] => /news/ [DETAIL_PAGE_URL] => #SITE_DIR#/news/#SECTION_ID#/#ELEMENT_ID#/ [~DETAIL_PAGE_URL] => #SITE_DIR#/news/#SECTION_ID#/#ELEMENT_ID#/ [SECTION_PAGE_URL] => #SITE_DIR#/news/#SECTION_ID#/ [~SECTION_PAGE_URL] => #SITE_DIR#/news/#SECTION_ID#/ [PICTURE] => [~PICTURE] => [DESCRIPTION] => [~DESCRIPTION] => [DESCRIPTION_TYPE] => text [~DESCRIPTION_TYPE] => text [RSS_TTL] => 24 [~RSS_TTL] => 24 [RSS_ACTIVE] => Y [~RSS_ACTIVE] => Y [RSS_FILE_ACTIVE] => N [~RSS_FILE_ACTIVE] => N [RSS_FILE_LIMIT] => 0 [~RSS_FILE_LIMIT] => 0 [RSS_FILE_DAYS] => 0 [~RSS_FILE_DAYS] => 0 [RSS_YANDEX_ACTIVE] => N [~RSS_YANDEX_ACTIVE] => N [XML_ID] => clothes_news_s1 [~XML_ID] => clothes_news_s1 [TMP_ID] => c83b747129a532c27a029fc5ccf0d07c [~TMP_ID] => c83b747129a532c27a029fc5ccf0d07c [INDEX_ELEMENT] => Y [~INDEX_ELEMENT] => Y [INDEX_SECTION] => Y [~INDEX_SECTION] => Y [WORKFLOW] => N [~WORKFLOW] => N [BIZPROC] => N [~BIZPROC] => N [SECTION_CHOOSER] => L [~SECTION_CHOOSER] => L [LIST_MODE] => [~LIST_MODE] => [RIGHTS_MODE] => S [~RIGHTS_MODE] => S [SECTION_PROPERTY] => N [~SECTION_PROPERTY] => N [PROPERTY_INDEX] => N [~PROPERTY_INDEX] => N [VERSION] => 1 [~VERSION] => 1 [LAST_CONV_ELEMENT] => 0 [~LAST_CONV_ELEMENT] => 0 [SOCNET_GROUP_ID] => [~SOCNET_GROUP_ID] => [EDIT_FILE_BEFORE] => [~EDIT_FILE_BEFORE] => [EDIT_FILE_AFTER] => [~EDIT_FILE_AFTER] => [SECTIONS_NAME] => Разделы [~SECTIONS_NAME] => Разделы [SECTION_NAME] => Раздел [~SECTION_NAME] => Раздел [ELEMENTS_NAME] => Новости [~ELEMENTS_NAME] => Новости [ELEMENT_NAME] => Новость [~ELEMENT_NAME] => Новость [CANONICAL_PAGE_URL] => [~CANONICAL_PAGE_URL] => [EXTERNAL_ID] => clothes_news_s1 [~EXTERNAL_ID] => clothes_news_s1 [LANG_DIR] => / [~LANG_DIR] => / [SERVER_NAME] => www.alfa-industry.ru [~SERVER_NAME] => www.alfa-industry.ru ) [SECTION] => Array ( [PATH] => Array ( [0] => Array ( [ID] => 104 [~ID] => 104 [TIMESTAMP_X] => 2015-11-25 18:37:33 [~TIMESTAMP_X] => 2015-11-25 18:37:33 [MODIFIED_BY] => 2 [~MODIFIED_BY] => 2 [DATE_CREATE] => 2015-07-17 14:13:03 [~DATE_CREATE] => 2015-07-17 14:13:03 [CREATED_BY] => 1 [~CREATED_BY] => 1 [IBLOCK_ID] => 1 [~IBLOCK_ID] => 1 [IBLOCK_SECTION_ID] => [~IBLOCK_SECTION_ID] => [ACTIVE] => Y [~ACTIVE] => Y [GLOBAL_ACTIVE] => Y [~GLOBAL_ACTIVE] => Y [SORT] => 5 [~SORT] => 5 [NAME] => Интересные статьи [~NAME] => Интересные статьи [PICTURE] => [~PICTURE] => [LEFT_MARGIN] => 9 [~LEFT_MARGIN] => 9 [RIGHT_MARGIN] => 10 [~RIGHT_MARGIN] => 10 [DEPTH_LEVEL] => 1 [~DEPTH_LEVEL] => 1 [DESCRIPTION] => [~DESCRIPTION] => [DESCRIPTION_TYPE] => text [~DESCRIPTION_TYPE] => text [SEARCHABLE_CONTENT] => ИНТЕРЕСНЫЕ СТАТЬИ [~SEARCHABLE_CONTENT] => ИНТЕРЕСНЫЕ СТАТЬИ [CODE] => [~CODE] => [XML_ID] => 104 [~XML_ID] => 104 [TMP_ID] => [~TMP_ID] => [DETAIL_PICTURE] => [~DETAIL_PICTURE] => [SOCNET_GROUP_ID] => [~SOCNET_GROUP_ID] => [LIST_PAGE_URL] => /news/ [~LIST_PAGE_URL] => /news/ [SECTION_PAGE_URL] => /news/104/ [~SECTION_PAGE_URL] => /news/104/ [IBLOCK_TYPE_ID] => news [~IBLOCK_TYPE_ID] => news [IBLOCK_CODE] => news [~IBLOCK_CODE] => news [IBLOCK_EXTERNAL_ID] => clothes_news_s1 [~IBLOCK_EXTERNAL_ID] => clothes_news_s1 [EXTERNAL_ID] => 104 [~EXTERNAL_ID] => 104 [IPROPERTY_VALUES] => Array ( [SECTION_META_TITLE] => Интересные статьи [SECTION_META_KEYWORDS] => интересные статьи [SECTION_META_DESCRIPTION] => [SECTION_PAGE_TITLE] => Интересные статьи [ELEMENT_META_TITLE] => Интересные статьи [ELEMENT_META_KEYWORDS] => интересные статьи [ELEMENT_META_DESCRIPTION] => [ELEMENT_PAGE_TITLE] => Интересные статьи [SECTION_PICTURE_FILE_ALT] => Интересные статьи [SECTION_PICTURE_FILE_TITLE] => Интересные статьи [SECTION_DETAIL_PICTURE_FILE_ALT] => Интересные статьи [SECTION_DETAIL_PICTURE_FILE_TITLE] => Интересные статьи [ELEMENT_PREVIEW_PICTURE_FILE_ALT] => Интересные статьи [ELEMENT_PREVIEW_PICTURE_FILE_TITLE] => Интересные статьи [ELEMENT_DETAIL_PICTURE_FILE_ALT] => Интересные статьи [ELEMENT_DETAIL_PICTURE_FILE_TITLE] => Интересные статьи ) ) ) ) [SECTION_URL] => /news/104/ )
12.02.2020
С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.
История возникновения агрегата
Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, – спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.
После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле». Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже. В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.
Устройство и принцип работы
Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых. В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.
Фазы работы
Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:
1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.
Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.
Недостатки и преимущества
Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС. Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.
Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов. Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия. Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.
Сложность производства деталей
Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.
Перегревы и высокие нагрузки
Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.
В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.
Ресурс
Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.
После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.
Расход масла
Также роторный двигатель очень требователен к обслуживанию.
Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.
Разновидности
На данный момент существует пять разновидностей данных типов агрегатов:
1. Роторные моторы с возвратно-вращательными движениями вала.
2. С равномерным вращением вала. При этом в его конструкции не используются какие-либо уплотнительные механизмы. Расположение камер сгорания у них спирального типа.
3. Агрегаты с пульсирующе-вращательным движением, направленным в 1 сторону.
4. С планетарным вращением вала, без уплотнительных элементов. Яркий пример тому – двигатель Ванкеля.
5. РПД с равномерной работой рабочих элементов и спиральным типом расположения камер сгорания.
Роторный двигатель (ВАЗ-21018-2108)
История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля. Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» – модели 2101 – за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.
Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй – порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.
Моторы для авиации, «восьмерок» и «девяток»
В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.
Характеристики РПД ВАЗ-414
Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества: Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд. Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров). Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил. Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах. Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.
Сегодняшняя ситуация с РПД на Волжском автозаводе
Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения. Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.
Источник: syl.ru
Просмотров: 541
14 главных плюсов и минусов роторных двигателей — Green Garage
Роторные двигатели — не обычная опция, которую вы найдете в современном автомобиле. Их конструкция предлагает совершенно иной выбор по сравнению с обычными поршневыми двигателями внутреннего сгорания. Эта ранняя технология действительно помогла подпитывать автомобильную революцию, поскольку автомобили начали заменять лошадей, но присущие этому подходу ограничения сделали этот двигатель почти полностью устаревшим к 1920-м годам.
Важно помнить, что роторный двигатель — это не радиальный.Цилиндры расположены радиально вокруг центрального коленчатого вала в поворотном варианте, при этом весь блок вращается вокруг него. В радиальном двигателе вместо этого будет использоваться фиксированный блок цилиндров с вращающимся коленчатым валом.
Большинство роторных двигателей было построено с нечетным числом цилиндров. Такая конструкция позволяла любому другому поршню срабатывать по порядку, обеспечивая плавную работу.
Есть еще несколько плюсов и минусов роторных двигателей, на которые стоит обратить внимание сегодня, хотя эта технология используется редко.Серия Mazda RX — единственная крупная линейка автомобилей на сегодняшний день, в которой все еще используется эта технология.
Список преимуществ роторных двигателей
1. Отличается плавной работой.
Роторный двигатель передает мощность плавно, потому что нет частей, совершающих возвратно-поступательное движение относительно точки крепления двигателя. Это означает, что большая вращающаяся масса цилиндров и картера как единое целое действует больше как маховик. Невозможно устранить всю вибрацию или заикание, поскольку это все еще двигатель внутреннего сгорания, но результаты неоспоримы.Это одна из основных причин, почему сегодня людям нравится водить автомобили серии Mazda RX. Поездка стала намного лучше, и единственный способ понять этот факт — лично испытать эту технологию.
2. Роторные двигатели обеспечивают улучшенное охлаждение.
Когда роторный двигатель работает, вращающийся узел с цилиндром и картером сам по себе создает более холодный воздушный поток. Вращение действует как самоохлаждающийся вентилятор, который втягивает более холодный воздух снаружи в отсек.Это преимущество сохраняется даже в неподвижном автомобиле. Поскольку двигатель внутреннего сгорания не работает в условиях высоких температур, риск перегрева или повреждения меньше. Вы можете увидеть это преимущество, работая с самолетами сегодня, с их винтовой технологией.
3. Он предлагает преимущество в весе, о котором все же стоит подумать.
Обычные двигатели имеют добавленные тяжелые маховики, потому что это лучший способ сглаживать импульсы мощности, возникающие во время работы.Эта опция также может снизить уровень вибрации в автомобиле. Роторные двигатели имеют невероятное соотношение мощности и веса благодаря конструкции, поскольку нет необходимости добавлять маховик в зависимости от того, как он работает. Его преимущество в том, что он имеет более плоский и меньший картер одновременно с другими радиальными конфигурациями.
Эффективность системы воздушного охлаждения также позволяет изготавливать цилиндры с более тонкими стенками и более мелкими ребрами охлаждения. Это еще больше снижает вес роторного двигателя.
4. Роторные двигатели отличаются большей механической простотой, чем другие конструкции.
Роторный двигатель содержит меньше деталей, чем эквивалентный поршневой двигатель. Такая конструкция может снизить стоимость проектирования и изготовления. Это преимущество, которое также приводит к снижению веса. По сравнению с обычными поршневыми двигателями с возвратно-поступательным движением роторные двигатели не содержат распределительного вала, клапанов, коромысел, маховика или зубчатых ремней.
Этот элемент конструкции означает меньший вес и меньше возможностей для выхода из строя.Это облегчает ремонт роторного двигателя. Во время первой разработки роторных двигателей они использовались для привода самолетов. Это было возможно, потому что первые самолеты использовали преимущества высокой удельной мощности роторного двигателя.
5. Роторные двигатели менее подвержены заклиниванию.
Роторные двигатели гораздо менее подвержены заклиниванию при отказе в работе. Это означает, что в самолетах по-прежнему используется эта технология, поскольку она дает пилоту возможность безопасно приземлиться даже в случае отказа двигателя.Спортивные и гоночные автомобили используют эту технологию по той же причине, поскольку они работают на высоких оборотах и вырабатывают большую мощность за более короткое время по сравнению с современными двигателями внутреннего сгорания сегодня.
Вы также увидите роторные двигатели в гидроциклах, мотоциклах или в инструментах, таких как бензопилы, из-за высокой степени плавности и надежности, которые возможны при такой конструкции двигателя.
6. Вы можете получить намного больше мощности от роторного двигателя.
Несмотря на размер стандартного роторного двигателя в автомобиле, таком как Mazda RX-8, эта технология обеспечивает самую высокую мощность на рабочий объем среди всех безнаддувных двигателей, производимых в Соединенных Штатах.Он обладает настоящей мощностью, заслуживающей рассмотрения. 13B-MSP Renesis — это двигатель объемом 1,3 л мощностью 232 лошадиных силы. Это соответствует 178 л.с. на литр. Это эквивалентно двигателю LS2 6L Corvette, производящему 1068 лошадиных сил прямо с завода.
7. Роторные двигатели практически не подвержены катастрофическим отказам.
Когда у вас есть поршневой двигатель, приводящий в движение автомобиль, он может заклинивать и вызывать всевозможные повреждения под капотом. Если вы столкнетесь с неисправностью роторного двигателя, в худшем случае вы увидите резкое снижение выходной мощности, пока в конечном итоге он не выйдет из строя.Двигатели любят оставаться на пиковом диапазоне оборотов, который составляет 9000 об / мин, если посмотреть на 13B-MSP Renesis, установленный в Mazda RX-8.
Список минусов роторных двигателей
1. Роторный двигатель имеет неэффективную систему смазки с полным объемом потерь.
Основная проблема конструкции роторного двигателя заключается в том, что он принципиально неэффективен с его системой смазки с полными потерями. Смазка должна попасть в картер через полый коленчатый вал, прежде чем она сможет достичь всего двигателя.Этот недостаток конструкции означает, что центробежные силы каждого оборота будут прямо противодействовать любой рециркуляции масла. Единственным практическим решением этой проблемы было добавление смазки в топливно-воздушную смесь так же, как в двухтактном двигателе.
2. Увеличение мощности должно происходить за счет увеличения размера и массы.
Если выйти за рамки серии Mazda RX, автомобили с роторными двигателями могли бы увеличить свою мощность только в том случае, если бы они также улучшили свой размер и массу.Это позволило бы добиться эффекта умножения с гироскопической прецессией при вращении всей массы двигателя. Результат этого увеличения привел к проблемам с управлением для самолетов, включая проблемы со стабильностью. Если за штурвалом летательного аппарата находился неопытный пилот, возрастал риск того, что аппарат не сможет выдерживать заданную траекторию полета.
3. Вы израсходуете больше топлива с роторным двигателем.
Роторные двигатели имеют низкую степень сжатия, даже если вы можете как сумасшедшие набрать обороты, чтобы получить огромную мощность.При использовании этой технологии значительное количество топлива остается несгоревшим в конце цикла сгорания. Это означает, что при управлении автомобилем, оснащенным этой технологией, вы получите низкую экономию топлива. Эта конструкция также приводит к увеличению выбросов, что может затруднить прохождение автомобилем испытаний на углерод в тех областях, где это необходимо.
4. Для правильной работы требуется невероятное количество масла.
Роторный двигатель, особенно изобретенный Ванкелем, предназначен для сжигания масла во время работы.Эта функция расхода помогает смазывать двигатель, гарантируя, что он не будет поврежден в процессе. Это недостаток, который увеличивает проблемы с расходом топлива и выбросами углерода, которые существуют с этим двигателем.
Используя Mazda RX-7 как реальный пример того, чего ожидать от роторного двигателя, владельцы в среднем составляют около 18 миль на галлон с его топливом. Некоторые получали только восемь миль на галлон со своим автомобилем. Компания Fuelly взяла информацию от 135 владельцев RX-7, проехавших более 642 000 миль, чтобы измерить расход топлива.Наибольшее число, зафиксированное в их сборнике информации, составляло всего 24 мили на галлон.
5. Роторные двигатели требуют большего обслуживания, чем их аналоги.
Вы будете решать больше проблем с техобслуживанием с роторным двигателем вместо обычных двигателей внутреннего сгорания, используемых сегодня в большинстве автомобилей. Количество утечки масла может быть огромным, и это немедленное решение, с которым вы должны справиться, поскольку технология требует, чтобы вы сжигали масло, чтобы оно было полезным. Вам придется часто открывать кожух, чтобы проверять уровень жидкости, чтобы обеспечить бесперебойную работу.Поскольку на современном автомобильном рынке это очень редкий вариант, вам может быть сложно найти механика, который знает, как устранить проблемы, которые могут возникнуть в двигателе Ванкеля.
6. Ремонт роторного двигателя может быть дорогостоящим.
Простота движка Ванкеля часто заставляет людей думать, что их починить относительно дешево. Проблема в том, что большинство людей, знакомых с автомобильными двигателями, не знают, как с ними работать. Вы вынуждены обращаться к специалисту почти в каждом сообществе по всему миру, если что-то ломается в вашем автомобиле, если вы не знаете, как решить эту проблему.Это означает, что ваш ремонт или регулярное плановое техническое обслуживание, вероятно, будет намного дороже, чем то, что ваш механик взимает обычно.
7. Уплотнения могут стать серьезной проблемой для роторных двигателей в холодном климате.
Роторный двигатель имеет тенденцию создавать примерно такой же крутящий момент, как и отвертка. Это означает, что уплотнения не получают такого же уровня смазки с этой опцией, как если бы это был обычный двигатель. Это не имеет большого значения, если вы живете в более теплом климате, но холодная погода может создать серьезные проблемы для владельцев с этим недостатком.Эта проблема может привести к затоплению при холодном запуске.
Старые двигатели 13B имеют больше проблем с этим недостатком, чем современные, но все же рекомендуется дать двигателю прогреться до рабочей температуры, прежде чем вы решите начать движение.
Заключение
Автомобильная промышленность не была бы там, где она есть сегодня, без влияния роторного двигателя. Мы не используем эту технологию так часто, как раньше, но все же есть определенные приложения, в которых ее установка на автомобиль имеет смысл.
Если вы думаете о покупке Mazda или другой марки и модели, оснащенной этой технологией, устранение недостатков должно стать вашим главным приоритетом. Вы собираетесь быстро сжечь нефть и топливо, поэтому вам нужно запланировать эти расходы в бюджете.
Плюсы и минусы роторных двигателей также могут указать вам в обратном направлении, показывая, что альтернативные продукты лучше подходят для ваших нужд. В конце концов, вы сами решаете, собираетесь ли вы использовать преимущества этой технологии.
Об автореБрэндон Миллер имеет степень бакалавра искусств. из Техасского университета в Остине. Он опытный писатель, написавший более ста статей, которые прочитали более 500 000 человек. Если у вас есть какие-либо комментарии или сомнения по поводу этого сообщения в блоге, свяжитесь с командой Green Garage здесь.
Достоинства и недостатки роторного двигателя
Деннис Хартман
AnniaTimchenko / iStock / Getty Images
Роторные двигатели, хотя и не распространены в современных автомобилях, предлагают радикально отличную альтернативу обычным поршневым двигателям внутреннего сгорания с возвратно-поступательным движением.Хотя автопроизводители, использующие роторный двигатель, быстро указывают на его многочисленные преимущества, у него есть и определенные недостатки. Плюсы и минусы роторного двигателя объясняют, почему он предпочтительнее в определенных областях применения, хотя он не входит в стандартную комплектацию большинства автомобилей.
Механическая работа
Роторный двигатель использует ротор треугольной формы для разделения пространства внутри двигателя, обеспечивая стандартный четырехтактный цикл впуска, сжатия, зажигания и выпуска. Движущийся ротор транспортирует топливо в различные отсеки двигателя на каждом этапе цикла.Этим он напоминает поршневой двигатель с возвратно-поступательным движением. Роторные двигатели могут быть построены с любым количеством роторов, так же как и с несколькими цилиндрами, предлагаемыми в поршневых двигателях. Роторы входят в зацепление с приводным валом, который затем приводит в действие приводной механизм транспортного средства (пропеллер самолета или колеса автомобиля).
Простота
Одним из основных преимуществ роторного двигателя является его механическая простота. Роторный двигатель содержит гораздо меньше деталей, чем сопоставимый поршневой двигатель.Это может снизить стоимость проектирования и изготовления. Это также приводит к снижению веса. По сравнению со стандартными поршневыми двигателями с возвратно-поступательным движением роторные двигатели не содержат клапанов, распределительного вала, коромысел, зубчатых ремней или маховика. Все это означает меньший вес, меньше возможностей для неисправности и более легкий ремонт. Когда роторные двигатели были впервые разработаны, они использовались для питания самолетов, используя преимущества высокой удельной мощности роторных двигателей.
Другие преимущества
Благодаря революционному движению роторный двигатель работает с меньшей вибрацией, чем поршневой.Это позволяет настраивать роторные двигатели для работы на более высоких оборотах, тем самым вырабатывая больше мощности. Еще одно преимущество роторного двигателя состоит в том, что в случае поломки двигатель не закроется. Потеря компрессии или другие общие источники отказа двигателя, вероятно, приведут к серьезной потере мощности, но роторный двигатель будет продолжать работать в течение некоторого времени, тогда как поршневой двигатель немедленно прекратит работу при аналогичных нагрузках.
Недостатки
Роторные двигатели действительно содержат элементы конструкции, которые также приводят к эксплуатационным недостаткам.Утечка между камерами двигателя является обычным явлением и, как правило, со временем приводит к снижению эффективности. Кроме того, роторные двигатели не прослужат так долго, как традиционные поршневые двигатели. Другие элементы конструкции приводят к тому, что роторные двигатели целенаправленно сжигают моторное масло в небольших количествах, что требует частой проверки и доливки масла. Повышенное техническое обслуживание и короткий срок службы делают роторные двигатели предпочтительными для конкретных применений, отличных от автомобилей массового спроса.
Приложения
Поскольку роторные двигатели вряд ли закроют при отказе в работе, они являются гораздо более безопасным выбором для самолета, позволяя пилоту самолета с отказавшим двигателем безопасно приземлиться.Роторные двигатели также используются в спортивных и гоночных автомобилях, особенно в спортивных автомобилях Mazda серии RX. Это в основном связано с тем, что роторный двигатель может работать на высоких оборотах и вырабатывать больше мощности в течение более короткого периода времени. Другие области применения, которые используют преимущества плавной работы роторного двигателя, включают картинги, гидроциклы, газогенераторы, мотоциклы и бензопилы.
Еще статьи
Плюсы и минусы рядных 5, V10 и роторных двигателей
В инженерном мире нередко что-то делают просто потому, что это делают все остальные.Эти следующие несколько компоновок двигателей предлагают уникальные преимущества при использовании менее проторенных дорог. Вот все, что вам нужно знать:
1. Рядные 5 двигателей
I5, который широко использовался как Audi, так и Volvo, на самом деле производился большим количеством производителей автомобилей, но использовался только в нескольких моделях.Это двигатель для тех, кто не может выбрать между I4 и I6. Вот преимущества и недостатки каждой конфигурации двигателя.
Преимущества
- Плавная подача мощности: в отличие от рядного четырехцилиндрового двигателя I5 фактически имеет перекрытие рабочих ходов (36 градусов перекрытия вращения коленчатого вала).
- Уравновешенные силы: как первичные, так и вторичные силы от возвратно-поступательного движения массы хорошо сбалансированы по вертикали, в отличие от четырех цилиндров, расположенных в ряд.
- Рабочий объем: с большим количеством цилиндров и уравновешенными силами I5 может предложить больший рабочий объем, чем рядные четыре цилиндра с меньшей вибрацией.
- Упаковка: по сравнению с V6 или I6, I5 предлагает превосходную упаковку, что позволяет ему соответствовать моделям FWD, но также является гибким для других конфигураций.
- Простота: как и в других линейных компоновках, имеется только один ряд цилиндров и одна головка блока цилиндров, что позволяет использовать меньше движущихся частей и упрощает обслуживание.
Недостатки
- Плохой дисбаланс: в отличие от четырехцилиндрового двигателя I5 хочет раскачиваться спереди назад, так как моменты не отменяются. Это результат расположения поршня и требует балансировочного вала для уменьшения вызываемой вибрации (видео ниже содержит более подробную информацию).
- Упаковка: длиннее, чем у рядного четырехцилиндрового двигателя.
- Вес: тяжелее рядного четырехцилиндрового двигателя.
- Стоимость: имея больший блок и больше движущихся частей, производство I5 стоит больше, чем I4.
Вот короткое видео, объясняющее работу пятицилиндрового двигателя:
2.Двигатели V10
Обычно используемый в Dodge Viper и Lexus LFA, хотя и по-разному, двигатель V10 довольно хорошо перекрывает разрыв между V8 и V12.
Преимущества
- Уравновешенные силы: поскольку V10 — это просто два I5, соединенных с общим коленчатым валом, он видит многие из тех же преимуществ.Это включает в себя тот факт, что возвратно-поступательные массовые силы уравновешены.
- Меньшая возвратно-поступательная масса: по сравнению с V12, V10 имеет меньше цилиндров и, следовательно, может иметь меньшую возвратно-поступательную массу.
- Высокие обороты: инженеры Lexus LFA предпочли использовать V10, а не V8, поскольку они смогли разогнать V10 до более высоких оборотов.
Недостатки
- Балансировочные валы: балансировочные валы необходимы для устранения вертикальной моментной вибрации, вызванной дисбалансом плоскости, как в цилиндре I5.
- Плавность: двигатель V12 по своей сути сбалансирован и имеет большее перекрытие между рабочими тактами, что делает его более плавным двигателем, чем V10.
- Стоимость: по сравнению с V8, V10 более сложный, с большим количеством движущихся частей и, следовательно, более дорогой в производстве.
Вот краткое видеообъяснение двигателя V10:
3.Двигатели Ванкеля
Постарайтесь не увлекаться семантикой того, как назвать этот движок. Обычно называемый роторным двигателем (даже Mazda, хотя часто это относится к компоновке с вращающимся поршневым цилиндром), двигатель Ванкеля в последний раз использовался в производстве в Mazda RX-8. Нет поршней, распредвалов и шатунов.
Преимущества
- Простота: роторные двигатели могут иметь всего три основных движущихся части по сравнению с более чем 40+ для поршневых двигателей.Чем меньше движущихся частей, тем выше надежность.
- Отсутствие возвратно-поступательного движения: это позволяет роторным двигателям развивать высокие обороты, а также работать очень плавно.
- Вес: роторные двигатели компактны и обладают отличным соотношением мощности к массе.
- Передача мощности: из-за того, как вращается ротор, передача мощности длится для большего количества оборотов коленчатого вала по сравнению с поршневым двигателем, что приводит к сверхплавной передаче мощности.
- Размер: роторные двигатели компактны, что позволяет легко упаковывать.
Недостатки
- Экономия топлива: выхлоп часто включает несгоревшее топливо, к тому же двигатели Ванкеля обычно имеют низкую степень сжатия, что приводит к низкой топливной эффективности.
- Выбросы: несгоревшие углеводороды, выходящие из выхлопных газов, затрудняют соблюдение норм по выбросам.
- Уплотнение ротора: из-за различных температур в камере сгорания верхние уплотнения расширяются и сжимаются, что затрудняет создание хорошего уплотнения, что приводит к неэффективной выработке энергии.
- Сжигание масла: двигатели Mazda Wankel по своей конструкции сжигают масло, чтобы продлить срок службы верхних уплотнений. Это не только еще больше увеличивает выбросы выхлопных газов, но и требует от владельца периодически доливать масло.
Вот видео, объясняющее двигатели Ванкеля:
Ознакомьтесь с предыдущими статьями Engineering Explained:
- Плюсы и минусы разных типов двигателей.
- Плюсы и минусы нагнетателей по сравнению с турбокомпрессорами.
Проблема с роторными двигателями: инженерное объяснение
Высокая мощность в крошечном, простом и легком корпусе. В роторном двигателе Ванкеля есть что любить, но недостаточно, чтобы поддерживать его жизнь. Давайте посмотрим, что пошло не так
Они компактные, мощные и производят потрясающий шум.Так почему же роторные двигатели так и не стали популярными, и почему от этой концепции почти отказался один производитель, который ее отстаивал? Давайте проведем вас через это.
NSU Spider 1964 года был первым серийным автомобилем в мире, у которого задние колеса плавились под действием роторного двигателя Ванкеля. Автомобильный дебют Ванкеля готовился десятилетиями, хотя срок его службы был относительно коротким, и он закончился выпуском Mazda RX-8 2011 года. Это приводит нас к нескольким вопросам:
- Как работает роторный двигатель?
- Какие преимущества у этого двигателя? (Зачем это было сделано?)
- Какие недостатки есть у двигателя? (Почему он умер?)
1.Как работает роторный двигатель?
Процесс роторного двигателя очень похож на то, что происходит в традиционном поршневом цилиндровом двигателе. Отличие в том, что вместо поршней здесь ротор треугольной формы, а вместо цилиндров — корпус, напоминающий овал.
Всасывание
По мере того, как ротор перемещается внутри корпуса, небольшой воздушный карман расширяется в больший, создавая тем самым вакуум.Этот вакуум поступает во впускные каналы, из которых воздух и топливо затем всасываются в камеру сгорания.
Сжатие
Ротор продолжает вращаться, сжимая топливно-воздушную смесь по плоской стороне корпуса ротора.
1 МБ
Благодарю Итана Смейла за эпический GIF!Мощность
Две свечи зажигания используются для воспламенения топливовоздушной смеси, помогая ускорить процесс сгорания и обеспечить сгорание большей части топлива, и это заставляет ротор продолжать вращаться.
Выхлоп
Подобно такту впуска, ротор перемещается до тех пор, пока не станут доступны выпускные отверстия, а затем выхлопные газы под высоким давлением вытесняются наружу, когда ротор закрывается из корпуса.
Важно понимать, что в отличие от поршневого цилиндрового двигателя, в одном корпусе ротора все эти события происходят почти одновременно. Это означает, что при всасывании одной части ротора также происходит рабочий такт, что приводит к очень плавной подаче мощности и большому количеству мощности в небольшом корпусе.
2. Какие преимущества дает двигатель Ванкеля?
Удельная масса
Одним из самых больших преимуществ роторного двигателя был его размер.Двигатель 13B Mazda RX-7 занимал около одного кубического фута объема, но вырабатывал значительную мощность для своих небольших размеров.
Меньше движущихся частей
Часто в инженерии самое простое решение оказывается одним из лучших. Роторный двигатель резко сокращает количество деталей, необходимых для сгорания, при этом всего три основных компонента вращаются в двухроторном двигателе.
Плавная и высокая частота вращения
Роторный двигатель не имеет возвратно-поступательной массы, как клапаны или поршни в традиционном двигателе.Это приводит к невероятно сбалансированному двигателю с плавной подачей мощности и способности развивать высокие обороты, не беспокоясь о таких вещах, как поплавок клапана.
3. Почему умер роторный двигатель?
Mazda RX-8 2011 года стала последним серийным автомобилем с ротором Ванкеля 1.3-х литровый Ренезис. Независимо от того, соответствовал ли RX-8 названию роторного двигателя, мы все прослезились из-за потери этого инновационного и уникального подхода к внутреннему сгоранию. Что нанесло последний удар? RX-8 не соответствовал нормам выбросов Евро-5, и поэтому после 2010 года он больше не мог продаваться в Европе. Хотя в штатах он оставался законным, продажи значительно упали, поскольку модель существует с 2004 года.
Какие недостатки у поворотной конструкции?
Всего три основных движущихся части в двухроторном двигателе ВанкеляНизкий тепловой КПД
Из-за длинной камеры сгорания и уникальной формы тепловой КПД двигателя был относительно ниже по сравнению с поршневыми аналогами.Это также часто приводило к выходу несгоревшего топлива из выхлопных газов (отсюда тенденция роторных двигателей к обратному воспламенению, что, очевидно, столь же круто, сколь и неэффективно).
Ожог ребенка Ожог
Роторный двигатель по своей конструкции сжигает масло. Во впускном коллекторе есть масляные распылители, а также форсунки для распыления масла непосредственно в камеру сгорания. Это не только означает, что водитель должен регулярно проверять уровни масла, чтобы поддерживать надлежащую смазку ротора, но также означает, что из выхлопной трубы выходит больше вредных веществ.А окружающая среда ненавидит плохое.
Это отверстие в корпусе — это то место, куда непосредственно впрыскивается масло во время впускного «такта» двигателя.Уплотнение ротора
Еще одна проблема, которая также может повлиять на выбросы: сложно герметизировать ротор, когда он находится в очень разных температурах.Помните, что всасывание и сгорание происходят одновременно, но в очень разных местах корпуса. Это означает, что верхняя часть корпуса относительно холодная, а нижняя часть намного горячее. С точки зрения герметичности это проблематично, поскольку вы пытаетесь создать уплотнение «металл-металл» с металлами, которые работают при существенно разных температурах. Использование рубашек для охлаждающей жидкости, чтобы помочь выровнять тепловую нагрузку, эту проблему можно уменьшить, но никогда полностью не уменьшить.
Выбросы
Если сложить все вместе, ротор погаснет. Сочетание неэффективного сгорания, внутреннего сгорания масла и проблем с герметизацией приводит к тому, что двигатель не может конкурировать с сегодняшними стандартами по выбросам или экономии топлива.
Чем отличается RX-8 от конкурентов?
Печально известное верхнее уплотнение ротора RX-7 13BВ моем видео, описывающем недостатки RX-8, зрители справедливо отметили, что я сравнивал автомобили 2015 модельного года с моделью 2011 года с точки зрения экономии топлива, что было несправедливо со стороны Mazda.Давайте исправим это неправильно, используя RX-8 первого года выпуска.
Автомобиль | Объем двигателя | Вес | Мощность | MPG Комбинированный рейтинг |
2004 Mazda RX-8 | 1.3л Ванкель | 3053 фунтов (1385 кг) | 197-238 л.с. (авто / человек) | 18 миль на галлон (13 л / 100 км) |
2004 VW GTI | 1,8 л I4 | 2934 (1330 кг) | 180 л.с. | 9,8 л / 100 км (24 миль на галлон) |
2004 Корвет | 5,7 л V8 | 3214 фунтов (1458 кг) | 350 л.с. | 20 миль на галлон (11.8 л / 100 км) |
Как вы можете видеть выше, RX-8 не очень хорош с точки зрения экономии топлива. Corvette со значительно более мощным двигателем, мощностью на 47 процентов и массой на 5 процентов по-прежнему обеспечивает меньшую экономию топлива на 11 процентов. Также стоит упомянуть, что это был первый год выпуска модели RX-8, в то время как двигатели Corvette и GTI использовались с предыдущих лет.Проще говоря, о RX-8 нельзя сказать ничего хорошего с точки зрения экономии топлива. Хотя покупатель не обязательно может рассматривать это как отрицательный момент, без учета выбросов нет автомобиля, который можно было бы купить.
Стоит отметить, что с момента первоначальной публикации этой статьи Mazda объявила, что вернет роторные двигатели, но только в качестве небольших расширителей запаса хода в электромобилях. Другими словами, ничего, что не взорвется.
Rotary vs Piston — DSPORT Magazine
T Роторный двигатель Ванкеля: самое ценное предложение Mazda также является источником сотен веселых интернет-мемов.В то время, когда поршневые двигатели внутреннего сгорания были основной технологией, используемой в автомобилях, Mazda решила разработать конкурирующую технологию. В начале 70-х роторные двигатели использовались почти во всех автомобилях модельного ряда Mazda. Когда случился кризис газа, он все еще использовался в высокопроизводительных автомобилях Mazda. Mazda Rotary имела преимущества по сравнению с поршневыми двигателями, но также имела большой список недостатков. Давайте посмотрим, что отличает его от поршневого двигателя, а также некоторые его плюсы и минусы.
Текст Бассема Гиргиса и Джима Медерера // Фотографии Staff и Racing Beat
ДСПОРТ Выпуск № 206Поршневой двигатель внутреннего сгорания состоит из блока, кривошипа, шатунов, поршней, головок, клапанов, распределительных валов, системы впуска, системы выпуска и системы зажигания. Все они работают вместе, чтобы преобразовать химическую энергию в механическую энергию, которая позволяет вашему автомобилю двигаться. Внутри блока коленчатый вал соединен с несколькими шатунами (в зависимости от того, сколько цилиндров у вашего двигателя), а шатуны прикреплены к тому же количеству поршней.Когда поршни двигаются вверх и вниз, они вращают коленчатый вал с помощью шатунов.
Начиная с поршня в верхней мертвой точке (первый этап в четырехтактном цикле), впускные клапаны открываются, а выпускные клапаны закрыты (открытие и закрытие регулируется распределительным валом, который синхронизируется с коленчатым валом с помощью ремня. или цепочка). По мере того как коленчатый вал продолжает вращаться, он опускает поршень, всасывая воздух в цилиндры. К тому времени, когда поршень достигает дна, цилиндр уже заполнен воздухом и топливом.
Для завершения полного четырехтактного процесса поршень должен сделать два полных прохода в цилиндре.
Затем поршень начинает движение вверх во время такта сжатия. Во время этого хода впускные и выпускные клапаны закрыты. Движение поршня вверх сжимает смесь воздуха и топлива, которая смешивает молекулы воздуха и топлива по мере их сближения. В результате этого процесса создается смесь, оптимизированная для сгорания. Как только поршень снова окажется около верхней мертвой точки, свеча зажигания загорится, чтобы вызвать сгорание в цилиндре.
Рабочий ход создает контролируемое сгорание, вызываемое искрой. Сгорание толкает поршень вниз по цилиндру. Давление, создаваемое сгоранием, является движущей силой, которая приводит в движение колеса вашего автомобиля. Когда поршень приближается к нижней мертвой точке, выступ выпускного распределительного вала начинает открывать выпускной клапан, готовясь к заключительному такту в четырехтактном цикле.
Когда цилиндр снова начинает подниматься, выпускные клапаны открываются полностью. Это позволяет выхлопным газам выходить из цилиндров, чтобы снова освободить место для следующего четырехтактного цикла.Выхлопные газы выходят через выпускной коллектор, через каталитический нейтрализатор и через выхлопную трубу и глушитель. К тому времени, когда поршень снова окажется в верхней мертвой точке, выпускной клапан почти закрыт, а впускной клапан начинает открываться. Затем процесс повторяется.
Роторный двигатель имеет тот же четырехтактный цикл, что и поршневой двигатель, для выработки мощности на маховике. В отличие от поршневого двигателя, в котором сгорание происходит в цилиндре, роторный двигатель полагается на давление, содержащееся в камере в корпусе, которая герметизирована одной стороной ротора.Два ротора используются вместо поршней. Ротор трехсторонний, который вращается вокруг корпуса ротора с помощью эксцентрикового вала. Три стороны изогнуты в три лепестка, а корпус ротора имеет форму грубой восьмерки (8). Когда ротор вращается внутри корпуса, зазор между ротором и корпусом меняется между большим и маленьким.
В то время как в поршневом двигателе для распределительных валов и клапанов используется зубчатый ремень или цепь, единственная цепь, которую использует роторный двигатель, — это масляный насос.
Воздух и топливо попадают в корпус ротора по мере увеличения объема между одной из лопастей ротора и стенкой корпуса. Когда ротор вращается и объем увеличивается, создается вакуум, который втягивает воздух и топливо в корпус. Как только кончик одной из сторон ротора покидает эту зону всасывания, следующая сторона ротора начинает процесс всасывания. Ротор продолжает вращаться до тех пор, пока объем между лопастью ротора и стенкой корпуса не начнет уменьшаться.Это сжимает топливно-воздушную смесь, подобно тому, как это делает поршневой двигатель, когда поршень движется вверх. Затем сжатая смесь попадает в следующую часть корпуса, где находится свеча зажигания. Свеча зажигания загорается, воспламеняя сжатую смесь. В то время как нижняя свеча зажигания воспламеняет большую часть смеси через большее отверстие, верхняя свеча зажигания воспламеняет топливо в меньшем конце камеры сгорания. Воспламеняющийся воздух и топливо сгорают (горит с контролируемой скоростью), что приводит в движение ротор по часовой стрелке.Поскольку ротор продолжает вращаться после первого удара, объем между ротором и корпусом увеличивается, что позволяет газам расширяться. Последний шаг — это когда объем уменьшается в последний раз, чтобы вытеснить выхлопные газы через выхлопные отверстия, прежде чем сделать еще один круг и снова запустить четырехтактный цикл.
Горение — это то, что движет большинством двигателей. И роторные, и поршневые двигатели имеют четырехтактный цикл. Четырехтактный ход относится к такту впуска, такту сжатия, такту мощности и такту выпуска.Оба двигателя нуждаются в воздухе, топливе и искре для работы.
Все углы поворота указаны для выходного вала (эксцентрикового вала / коленчатого вала), а не для ротора. Оба двигателя сжигают сжатую топливно-воздушную смесь для развития мощности вращения. Оба двигателя четырехтактные.
Ротор вращается вокруг эксцентрикового вала внутри корпуса. Воздух сжимается вместе с топливом, затем вводится искра , и, наконец, выхлоп выходит через выпускное отверстие.
Тем не менее, одно большое различие между ними заключается в том, что у реципиента 180 градусов на ход (или 4 x 180 = 720 градусов на термодинамический цикл, это два оборота кривошипа для одного полного четырехтактного цикла в цилиндре), а у поворотного — 270 градусов. градусов на «ход» (или 4 x 270 = 1080 градусов на термодинамический цикл, это три оборота кривошипа на один полный оборот ротора). Да, возможно, вам придется немного подумать об этом, но поверьте нам, это правда.
Для каждого целого ротора вырабатывается в два раза больше импульсов мощности, чем для одноцилиндрового приемника.Это означает, что 1,3-литровый двигатель производит в 1,5 раза больше мощности и крутящего момента, чем двигатель аналогичного объема.
Это имеет как хорошие, так и плохие последствия. Предполагая, что оба двигателя имеют одинаковые максимальные обороты, это означает, что роторный двигатель имеет в 1,5 раза больше миллисекунд для выполнения каждого «хода». Это одна из причин, по которой роторные двигатели так хорошо дышат — у них больше времени (в миллисекундах), чтобы втягивать и выплевывать смесь.
У них также больше времени для рабочего хода — реальный плюс для получения максимальной отдачи от продуктов сгорания, особенно на высоких оборотах.Теперь о плохом. Ротор также имеет в 1,5 раза больше миллисекунд для передачи тепла от горящей смеси маслу и воде.
Это одна из причин, почему роторные двигатели тратят больше тепла в процессе охлаждения. Другое следствие состоит в том, что если вы рассматриваете только одну боковую поверхность одного ротора, роторный двигатель получает только 2/3 импульсов мощности от реципиента. Однако на самом деле у каждого ротора есть три боковые стороны, каждая в разных точках термодинамического цикла, поэтому каждый полный ротор фактически дает в два раза больше импульсов мощности (в 3 раза 2/3), чем одноцилиндровый приемник.Смущенный? Найдите минутку, чтобы изучить рисунки 2 и 3 и погрузиться в них. Суть в том, что 1,3-литровый роторный двигатель обеспечивает в 1,5 раза больше мощности и крутящего момента, чем двигатель аналогичного размера. Это как 2,0-литровый поршневой двигатель.
Другими словами, двухроторный роторный двигатель имеет такое же количество пусковых импульсов, что и 4-цилиндровый реципиент, но поскольку длительность каждого пускового импульса составляет 270 градусов, двигатель работает более плавно из-за перекрытия пусковых импульсов.
Итак, в чем смысл всей этой математики? Дело в том, чтобы лучше понять, ПОЧЕМУ некоторые вещи так важны для роторного двигателя, особенно теплопередача.Помните, что тепло — это потенциальная мощность, поэтому сохранение тепла в смеси для сгорания дает больше мощности, которую вы можете использовать.
Переходим к следующему пункту: по сравнению с реципиентом, всасываемый заряд (когда он находится внутри двигателя) на самом деле проходит долгий, мучительный путь. На рисунках выше это показано подробно.
В приемнике центр тяжести всасываемого заряда перемещается только на дюйм или два, когда поршень перемещается вперед и назад между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ).В роторном двигателе Mazda заряд движется далеко — примерно на 20 дюймов — от впуска к выпуску. Одним из плохих результатов является наличие большого количества квадратных дюймов поверхности, через которую передается тепло, что снижает тепловую эффективность. Однако вот важный момент: вся масса всасываемого заряда должна проходить через узкую область между корпусом ротора и ротором, когда каждая боковая поверхность ротора проходит через ВМТ. Это стало возможным благодаря «депрессии ротора», которая создается на каждой боковой поверхности ротора — если бы не этот путь, частично сгоревшая смесь никогда не смогла бы протиснуться через узкий зазор между корпусом ротора и ротором ( обычно вокруг.010 ~ 0,015 дюйма) на высоких оборотах. Существует грубая параллель с реципиентом, у которого есть «всплывающий» поршень, который имеет тенденцию разрезать камеру сгорания пополам в ВМТ. Некоторые рецепты даже вырезают «огневую щель» (выемку) в середине всплывающей области, чтобы предотвратить прекращение распространения фронта пламени в камере. По этой и другим причинам форма углубления ротора очень важна. Это также имеет большое влияние на определение степени сжатия двигателя, и, как указывается во всех учебниках «Двигатель внутреннего сгорания», степень сжатия является основным определяющим фактором мощности и эффективности любого двигателя.Фактически, это указывает на слабое место ротора — максимальная ПРАКТИЧЕСКАЯ степень сжатия определяется не детонацией (как это обычно бывает в рецептах), а способностью горящего заряда проходить через депрессию ротора. Если разрежение слишком мало, давление повышается вблизи задней свечи зажигания, вызывая ОТРИЦАТЕЛЬНУЮ РАБОТУ! Это может снизить мощность, перегреть заднюю свечу зажигания и существенно увеличить теплоотдачу масла и воды. Следовательно, форма впадины ротора — это попытка сбалансировать, чтобы найти лучший компромисс.Прежде чем мы оставим тему депрессии ротора, еще один момент: физическая форма углубления на его передней кромке во многом связана с максимально допустимым опережением опережения зажигания. Вы можете лучше понять это, если установите поворотный механизм последней модели на 35 градусов BTC, выньте ведущую свечу зажигания №1 и посмотрите в отверстие свечи зажигания. Вы увидите изогнутую боковую поверхность ротора, довольно плотно прилегающую к дну отверстия для свечи зажигания. Если свеча зажигания загорится в этот момент, двигатель может дать сбой, потому что фронт пламени может погаснуть (погаснуть) при ударе о поверхность ротора.
Если теперь повернуть двигатель на 20 градусов BTC, откроется путь для выгорания смеси в депрессии ротора.
Это важная часть причины, по которой почти все двигатели 1974 года и более поздние могут работать на большой мощности не более чем на 20–25 градусов опережения зажигания (у двигателей более ранних моделей США была очень длинная неглубокая депрессия, которая позволяла больший ход). Как я объяснял ранее, здесь есть некоторые параллели между роторами и рецептами — камера сгорания и конструкция верхней части поршня являются основными проблемами в рецептах, но есть некоторые отличительные моменты, которые следует учитывать при работе с ротором.
По правде говоря, мало что можно сделать, чтобы изменить форму депрессии сгорания, особенно в двигателях 1989 года и более поздних версиях с тонкими литыми стенками, но кое-что полезное можно сделать. Во-первых, вы можете гарантировать, что расстояние от канавки уплотнения на вершине до передней кромки впадины сгорания будет одинаковым на всех боковых сторонах всех роторов, так что все будут выдерживать одинаковую синхронизацию зажигания (отшлифуйте переднюю кромку впадины). как нужно).
Затем вы можете попытаться уменьшить теплопередачу в ротор, отполировав углубление сгорания и / или нанеся на него покрытие «тепловой барьер» (Примечание: не добавляйте измеримую толщину к изогнутой боковой поверхности ротора, в противном случае ротор может ударить по корпусу ротора).Многие реципиенты делают то же самое с поршнями и камерами сгорания по одним и тем же причинам. Я знаю, что тем из вас, кто плохо знаком с роторными двигателями, нелегко пролезть через эту информацию, но если вы не понимаете этих основных концепций, другие вопросы (например, синхронизация портов и синхронизация зажигания) не будут иметь смысла позже.
Я дам вам еще одну вещь для размышления — свечу зажигания. О зажигании роторных двигателей написаны книги, поэтому я коснусь только одной области — диапазона нагрева.Для тех, кто этого не знает, роторные двигатели, как правило, используют очень холодные свечи зажигания, то есть свечи, которые хорошо охлаждают электроды через водяную рубашку. Для этого есть много причин, но одна из наиболее очевидных заключается в том, что, хотя поршневой двигатель имеет горящую смесь вокруг своей свечи зажигания на номинальные 180 градусов (рабочий ход) из 720 общих градусов (или 25% термодинамического цикла) время) роторный двигатель имеет горящую смесь вокруг своей ведущей свечи зажигания в течение примерно 70% времени цикла.
Джим Медерер (1942-2016) поделился с нами своими знаниями о роторных двигателях во втором выпуске Drag Sport за 2002 год, прежде чем мы стали журналом DSPORT.Его наследие как пионера всего, что связано с вращением, будет жить и дальше. Несмотря на то, что он больше не работает с нами, его всегда будут помнить за то, что он проложил путь в разработке роторных двигателей в мире производительности с 70-х годов.
Поскольку у него очень мало времени для «охлаждения», его необходимо охлаждать через водяную рубашку. На самом деле это не относится к задней свече зажигания — она имеет горящую смесь только в течение 25% ~ 30% времени цикла, как в поршневом двигателе. Другие обстоятельства приводят к тому, что он получает большое количество тепла, но мы отложим это на другой раз.
За рулем ’67 Cosmo Sport, ’93 RX-7, ’11 RX-8 и др.
Фото Уильяма Уокера, видео Кори Лутца
30 мая 2017 года Mazda отмечает 50-летие запуск первого серийного роторного двигателя. Роторные двигатели не уникальны для Mazda, но больше, чем любой другой автопроизводитель, Mazda является синонимом технологий.
История Mazda с роторным двигателем восходит к началу 1960-х годов, когда она лицензировала технологию Ванкеля у западногерманского автопроизводителя NSU, который теперь является частью Audi.Роторный двигатель, созданный Феликсом Ванкелем в начале 50-х годов, представляет собой двигатель внутреннего сгорания, в котором для привода автомобиля используются вращающиеся роторы вместо поршней. Преимуществами роторного двигателя перед поршневым являются его компактный размер, легкий вес и высокая мощность для своих размеров. Некоторыми недостатками являются повышенный расход масла, меньшая экономия топлива по сравнению с поршневыми двигателями аналогичного размера и то, что они работают наиболее надежно и эффективно при постоянных оборотах.
Еще в начале 60-х Mazda, один из самых маленьких японских автопроизводителей, должен был сделать выбор: произвести революцию или умереть.Японское правительство подталкивало Mazda к консолидации с другим японским автопроизводителем. Чтобы избежать такой участи, автопроизводителю пришлось придумать уникальную запатентованную технологию, которая поможет сделать его жизнеспособным. Он выбрал роторный двигатель Ванкеля.
После нескольких лет разработки Mazda была достаточно довольна своим прогрессом и выпустила свой первый серийный роторный двигатель, 0810, для Mazda Cosmo Sport 110S 1967 года 50 лет назад. Чтобы отпраздновать этот культовый первый роторный двигатель, Mazda любезно открыла для нас свой подвальный гараж и позволила нам попробовать пять роторных Mazda, каждая из которых представляет разные десятилетия роторного типа, начиная с этого особенного Cosmo 1967 года.
1967 Mazda Cosmo Sport 110S: 110-сильный 1,2-литровый двухроторный Wankel
Посмотреть все 92 фотографииMazda Cosmo Sport 110S представляет собой два больших новинки для Mazda — это был первый автомобиль с роторным двигателем и его первый автомобиль. спортивная машина. Ранее известный только легковыми автомобилями и пикапами, Cosmo Sport был первым в длинной череде легендарных спортивных автомобилей Mazda; мы должны благодарить эту машину за будущие RX-7, RX-8 и Miatas.
Хотя официально этот автомобиль никогда не продавался в Соединенных Штатах, он имеет довольно увлекательную предысторию, помимо того, что он был самой первой Mazda с роторным двигателем на дорогах Северной Америки.Этот Cosmo был отправлен из Японии в Вудридж, штат Нью-Джерси, в ноябре 1967 года компании Curtiss-Wright. Вероятно, наиболее известный за создание истребителей P-40 Warhawk во время Второй мировой войны, производитель самолетов надеялся, что сможет разработать свои собственные роторные двигатели для самолетов авиации общего назначения, и купил Cosmo Sport для изучения инженерной мысли, лежащей в основе его двигателя. В 2007 году Mazda купила этот автомобиль с правым рулем, чтобы отпраздновать 40-летие роторного производства, и отправила его на запад в свою североамериканскую штаб-квартиру в Ирвине, Калифорния.
Mazda 67 Cosmo Sport не только редко встречается на американских дорогах (считается, что в США их всего два или три), но и редко — производитель выпустил только 343 экземпляра этой ранней серии с короткой колесной базой. 1 Cosmo Sports до перевода производства на версию с длинной колесной базой в июле 1968 года.
Просмотреть все 92 фотографииЭти факты оборачиваются в моей голове, когда я приближаюсь к Cosmo Sport размером с пинту 50 лет спустя за пределами штаб-квартиры Mazda. Несмотря на присущую ему странность 110-сильного двигателя Cosmo 1.2-литровый двухроторный двигатель Ванкеля, дизайн маленькой Mazda демонстрирует удивительную сдержанность. Дизайн Cosmo в целом претерпел значительные изменения: японский спортивный автомобиль получил очевидное влияние от европейских и американских спортивных автомобилей того времени, в том числе раздельные задние фонари в стиле реактивного двигателя и классические тканевые сиденья в клетку с рисунком «гусиные лапки».
Двухроторный двигатель Cosmo 0810 с небольшим количеством дроссельной заслонки и хорошей дроссельной заслонкой выстреливает прямо вверх, причем из выхлопных труб вырывается самый фантастический грохот.Это замечательно для автомобиля, достигшего полувековой отметки. Сжимая правой рукой руль с деревянным ободом, а левой — рычаг переключения передач с деревянным верхом, я вставляю четырехступенчатую механическую коробку передач Cosmo и тронусь с места.
Просмотреть все 92 фотографииЭта 50-летняя машина удивительно современна в управлении. Сцепление легко регулируется благодаря четкой точке включения, а рычаг переключения передач легкий и точный. Рулевое управление без посторонней помощи прямолинейно и разговорчиво; Рулевое управление по центру немного люфтит, но оно прекрасно усиливается, когда вы ведете машину на поворотах.Если бы Miata дебютировала в 1969 году, а не в 1989 году, это была бы поездка.
И это все, прежде чем мы перейдем к двигателю Cosmo. Если вы никогда не водили роторный двигатель, вот что вам нужно знать — они наиболее счастливы (и развивают свою мощность), вращаясь на высоких оборотах. Cosmo ничем не отличается. Попробуйте придать Mazda детство, как если бы вы сделали традиционный классический автомобиль с поршневым двигателем, повысив передачу примерно на 2000 об / мин, и Cosmo 0810 увязнет, как будто он на перегрузке. Нет, Cosmo, даже в 50 лет, умоляет взбодриться.Как и любой хороший атмосферный двигатель, Mazda дает водителю больше, чем выше вы исследуете его диапазон мощности.
Mazda Cosmo доставляет абсолютное удовольствие от вождения, но, учитывая еще четыре десятилетия роторных испытаний, пришло время двигаться дальше.
1978 Mazda REPU: 130-сильный 1,3-литровый двухроторный Wankel
Просмотреть все 92 фотографииMazda REPU — это особый грузовик, и я искал его на Craigslist с тех пор, как ездил на нем. Mazda REPU, сокращенно от «Rotary Engine Pick Up», была именно такой — версией пикапа B1600 для Северной Америки с роторным двигателем от RX-4.REPU был разработан как инструмент, да, но он также был разработан для придания спортивности модельному ряду Mazda. Его 1,3-литровый двухроторный двигатель мощностью 130 л.с. имел почти на 50 лошадиных сил больше, чем аналогичный Chevrolet LUV или Dodge Ram 50 того времени, и Mazda стремилась улучшить управляемость, переместив, среди прочего, аккумулятор из-под капота под кровать. вещи.
Mazda REPU 1978 года — это автомобиль, с которым Motor Trend хорошо знаком, поскольку в прошлом году он участвовал в ралли Touge California в 2016 году.Он был немного изменен; у него выхлопная система Racing Beat, которая немного громче штатной, и ее штатная четырехступенчатая механическая коробка передач заменена пятиступенчатой механической коробкой от RX-7. (Позже REPU фактически пришли с завода с пятиступенчатой коробкой передач).
Меня удивляет, насколько маленькими были компактные звукосниматели; Новый хэтчбек Mazda3 абсолютно возвышается над REPU и, вероятно, может уместить столько же внутри, но это не имеет ничего общего с REPU.
Просмотреть все 92 фотографииРоторный двигатель REPU — чудовищный маленький двигатель.Он стреляет прямо в этот безумный, высокий холостой ход, который не имеет ничего общего с резким холостым ходом полноразмерных американских пикапов той эпохи. Двигатель REPU — энергичный реввер; его 130 л.с. развиваются примерно в середине тахометра при примерно 4000 об / мин, и это действительно вознаграждает водителя за то, что он выкручивает двигатель на полную мощность. По характеру он очень похож на двигатель Cosmo, но похоже, что инженеры Mazda в то время использовали все уловки, которые у них были, чтобы извлечь из двигателя REPU все до последней лошадиных сил.
Остальная часть пакета REPU является свидетельством своей эпохи. Рулевое колесо лишь смутно связано с дорогой, тормоза деревянные, а салон, отделанный винилом и деревом, имеет типичные скрипы и дребезжания. Но кого это волнует? REPU в том виде, в каком он установлен, — удивительно очаровательный грузовик и важный шаг как в эволюции роторного двигателя, так и в спортивных грузовиках, таких как GMC Syclone.
Просмотреть все 92 фотографииMazda RX-7 Turbo II 1988 года выпуска: 10-я годовщина: 182 л.с. 1.3-литровый двухроторный двигатель с турбонаддувом Wankel
Просмотреть все 92 фотографииMazda RX-7 Turbo II 10th Anniversary Edition отмечает 10-летие легендарного спортивного автомобиля RX-7. RX-7 впервые появился в 1978 году, а второе поколение дебютировало в 1985 году и выиграло Motor Trend Import Car of the Year в 1986 году.
Автомобиль второго поколения — как и мой обеденный перерыв, этот RX-7 1988 года. Turbo II 10th Anniversary Edition — была разработана, чтобы соревноваться лицом к лицу со спортивными автомобилями того времени, такими как Porsche 944.Его 1,3-литровый двухроторный двигатель с турбонаддувом мощностью 182 л.с., на 36 лошадиных сил больше, чем у базового безнаддувного RX-7. Версия 1989 года увеличила мощность еще до 200 л.с.
Посмотреть все 92 фотографииПосле того, как вылез из Cosmo и REPU и сел в RX-7 1988 года, я сразу же поражен тем, насколько он тихий и удобный. Два десятилетия роторной разработки действительно сияют, потому что 13B вращается тише и плавнее, чем раньше, но с весьма значительным приростом мощности.
Автомобили с турбонаддувом 1980-х годов, как известно, довольно медлительны, и RX-7 не исключение. Даже с небольшим турбонаддувом, установленным на двухроторном двигателе, RX-7 не развивает мощность примерно до 3000 об / мин. Как только вы достигнете этого предела, все ставки будут отменены, поскольку Mazda устремится вперед, набирая скорость, пока стрелка тахометра мчится к красной черте на 7000 об / мин. Когда вы приближаетесь к ограничителю оборотов, машина гудит, побуждая водителя переключиться на более высокую передачу.
Просмотреть все 92 фотографииОстальные впечатления от RX-7 1988 года лучше всего описать как «красивые 80-е».«Сцепление мягкое и мягкое, а механизм переключения передач лишь смутно ощущается механически связанным с остальной коробкой передач. Тем не менее, он ехал по кругу на многих быстрых автомобилях того времени, таких как Camaro IROC-Z или Merkur XR4Ti.
1993 Mazda RX-7: 255 л.с. 1,3-литровый двухроторный двигатель с двумя турбинами Wankel
Просмотреть все 92 фотографииДля тех, кто вырос, играя в гоночные видеоигры, такие как Gran Turismo, Mazda RX третьего поколения -7 — это машина, которая закрепила наследие RX. Я имею в виду, посмотрите на нее! Даже через 25 лет после того, как «FD» RX-7 пошла в производство в 1992 году, она все еще прекрасна.
Во многих отношениях RX-7 третьего поколения, как и модель 1993 года в коллекции Mazda, представляет собой вершину роторных разработок в серийных автомобилях. Модель RX-7, эволюционировавшая по сравнению с двигателем второго поколения RX-7, была оснащена 1,3-литровым двухроторным двигателем с двумя турбинами Ванкеля, который выдавал 255 л.с. при 6500 об / мин в ранних версиях, таких как эта чистая белая модель 1993 года. После того, как RX-7 покинул США в 1995 году, в последние годы его производства он производил 280 л.с. Пик крутящего момента составляет 217 фунт-фут при 5000 об / мин.
Многие японские спортивные автомобили начала 90-х были сложными и технологически продвинутыми для своего времени.RX-7 не стал исключением. Его сдвоенные турбокомпрессоры работали последовательно; первый сразу же раскручивается, увеличивая мощность по мере увеличения оборотов двигателя, а второй турбонагнетатель включается примерно на полпути к тахометру на 9000 об / мин, обеспечивая двухроторный наддув примерно на 10 фунтов на квадратный дюйм. RX-7 также была оснащена заводским дифференциалом повышенного трения Torsen, одним из первых уличных применений этой технологии.
Просмотреть все 92 фотографииПредназначенный как истребитель NSX, RX-7 обещал номера, похожие на NSX, с массой снаряженного веса в 2800 фунтов и заявленным sub-5.0-секундный спринт до 60 миль в час. Нам эта вещь настолько понравилась, что мы назвали ее нашим импортным автомобилем 1993 года.
Достаточно о том, как это было тогда — как это сейчас ?
Одним словом, быстро. Роторный двигатель с двойной прокруткой RX-7 не будет сильно ударить вас по голове, как это сделает V-8 с принудительной индукцией, но он, безусловно, отбросит вас обратно на сиденье и удержит там, пока двигатель кричит на его красную черту. Роторы и турбины не казались бы хорошим сочетанием, потому что им нужны обороты для получения мощности, но последовательные двойные турбины почти сразу же приносят большую мощность на стол.С подключением двух турбин Mazda оживает. RX-7 — это само определение крылатой ракеты — ей ничего не нужно, кроме как достичь максимальной скорости 160 миль в час и просто припарковать там спидометр.
Просмотреть все 92 фотографииДаже на нормальных, разрешенных для улицы скоростях ездить на RX-7 1993 года действительно интересно. Турбо-лаг — забавное испытание для езды, а гладкая пятиступенчатая механическая коробка передач доставляет удовольствие, когда вы это делаете. Езда уверенная, но не изнурительная, а рулевое управление великолепное, потому что на поворотах автомобиль чувствует себя единым целым с водителем.
RX-7 опередил свое время. Жаль, что его нет.
Mazda RX-8 LM20 2011 года: 1,3-литровый двухроторный Wankel мощностью 230 л.с. — специальный выпуск, посвященный 20-летию победы Mazda в Ле-Мане 1991 года, — это последний автомобиль с роторным двигателем, который Mazda привезла в Соединенные Штаты. Это делает его подходящей подставкой для книг на весь день.
Оглядываясь назад, можно сказать, что RX-8, похоже, был попыткой Mazda расти за счет покупателей RX-7.У него были две главные двери, две раскладывающиеся двери-самоубийцы, как у пикапа с удлиненной кабиной, и удобное для детей заднее сиденье. Двойные турбины от RX-7 исчезли, и на их место RX-8 установил 1,3-литровый безнаддувный двухроторный двигатель мощностью 230 л.с. и 159 фунт-фут крутящего момента, а тахометр показывал до небес. высокие 10000 об / мин. Он был доступен с автоматической коробкой передач, но стоит упомянуть только шестиступенчатую механическую коробку передач.
По сравнению с безумием, которое было у RX-7 с двумя турбинами, RX-8 — гораздо более расслабленный, степенный автомобиль.На низком уровне мощности нет, но, как и все хорошие безнаддувные автомобили, RX-8 доставляет удовольствие работать на высоком уровне. Неудивительно, что экономия топлива была такой ужасающей. Тем не менее, несмотря на присущий Mazda баланс, хорошее переключение передач и забавный двигатель, нельзя скрыть тот факт, что он медленный для спортивного автомобиля (модель 2004 года, которую мы тестировали, разгонялась от 0 до 100 км / ч за 6,4 секунды) и расходует бензин с той же скоростью. как сопоставимый маслкар с двигателем V-8. Мне очень понравилось водить RX-8, потому что это милый, особенный автомобиль, но в то же время я полностью понимаю, почему его сегодня нет с нами.
Посмотреть все 92 фотографииThe Future
Роторы остались на хорошем месте, когда RX-8 сняли с производства. Тем не менее, 1,3-литровый двухроторный двигатель RX-8, потребляющий 16/22/18 миль на галлон по городу / шоссе / в сочетании с циклом EPA, и его равная жажда масла сделали отказ от роторного двигателя разумным бизнес-решением в 2011 году.
Но у Mazda есть никогда полностью не отказывался от двигателя Ванкеля. В 2012 году компания приступила к испытаниям электромобилей Demio RE EV — Mazda2 в США — с приводом от установленного спереди электродвигателя и батареями, но подкрепленным крохотным поворотным расширителем диапазона, установленным на багажнике, что обеспечивало автомобилю запас хода почти в 250 миль.Совсем недавно концепт Mazda RX-Vision с Токийского автосалона 2015 года представил преемника RX-7 с роторным двигателем нового поколения SkyActiv-R. С тех пор появились патентные чертежи, демонстрирующие роторный двигатель нового поколения, хотя Mazda хранила молчание о том, что с ним делать.
На прямой вопрос представители Mazda признают, что будущее роторных двигателей омрачено внутренней политикой, но небольшая, чрезвычайно преданная своему делу команда усердно работает в Японии, поддерживая воплощение мечты в жизнь.Учитывая, что в 2020 году быстро приближается 100-летний юбилей Mazda, я не могу придумать лучшего способа отпраздновать это, чем возрождение двигателя, который 50 лет назад поддерживал Mazda.
Просмотреть все 92 фотоКак избежать обхода с помощью вращательного движения с прямым приводом
Крис Рэдли
Старший по производственной линии
Менеджер Danaher Motion Wood Dale, Ill.
www.danahermotion.com
Бескаркасные двигатели DDR лучше всего подходят для высокопроизводительных приложений, где пространство ограничено или вес имеет решающее значение. |
Двигатели с корпусом DDR лучше всего подходят для использования на машинах, не имеющих существующих подшипников, таких как таблицы индексации и нормы. |
Картриджные двигатели DDR — это новая категория технологии прямого привода. Они сочетают в себе преимущества безрамных двигателей DDR с простотой установки полнокадрового двигателя и стоят меньше, чем обычные системы DDR. Их уникальная конструкция без подшипников позволяет системам монтировать и запускать менее чем за 30 минут. |
Роторные системы с прямым приводом (DDR) доступны в безрамном исполнении, в корпусе и в новом формате картриджного двигателя. Хотя многие инженеры знакомы с основами выбора обычных сервосистем, правила при выборе системы DDR немного отличаются.
В большинстве сервосистем используется обычный вращающийся серводвигатель, соединенный с нагрузкой через редуктор или ременную передачу. Несмотря на то, что обычные сервосистемы в основном не требуют обслуживания, люфт и податливость редуктора или ременного привода могут вызвать проблемы с производительностью, такие как неточность положения или проблемы с настройкой.Фактически, даже системы без редукторов или ременных приводов могут иметь чрезмерную податливость из-за муфт, соединяющих серводвигатель и нагрузку.
СистемыDDR обеспечивают преимущества бесщеточного серводвигателя, устраняя при этом недостатки, возникающие из-за совместимых муфт и люфта коробки передач. Кроме того, они устраняют необходимость в техническом обслуживании, например, смазке коробки передач и регулировке или замене ремня. Поскольку системы DDR не требуют согласования по инерции, точность положения и скорости может увеличиваться до 50 раз и снижать слышимый шум до 20 дБ.Для конструкторов, которым необходимо уменьшить размер машины, устранение компонентов механической трансмиссии приводит к уменьшению машины, которая может похвастаться более высокой производительностью, более тихой работой и нулевым обслуживанием системы управления движением.
БЕЗРАМНЫЕ СИСТЕМЫ
Бескаркасные системы DDR состоят из отдельных ротора и статора без подшипников. Компоненты встроены в машину и становятся непосредственной частью самой машины. Устройство обратной связи (например, резольвер, энкодер или датчик Холла) также должно быть встроено в машину.Также требуется электронный усилитель привода, который управляет двигателем и управляет устройством обратной связи. Разработчики могут получить все компоненты от одного поставщика или выбрать усилитель привода и устройство обратной связи отдельно от двигателя.
Безрамочные системы — это оригинальная технология DDR. Большинство из них представляют собой нестандартные конструкции, что делает их хорошими кандидатами для приложений с ограниченным пространством или критичным весом. Доступны стандартные каталожные версии безрамных двигателей DDR. Они менее распространены, но предлагают такие преимущества, как готовность к эксплуатации, одобрение UL и заранее спроектированные конструкции обратной связи.
Бескаркасные двигатели DDR идеально подходят для аэрокосмических и оборонных приложений, таких как радары самолетов или наземных транспортных средств и системы вооружения. Они также подходят для высокопроизводительных промышленных приложений, робототехники и точного шлифования. Когда минимальный размер и вес должны сочетаться с оптимальной производительностью, а стоимость является менее важным фактором, безрамочные системы DDR особенно привлекательны.
КОРПУСНЫЕ СИСТЕМЫ
Корпуса или полнокадровые системы DDR объединяют ротор, статор и установленную на заводе обратную связь в корпусе, который включает прецизионные подшипники.Хотя для таких систем по-прежнему требуется совместимый приводной усилитель, их легче выбрать, интегрировать и обслуживать, чем бескаркасные системы.
ДВИГАТЕЛИ DDR БЕСКАРКАЛЬНЫЕ | |
ПРОФИ | Минусы |
Самая компактная конструкция | Дороже, чем другие системы DDR |
Становится неотъемлемой частью машины | Более длительное время разработки |
Возможен практически любой индивидуальный дизайн | Более длинная и сложная интеграция |
Простое использование устройства обратной связи по выбору клиента | Более сложные в обслуживании или ремонте |
МОТОРЫ DDR В КОРПУСЕ | |
ПРОФИ | Минусы |
Самая простая установка | Менее гибкий, стандартная конструкция |
Встроенное устройство обратной связи | Не подходит для систем с существующими подшипниками |
Решение с одним номером детали | Больше, тяжелее бескаркасных |
Обычно дешевле, чем безрамный | |
КАРТРИДЖНЫЕ ДВИГАТЕЛИ DDR | |
ПРОФИ | Минусы |
Быстрая и простая установка | Больше, тяжелее бескаркасных |
Безподшипниковая конструкция со встроенной обратной связью | Не для систем, в которых требуются подшипники двигателя |
Решение с одним номером детали | |
Наименее дорогое решение |
Системы Housed-DDR лучше всего подходят для приложений, где нагрузка действует на подшипники двигателя.Если в машине уже есть подшипники, двигатель должен быть подсоединен к нагрузке или несколько комплектов подшипников должны быть выровнены, что является сложной и трудоемкой задачей.
ДвигателиHoused-DDR обычно используются в приложениях без существующих подшипников машин, например, в индексных таблицах и таблицах норм. В таких случаях они предлагают быструю и простую установку, предварительно настроенное устройство обратной связи, встроенные подшипники и значительно более низкую стоимость, чем безрамная конструкция.
КАРТРИДЖНЫЕ СИСТЕМЫ
Картриджные системы DDR представляют собой новый подход к роторным двигателям с прямым приводом.Они обладают всеми преимуществами закрытых конструкций в уникальном безподшипниковом корпусе, что позволяет использовать их на оборудовании, в котором уже есть подшипники. Компрессионная муфта соединяет ротор с валом, а транспортировочный зажим облегчает монтаж, поэтому установка может быть запущена менее чем за 30 минут.
Картриджные двигатели DDR могут использоваться в преобразовании, автоматизации производства, упаковке, полиграфии и полупроводниковой промышленности. Технология картриджей адаптируется практически к любому применению, в котором используются существующие подшипники, обеспечивая все преимущества прямого привода при минимальных затратах и с быстрой и простой установкой.
Все системы DDR предоставляют следующие преимущества:
- Отсутствие обслуживания
- Без люфта
- Повышенная повторяемость
- Нулевая совместимость
- Повышенная точность
- Более компактная механическая конструкция
- Тихая работа
- Улучшенное регулирование скорости
Многие конструкции DDR также доступны в конфигурациях с полым валом, которые позволяют электрическим и пневматическим линиям или другим компонентам машины проходить через двигатель и оптимизируют пространство.
Однако разные электромагнитные конструкции будут иметь разные уровни производительности, точки затрат (стоимость для имеющегося крутящего момента) и возможности максимальной скорости.
Например, электродвигатели с переменным магнитным сопротивлением не обладают такими характеристиками, крутящим моментом или скоростью, которыми обладают бесщеточные электродвигатели с постоянными магнитами большой энергии. Кроме того, системы с переменным магнитным сопротивлением часто должны специально согласовывать усилитель привода с двигателем. Это ограничивает гибкость при выборе привода и затрудняет обслуживание.
Для некоторых станков можно использовать разные конструкции DDR на разных осях станка. В идеале, один производитель, который может предоставить двигатели и общий усилитель привода для их всех. Эта общая платформа избавляет от необходимости изучать и поддерживать несколько дизайнов.
Системы с прямым приводом имеют более высокую начальную стоимость, чем обычные следящие системы. Это может варьироваться от 30% для картриджных систем до в четыре раза больше для бескаркасных систем (общая стоимость, включая дизайн и интеграцию).Эта картина затрат быстро меняется, если проанализировать затраты на протяжении жизненного цикла. В течение типичного пятилетнего срока службы обычные системы будут стоить от трех до 10 раз больше, чем системы с прямым приводом, из-за технического обслуживания и простоев.
Преимущества систем с прямым приводом не ограничиваются только вращательным движением. Линейные системы с прямым приводом (DDL) исключают использование устройств механического перемещения, таких как шариковые / ходовые винты или рейка и шестерни, обеспечивая эквивалентную производительность и не требующие обслуживания улучшения работы линейных систем, которые системы DDR предлагают для вращающихся систем.Машины, сочетающие системы DDR и DDL, обеспечивают максимальную производительность и не требуют обслуживания.
.