Интервью с Дмитрием Европиным
Высказался в рамках следующего круглого стола:Эволюция ДВС
«Вопрос об эффективности усовершенствования старых технологий остается открытым».
12 марта 2012
Дмитрий Европин
главный редактор MotorPage.ruВ основе всего многообразия сложных механизмов, которыми мы пользуемся сегодня, лежат достижения технической революции конца XIX – начала XX веков. На протяжении всего прошлого столетия изобретения этого периода лишь оттачивались. Совершенствовались технологические процессы, уменьшались допуски, происходила автоматизация, внедрялись второстепенные инновации, направленные на улучшение характеристик той или иной продукции. Это касается и автомобильной промышленности, в особенности в части двигателестроения.
Дело в том, что четырехтактный двигатель внутреннего сгорания, ставший чуть менее ста лет назад основой автоиндустрии, имеет целый ряд недостатков, не позволяющих получать высокие показатели его общего КПД.
Так считается, что КПД классического автомобильного бензинового двигателя с принудительным искровым зажиганием составляет от 20 до 30%, дизельный двигатель может обеспечить 35-40%. В первой половине XX века это были выдающиеся характеристики на фоне пресловутого «КПД паровоза», который, как все мы помним из школьного курса физики, составлял 5-10%.
Впрочем, уже тогда инженерам было понятно, что необходимо добиваться лучших показателей, и уже в 1920 – 1940 годы для этого были разработаны практически все основные принципы, как то турбонаддув, прямой впрыск и т.д. К 1970 годам началась настоящая погоня за повышением эффективности, продолжающаяся по сей день. Были разработаны такие элементы как охлаждение рабочей смеси, изменение фаз газораспределения, поэтапный впрыск… Сегодня некоторые автопроизводители утверждают, что в современном бензиновом ДВС удается добиться общего КПД в 35-38%. Однако вопрос об эффективности усовершенствования старых технологий остается открытым.
Вся история ДВС – сплошная борьба инженеров с основополагающими особенностями конструкции. Если перечислять их вкратце, то это низкая топливная эффективность за счет слишком короткого цикла сгорания, 25-30% топлива в прямом смысле вылетает в трубу. Низкая механическая эффективность – большие потери на перемещение тяжелых деталей шатунно-поршневой группы, на трение, а так же на работу значительного количества навесного оборудования. Не следует забывать и о том, что в автомобиле ДВС, обладающий очень низким крутящим моментом на малых оборотах, нуждается в коробке передач, а это агрегат, в котором тоже теряется часть полученной энергии. Низкая термодинамическая эффективность – большая часть выделяемого тепла не переводится в полезную работу, ведь на это отведено лишь 0,25 всего цикла. Желающим более подробно ознакомиться с проблемой повышения КПД двигателя внутреннего сгорания могу порекомендовать следующую статью Игоря Исаева, разработчика одной из альтернативных конструкций двигателя.
Как правило, усилия конструкторов приводят к достижению выдающихся результатов в области распределения крутящего момента, повышения мощности и «эластичности» двигателя, снижения вибронагруженности…, но собственно КПД увеличивается не столь существенно, а значит затраты топлива на единицу полученной работы остаются относительно высокими.
Часто приходится сталкиваться с несоответствием реального и декларируемого производителем расхода бензина чуть ли не вдвое. Автомобиль с современными системами турбонаддува оказывается экономичным, только если очень бережно относится к педали газа и лишний раз ее не беспокоить.
Бывает и так, что новая модель автомобиля с двигателем, развивающим 150 л.с., ведет себя словно под капотом на пару десятков «лошадей» меньше, хотя в предыдущем поколении этой же модели ничего подобного не наблюдалось. Объясняется это, как правило, всего лишь новыми экологическими стандартами, ради достижения которых двигатель «душат» перенастройкой блока управления двигателем под использование в основном диапазоне оборотов обедненной смеси, а так же более эффективным каталитическим дожигателем.
Словом, складывается впечатление, что эволюция ДВС достигла своего пика, и в будущем нас ждет лишь увядание этой технологии. В последние годы это ощущение подкрепляется бурным развитием таких направлений, как гибриды и электромобили.
И все же уверенности в скором завершении эпохи ДВС у меня нет!
Не секрет, что параллельно с развитием двигателей Отто и Дизеля были попытки внедрения альтернативных конструкций – Аткинсона, Миллера, Стирлинга, Ванкеля. Есть и более экзотические, в том числе и отечественные, например двигатели Баландина и Фролова. Однако большого распространения они не получили. Пожалуй, только «роторы» Ванкеля применялись на немногочисленных моделях автомобилей вплоть до наших дней, но сейчас и они ушли в прошлое.
Победа силовым агрегатам Отто и Дизеля досталась по причине простоты конструкции, а значит и большей экономической эффективности в производстве. Но сейчас, когда стало возможным добиться гораздо большей механической точности, востребованными оказываются и некоторые, казалось бы, давно забытые идеи. Так для многих современных «гибридов» наиболее удачным оказался двигатель Аткинсона, изобретенный еще в конце XIX века. Его использует корпорация Toyota.
Предпринимаются и попытки внедрения принципиальных инноваций. Например, ученые из Университета Висконсин-Мэдисон в США разработали технологию, позволяющую одновременно использовать преимущества обоих видов топлива, бензина и дизеля, для двигателей внутреннего сгорания. Они предложили осуществлять впрыск дизельного топлива и бензина в цилиндр последовательно в ходе каждого цикла. Это необходимо для самовоспламенения топливной смеси, — вместо свечей зажигания работают капельки солярки, воспламеняющиеся под давлением. Пока эта технология не внедрена в производство, но вполне вероятно у нее есть перспективы.
В России компания «Ё-авто» занимается разработкой роторно-лопастного двигателя, в котором к минимуму сведены потери на трение. Разработчики этой конструкции уже заявляли, что КПД нового двигателя должен составить 42-45%, что весьма неплохо для бензинового агрегата.
Некоторые производители идут по пути дальнейшего увеличения степени сжатия, вплоть до почти «дизельных» значений, для достижения более полного сгорания бензиновой смеси. Не так давно компания Mazda начала производство бензиновых двигателей Skyaktiv-G, в которых степень сжатия составляет 14:1.
Если учесть, что двигатель внутреннего сгорания – это еще и обеспечение постоянного спроса на нефтепродукты, вряд ли в ближайшем будущем мир сможет отказаться от столь «ценной» технологии. Автопроизводители просто обречены заниматься ее дальнейшим совершенствованием. Впрочем, направления этой работы могут быть различны. Надеюсь, в рамках очередной дискуссии на нашем портале представители ведущих автомобильных марок расскажут о своих наиболее перспективных разработках в области повышения эффективности ДВС.
- Автор
- Дмитрий Европин, главный редактор журнала «MotorPage»
Также высказались:
Обзоров машин на сайте:
5 0 0 8Кпд дизельного двигателя
Дизельный мотор и бензиновый: сравнение КПД
Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.
Что касается двигателя внутреннего сгорания (ДВС), такой силовой агрегат осуществляет преобразование тепловой энергии. Данная высвобождающаяся энергия является результатом сгорания топлива в цилиндрах двигателя. КПД мотора представляет собой фактически совершенную механическую работу, которая состоит в соотношении полученной поршнем энергии от сгорания топлива и конечной мощности, которая отдается установкой на коленчатом валу ДВС.
Почему КПД дизеля выше
Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. Бензиновые моторы имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.
Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.
Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.
Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.
Что касается КПД атмосферного дизельного агрегата, то этот показатель составляет около 40%. Установка турбокомпрессора позволяет увеличить отметку до внушительных 50%. Использование современных систем топливного впрыска на дизельных ДВС в сочетании с турбиной позволило добиться КПД около 55%.
Такая разница в производительности конструктивно схожих бензиновых и дизельных ДВС напрямую связана с видом топлива, принципом образования рабочей топливно-воздушной смеси и последующей реализацией воспламенения заряда. Бензиновые агрегаты более оборотистые по сравнению с дизельными, но большие потери связаны с расходами полезной энергии на тепло. Получается, энергия бензина менее эффективно превращается в полноценную механическую работу, а большая доля попросту рассеивается системой охлаждения в атмосферу.
Мощность и крутящий момент
При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.
Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.
Энергетическая ценность солярки и бензина
Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.
Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.
Итоги
Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение систем изменения фаз газораспределения, электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.
Благодаря таким особенностям современный дизель способен полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.
Какой КПД дизельного двигателя? Дизельный и бензиновый двигатель
КПД дизельного двигателя представляет собой отношение мощности, которая подается на коленчатый вал, к мощности, получаемой поршнем благодаря давлению газов, образующихся при воспламенении используемого топлива.
То есть эта величина является той энергией, которая преобразовывается из тепловой или термической энергии в механическую величину.
Бензиновые двигатели обладают принудительным зажиганием воздушно-топливной смеси искрой свечи.
Типы систем питания
Карбюраторный вариант предполагает смешивание воздуха и бензина во впускном трубопроводе карбюратора. В последнее время выпуск таких вариантов двигателей существенно снижается из-за несущественной экономичности подобных двигателей, их несоответствия экологическим нормам современности.
В вариантах впрысковых двигателей подача топлива происходит с помощью одного инжектора (форсунки) в центральный трубопровод.
В случае распределительного впрыска топливо попадает внутрь двигателя несколькими инжекторами. В таком случае увеличивается максимальная мощность, что существенно увеличивает КПД дизельного двигателя.
При этом снижаются расходы бензина и токсичность обработанных газов за счет фиксированной дозировки топлива электронными системами управления автомобильным двигателем.
Рассуждая над тем, каков КПД современного дизельного двигателя, необходимо знать о системе впрыска бензиновой смеси в камеру хранения. Если подача топлива осуществляется порциями, это гарантирует работу двигателя на обедненных смесях, что помогает снижать расход топлива, уменьшать выброс в атмосферу вредных газов.
Особенности дизельных двигателей
КПД бензинового и дизельного двигателя существенно отличаются между собой. Дизели являются теми двигателями, в которых после сжатия нагретая топливно-воздушная смесь воспламеняется. Они намного экономичнее бензиновых аналогов из-за большей степени сжатия, способствующей полному сгоранию воздушно-топливной смеси.
Достоинства дизелей
КПД дизельного двигателя можно увеличить при создании сопротивления движения воздуха из-за отсутствия дроссельной заслонки, но это приводит к повышению расхода топлива.
Наибольший крутящий момент развивают дизели на небольшой частоте вращения коленчатого вала.
Устаревшие конструкции дизельных двигателей от бензиновых аналогов отличаются определенными недостатками:
- большим весом и ценой при равной мощности;
- повышенным шумом, создаваемым при сгорании топлива в цилиндрах;
- меньшими оборотами коленчатого вала, повышенными инерциальными нагрузками.
Принцип деятельности
КПД современного дизельного двигателя определяется отношением полезной работы, совершаемой двигателем, к полной работе. Почти у всех автомобильных двигателей предполагается четыре такта:
- впуск топливно-воздушной смеси;
- сжатие;
- рабочий ход;
- выпуск отработанных газов.
Эффективность дизельного двигателя
КПД дизельного двигателя в процентах составляет порядка 35-40 процентов. Учитывая, что для бензинового агрегата показатель составляет до 25 %, дизель явно лидирует.
Если воспользоваться турбонаддувом, вполне модно увеличить КПД дизельного двигателя до 53 процентов.
Несмотря на сходство типа работы, дизель справляется с поставленной перед ним задачей намного качественнее и результативнее. Так как у него меньшее сжатие, воспламенение топлива происходит по другому принципу. Он будет меньше нагреваться, в результате чего на охлаждении происходит неплохая экономия. В дизеле нет свечей и катушек зажигания, следовательно, нет необходимости тратить дополнительную энергию генератора.
Для повышения эффективности работы бензинового двигателя добавляют пару выпускных и впускных клапанов, а на каждую свечу устанавливают отдельную катушку зажигания. Для управления дроссельной заслонкой используется электрический привод.
Эффективность топлива
Расчет КПД дизельного двигателя позволяет определить целесообразность его применения.
Дизель считается одним из вариантов двигателя внутреннего сгорания, для которого характерно после сжатия воспламенение рабочей смеси.
Для того чтобы выявить суть функционирования бензинового двигателя, и то, какой КПД дизельного двигателя, проводят математические расчеты.
Потери КПД
Сгорает не все топливо, некоторая его часть теряется вместе с выхлопными газами (теряется до 25 процентов КПД). В процессе функционирования двигатель тратит часть энергии на корпус, радиаторы, жидкость. Это приводит к дополнительной потере КПД. На все места, где существует трение: кольца, шатуны, поршни, потребляется дополнительная энергия, что негативно отражается на коэффициенте полезного действия.
Вариант определения
В технической документации можно найти информацию о мощности двигателя внутреннего сгорания. После заливки в него топлива и работы на максимальных оборотах в течение нескольких минут остатки топлива сливают. Вычтя из начального объема конечный результат, вооружившись плотностью, можно посчитать массу топливной смеси.
В настоящее время максимальной эффективностью обладает электрический силовой агрегат. Его КПД может достигать 95%, что является превосходным результатом. Если первые моторы при объеме двигателя 1,6 литра развивали не больше 70 лошадиных сил, то в наши дни этот показатель доходит до 150 лошадиных сил.
КПД – величина отношения мощности, подаваемой на коленчатый вал двигателя, к величине, получаемой от сгорания газовой смеси поршнем. В зависимости от того, какое топливо используется для работы автомобильного двигателя, КПД может варьироваться в диапазоне от 20 до 85 процентов. Безусловно, производители топливных систем ищут способы их улучшения, позволяющие существенно увеличить итоговую величину двигателя внутреннего сгорания.
Для снижения механических потерь от нагрузки генератора, трения в настоящее время в промышленности используют смазки. Но, несмотря на подобные достижения, полностью справиться с силой трения пока еще не удалось никому.
Даже после усовершенствований бензинового двигателя удалось добиться изменения у него коэффициента полезного действия до 20 процентов, только в некоторых случаях удается повышать КПД до 25 %.
Более высокий показатель коэффициента полезного действия свидетельствует о топливной эффективности. К примеру, при объеме дизельного двигателя 1,6 литра в городском цикле расход топлива составляет не более 5 литров. У бензинового аналога эта величина достигает 12 л. Сам дизельный агрегат гораздо легче и компактнее, к тому же считается более экологичным вариантом, чем бензиновый двигатель.
Эти положительные технические характеристики гарантируют дизелям более продолжительный эксплуатационный срок службы.
Заключение
Помимо многочисленных плюсов, есть у него и несколько недостатков, о которых также следует упомянуть. КПД двигателя внутреннего сгорания гораздо меньше 100 процентов, к тому же агрегат не выдерживает резкого понижения температуры воздуха.
Коэффициент полезного действия представляет собой величину, которая в процентном соотношении демонстрирует результативность функционирования механизма относительно преобразования тепловой энергии в полезную работу. ДВС осуществляет подобную деятельность, осуществляя преобразование тепловой энергии. Высвобождается она в результате сгорания в цилиндрах топливной смеси. КПД дизельного мотора является фактически совершенной механической работой, состоящей из отношения энергии, полученной от сгорания топлива, и мощности, отдаваемой установкой на коленчатом валу двигателя.
Эффективность работы современного дизельного агрегата определяется множеством различных факторов. В первую очередь, необходимо отметить тепловые и механические потери, возникающие в ходе работы двигателя такого типа. Кроме того, свою долю вносит в разнообразные потери и сила трения, которая появляется при тесном соприкосновении этих многочисленных деталей.
Основная часть расходуемой полезной энергии приходится на приведение в движение поршня, вращение внутри мотора различных деталей. Более 60 процентов сгорающего топлива требуется для обеспечения работы всех узлов автомобильного двигателя. При дополнительных потерях появляются существенные проблемы с дееспособностью навесного оборудования, разнообразных систем, механизмов.
Благодаря модернизации системы впрыска удалось внести позитивные изменения в значение коэффициента полезного действия, минимизировать потери.
Дизельный мотор и бензиновый: сравнение КПД
Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.
Что касается двигателя внутреннего сгорания (ДВС), такой силовой агрегат осуществляет преобразование тепловой энергии. Данная высвобождающаяся энергия является результатом сгорания топлива в цилиндрах двигателя. КПД мотора представляет собой фактически совершенную механическую работу, которая состоит в соотношении полученной поршнем энергии от сгорания топлива и конечной мощности, которая отдается установкой на коленчатом валу ДВС.
Рекомендуем также прочитать статью о том, какой моторесурс имеет дизельный двигатель по сравнению с бензиновым. Из этой статьи вы узнаете об основных факторах, влияющих на ресурс ДВС до первого капитального ремонта.
Почему КПД дизеля выше
Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. Бензиновые моторы имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.
Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.
Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.
Статья в тему: Точная проверка уровня масла в мотореЕсли сравнить дизельную установку и мотор на бензине, дизельный двигатель имеет заметно больший КПД сравнительно с бензиновым агрегатом. Силовые агрегаты на бензине имеют КПД на отметке около 25-30% от общего количества полученной энергии.
Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.
Что касается КПД атмосферного дизельного агрегата, то этот показатель составляет около 40%. Установка турбокомпрессора позволяет увеличить отметку до внушительных 50%. Использование современных систем топливного впрыска на дизельных ДВС в сочетании с турбиной позволило добиться КПД около 55%.
Такая разница в производительности конструктивно схожих бензиновых и дизельных ДВС напрямую связана с видом топлива, принципом образования рабочей топливно-воздушной смеси и последующей реализацией воспламенения заряда. Бензиновые агрегаты более оборотистые по сравнению с дизельными, но большие потери связаны с расходами полезной энергии на тепло. Получается, энергия бензина менее эффективно превращается в полноценную механическую работу, а большая доля попросту рассеивается системой охлаждения в атмосферу.
Рекомендуем также прочитать статью о том, как увеличить мощность дизельного двигателя при помощи чип-тюнинга. Из этой статьи вы узнаете о том, что такое прошивка ЭБУ двигателя и какие результаты достигаются путем изменения штатных параметров контроллера.
Мощность и крутящий момент
При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.
Статья в тему: Как заменить цепь ГРМ своими рукамиАналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.
Солярка образует больше тепла по сравнению с бензином, температура сгорания дизтоплива выше, показатель детонационной стойкости более высокий. Получается, у дизельного ДВС произведённая полезная работа на определенном количестве топлива больше.
Энергетическая ценность солярки и бензина
Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.
Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.
КПД двигателя: бензиновый, дизельный
КПД двигателя внутреннего сгорания означает значение соотношение двух величин: мощность, подающаяся в процессе функционирования мотора на коленчатый вал к мощности, которая получается поршнем посредством давления газов, образовавшихся при воспламенении топлива. Проще говоря, это преобразование тепловой или термической энергии, которая образуется при сгорании топливной смеси (бензин и воздух) в механическую.
На эффективность КПД двигателя влияют совокупность различных механических потерь, возникающих на разных стадиях функционирования, а также движение отдельных деталей двигателя, вызывающих трение. Эти детали вызывают наибольшие потери, составляющие примерно 70 % от их общего количества. К ним частям относятся поршни, поршневые кольца, подшипники. Помимо этого, потери возникают от функционирования таких механизмов, как магнето, насосы и пр., которые могут достигать до 20%. Наименьшую часть потерь составляют сопротивления, возникающие в процессе впуска/выпуска в топливной системе.
Сравнение КПД двигателей – бензин и дизель
Если сравнить КПД дизельного и бензинового моторов – эффективнее из них, конечно, дизель, причина в следующем:
- Бензиновый агрегат преобразует лишь 25 % энергии в механическую, в то же время дизельный до 40%.
- Дизельный двигатель, оснащенный турбонаддувом, достигнет 50-53% КПД, а это уже существенно.
Так в чем заключается эффективность дизельного мотора? Все очень просто – не смотря на практически идентичный тип работы (оба мотора являются ДВС) дизель функционирует намного эффективнее. Топливо у него воспламеняется совсем по другому принципу, а также у него большее сжатие. Дизель меньше нагревается, соответственно, происходит экономия на охлаждении, так же у него меньше клапанов (значительная экономия на трении). Кроме этого, у такого агрегата нет свечей, катушек, а значит, нет и энергетических затрат от генератора. Функционирует дизельный двигатель с меньшими оборотами (коленвал не приходится раскручивать). Все это его делает чемпионом по КПД.
КПД дизельного двигателя – заметная эффективность
Показатель КПД для разных двигателей отличается и зависит от некоторых факторов. Бензиновые агрегаты имеют относительно низкий КПД, поскольку для них характерно большое количество тепловых и механических потерь, образующихся в процессе функционирования силовой установки данного типа.
Второй фактор – трение, возникающее в результате взаимодействия сопряженных деталей. Дополнительные потери вызваны работой других систем, механизмов и навесного оборудования и т.д.
Если сравнить дизельный мотор и бензиновый, то КПД дизеля значительно превышает КПД бензиновой установки. Бензиновые моторы имеют КПД в пределах 25% от количества полученной энергии. Иными словами, из потраченных в процессе функционирования мотора двигателя 10 л бензина только 3 л израсходованы на выполнение полезной для системы работы. Остальная часть энергии, образовавшаяся от сгорания бензина, разошлась на различные потери.
Что касается КПД дизельного агрегата атмосферного, то этот показатель достаточно высокий и составляет до 40%. Установка современного турбокомпрессора позволяет эту отметку увеличить до внушительных 50%. Современные системы топливного впрыска, установленные на дизельных ДВС, в совокупности с турбиной позволяют добиться КПД даже 55%.
Такая существенная разница в производительности конструктивно похожих дизельных и бензиновых ДВС обусловлена рядом факторов, к ним относятся:
- Вид топлива.
- Способ образования топливно-воздушной смеси.
- Реализация воспламенения заряда.
Агрегаты, работающие на бензине, более оборотистые, чем дизельные, но имеют более существенные потери, которые вызваны расходом энергии на тепло. Соответственно, полезная энергия бензина менее эффективно преобразуется в полноценную механическую работу, в то же время большая доля рассеивается системой охлаждения.
Мощность и крутящий момент
Когда показатели рабочего объема одинаковые, мощность атмосферного бензинового двигателя выше, но достигается только при более высоких оборотах. Агрегат нужно сильнее «крутить», при этом потери возрастают, соответственно увеличивается расход топлива. Кроме этого, стоит упомянуть крутящий момент, под воздействием которого повышается сила, которая передается от двигателя на колеса и способствует движению автомобиля. Бензиновые двигатели выходят на максимальный уровень крутящего момента лишь высоких оборотах.
Атмосферный дизель с такими же параметрами достигает пика крутящего момента лишь при низких оборотах. Это способствует меньшему расходу топлива, необходимого для выполнения работы, в результате чего, КПД более высокий и топливо расходуется экономнее.
В равнении с бензином, дизельное топливо образует больше тепла, так как температура сгорания дизтоплива значительно выше, что способствует более высокой детонационной стойкости. Получается, у дизельного мотора полезная работа, произведенная на конкретном количестве топлива гораздо больше.
Энергетическая ценность солярки и бензина
В состав солярки входит больше тяжелых углеводородов, нежели в бензин. Меньший КПД такого мотора сравнительно с дизельным агрегатом обусловлен энергетической составляющей бензина и способом его сгорания. При сгорании равного количества бензина и солярки большее количество тепла характерно для бензина. Тепло в дизельном агрегате более полноценно преобразуется в механическую энергию. Соответственно, при сжигании равного количества топлива за определенное количество времени именно дизельный мотор выполнит больше работы.
Помимо этого, нужно учитывать особенности впрыска и условия, способствующие качественному сгоранию смеси. В дизельный агрегат топливо поступает отдельно от воздуха и впрыскивается напрямую цилиндр в конце сжатия, минуя впускной коллектор. Результатом этого процесса становится температура, более высокая, чем у бензинового мотора и максимальное сгорание топливно-воздушной смеси.
Подробнее о потерях
Если сравнивать бензиновый и дизельный и ДВС, можно сказать что КПД бензинового мотора находится на более низком уровне – в пределах 20-25 %. Это обусловлено рядом причин. Если, к примеру, взять поступающее в ДВС топливо и «перевести» его в проценты, то получится как бы «100% энергии», которая передается мотору, а дальше, потери КПД:
- Топливная эффективность. Далеко не все потребляемое топливо сгорает, его большая часть уходит с отработанными газами. Потери на этом уровне составляют до 25% КПД. Сегодня, конечно, топливные системы усовершенствуются, появился инжектор, но и это не решает проблему на 100%.
- Второе – это тепловые потери. Часть тепла уходит из ДВС с выхлопными газами, кроме этого, мотор прогревает себя и ряд других элементов: свой корпус, жидкость в ДВС, радиатор. На все это приходится еще в пределах 35%.
- Третье, на что расходуется КПД – это механические потери. К ним относятся составляющие силового агрегата, где есть трение: шатуны, кольца, всякого рода поршни и т.д. Также сюда можно отнести потери, обусловленные нагрузкой от генератора, к примеру, чем больше электричества он вырабатывает, тем сильнее он притормаживает вращение коленвала. Конечно, различные смазки для ДВС играют свою роль, но все-таки полностью проблему трения они не решают, а это еще дополнительные потери до 20 % КПД.
Таким образом, в остатке КПД не более 20%. Сегодня существует бензиновые варианты, у которых показатель КПД несколько увеличен – до 25%, но, к сожалению, их не так много. К примеру, если автомобиль расходует 10 л топлива на 100 км, то всего лишь 2 л уйдут на работу двигателя, а все остальные – это потери.
Конечно, есть вариант увеличить мощность за счет расточки головки, но к нему прибегают довольно редко, поскольку это вносит определенные изменения в конструкцию ДВС.
Конструкторы постоянно стремятся увеличить КПД как бензинового, так и дизельного агрегатов. Увеличение количества выпускных/впускных клапанов, управление топливным впрыском (электронное), дроссельная заслонка, активное использование систем изменения фаз газораспределения и другие эффективные решения позволяют значительно повысить КПД. Конечно, в большей степени это относится к дизельным установкам.
С помощью таких усовершенствований современный дизель способен практически полностью сжечь дизтопливо в цилиндре, выдав максимальный показатель крутящего момента. Именно низкие обороты означают незначительные потери во время трения и возникающее в результате этого сопротивление. По этой причине дизельный двигатель является одним из производительных и экономичных, КПД которого довольно часто превышает отметку в 50%.
КПД двигателя- Отличия бензинового и дизельного двигателя
Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.
КПД парового двигателя
Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.
В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.
С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.
Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.
Чем отличаются КПД бензинового и дизельного двигателя
В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.
Читайте также… Высокие обороты двигателя на холостом ходуВ карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.
- КПД бензинового двигателя равняется 25-30 %;
- дизельного – 40 %;
- с установкой турбонаддува достигает 50 процентов соответственно.
Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.
Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.
Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.
Основные потери КПД в двигателях внутреннего сгорания происходят при:
- Неполном сгорании топлива в цилиндрах.
- Расходе тепла.
- Механических потерях.
При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.
Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.
Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.
Читайте также… Селектор АКПП — Правильное переключение передачКПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.
Интересно: Существуют некоторые методы повышения КПД бензиновых двигателей внутреннего сгорания:
- Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
- Свечи зажигания комплектуются отдельными катушками зажигания.
- Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.
От чего зависит КПД дизельного двигателя
Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:
- замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
- в то время, как дизельные – 40% соответственно;
- при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.
Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:
- Более высокий показатель степени сжатия.
- Воспламенение топлива происходит по другому принципу.
- Корпусные детали нагреваются меньше.
- Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
- В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
- Коленчатый вал дизеля раскручивается с меньшими оборотами.
В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.
КПД реактивного двигателя
Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.
Резюме
При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.
Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.
Узнаем как ой КПД дизельного двигателя? Дизельный и бензиновый двигатель
КПД дизельного двигателя представляет собой отношение мощности, которая подается на коленчатый вал, к мощности, получаемой поршнем благодаря давлению газов, образующихся при воспламенении используемого топлива.
То есть эта величина является той энергией, которая преобразовывается из тепловой или термической энергии в механическую величину.
Бензиновые двигатели обладают принудительным зажиганием воздушно-топливной смеси искрой свечи.
Типы систем питания
Карбюраторный вариант предполагает смешивание воздуха и бензина во впускном трубопроводе карбюратора. В последнее время выпуск таких вариантов двигателей существенно снижается из-за несущественной экономичности подобных двигателей, их несоответствия экологическим нормам современности.
В вариантах впрысковых двигателей подача топлива происходит с помощью одного инжектора (форсунки) в центральный трубопровод.
В случае распределительного впрыска топливо попадает внутрь двигателя несколькими инжекторами. В таком случае увеличивается максимальная мощность, что существенно увеличивает КПД дизельного двигателя.
При этом снижаются расходы бензина и токсичность обработанных газов за счет фиксированной дозировки топлива электронными системами управления автомобильным двигателем.
Рассуждая над тем, каков КПД современного дизельного двигателя, необходимо знать о системе впрыска бензиновой смеси в камеру хранения. Если подача топлива осуществляется порциями, это гарантирует работу двигателя на обедненных смесях, что помогает снижать расход топлива, уменьшать выброс в атмосферу вредных газов.
Особенности дизельных двигателей
КПД бензинового и дизельного двигателя существенно отличаются между собой. Дизели являются теми двигателями, в которых после сжатия нагретая топливно-воздушная смесь воспламеняется. Они намного экономичнее бензиновых аналогов из-за большей степени сжатия, способствующей полному сгоранию воздушно-топливной смеси.
Достоинства дизелей
КПД дизельного двигателя можно увеличить при создании сопротивления движения воздуха из-за отсутствия дроссельной заслонки, но это приводит к повышению расхода топлива.
Наибольший крутящий момент развивают дизели на небольшой частоте вращения коленчатого вала.
Устаревшие конструкции дизельных двигателей от бензиновых аналогов отличаются определенными недостатками:
- большим весом и ценой при равной мощности;
- повышенным шумом, создаваемым при сгорании топлива в цилиндрах;
- меньшими оборотами коленчатого вала, повышенными инерциальными нагрузками.
Принцип деятельности
КПД современного дизельного двигателя определяется отношением полезной работы, совершаемой двигателем, к полной работе. Почти у всех автомобильных двигателей предполагается четыре такта:
- впуск топливно-воздушной смеси;
- сжатие;
- рабочий ход;
- выпуск отработанных газов.
Эффективность дизельного двигателя
КПД дизельного двигателя в процентах составляет порядка 35-40 процентов. Учитывая, что для бензинового агрегата показатель составляет до 25 %, дизель явно лидирует.
Если воспользоваться турбонаддувом, вполне модно увеличить КПД дизельного двигателя до 53 процентов.
Несмотря на сходство типа работы, дизель справляется с поставленной перед ним задачей намного качественнее и результативнее. Так как у него меньшее сжатие, воспламенение топлива происходит по другому принципу. Он будет меньше нагреваться, в результате чего на охлаждении происходит неплохая экономия. В дизеле нет свечей и катушек зажигания, следовательно, нет необходимости тратить дополнительную энергию генератора.
Для повышения эффективности работы бензинового двигателя добавляют пару выпускных и впускных клапанов, а на каждую свечу устанавливают отдельную катушку зажигания. Для управления дроссельной заслонкой используется электрический привод.
Эффективность топлива
Расчет КПД дизельного двигателя позволяет определить целесообразность его применения.
Дизель считается одним из вариантов двигателя внутреннего сгорания, для которого характерно после сжатия воспламенение рабочей смеси.
Для того чтобы выявить суть функционирования бензинового двигателя, и то, какой КПД дизельного двигателя, проводят математические расчеты.
Потери КПД
Сгорает не все топливо, некоторая его часть теряется вместе с выхлопными газами (теряется до 25 процентов КПД). В процессе функционирования двигатель тратит часть энергии на корпус, радиаторы, жидкость. Это приводит к дополнительной потере КПД. На все места, где существует трение: кольца, шатуны, поршни, потребляется дополнительная энергия, что негативно отражается на коэффициенте полезного действия.
Вариант определения
В технической документации можно найти информацию о мощности двигателя внутреннего сгорания. После заливки в него топлива и работы на максимальных оборотах в течение нескольких минут остатки топлива сливают. Вычтя из начального объема конечный результат, вооружившись плотностью, можно посчитать массу топливной смеси.
В настоящее время максимальной эффективностью обладает электрический силовой агрегат. Его КПД может достигать 95%, что является превосходным результатом. Если первые моторы при объеме двигателя 1,6 литра развивали не больше 70 лошадиных сил, то в наши дни этот показатель доходит до 150 лошадиных сил.
КПД – величина отношения мощности, подаваемой на коленчатый вал двигателя, к величине, получаемой от сгорания газовой смеси поршнем. В зависимости от того, какое топливо используется для работы автомобильного двигателя, КПД может варьироваться в диапазоне от 20 до 85 процентов. Безусловно, производители топливных систем ищут способы их улучшения, позволяющие существенно увеличить итоговую величину двигателя внутреннего сгорания.
Для снижения механических потерь от нагрузки генератора, трения в настоящее время в промышленности используют смазки. Но, несмотря на подобные достижения, полностью справиться с силой трения пока еще не удалось никому.
Даже после усовершенствований бензинового двигателя удалось добиться изменения у него коэффициента полезного действия до 20 процентов, только в некоторых случаях удается повышать КПД до 25 %.
Более высокий показатель коэффициента полезного действия свидетельствует о топливной эффективности. К примеру, при объеме дизельного двигателя 1,6 литра в городском цикле расход топлива составляет не более 5 литров. У бензинового аналога эта величина достигает 12 л. Сам дизельный агрегат гораздо легче и компактнее, к тому же считается более экологичным вариантом, чем бензиновый двигатель.
Эти положительные технические характеристики гарантируют дизелям более продолжительный эксплуатационный срок службы.
Заключение
Помимо многочисленных плюсов, есть у него и несколько недостатков, о которых также следует упомянуть. КПД двигателя внутреннего сгорания гораздо меньше 100 процентов, к тому же агрегат не выдерживает резкого понижения температуры воздуха.
Коэффициент полезного действия представляет собой величину, которая в процентном соотношении демонстрирует результативность функционирования механизма относительно преобразования тепловой энергии в полезную работу. ДВС осуществляет подобную деятельность, осуществляя преобразование тепловой энергии. Высвобождается она в результате сгорания в цилиндрах топливной смеси. КПД дизельного мотора является фактически совершенной механической работой, состоящей из отношения энергии, полученной от сгорания топлива, и мощности, отдаваемой установкой на коленчатом валу двигателя.
Эффективность работы современного дизельного агрегата определяется множеством различных факторов. В первую очередь, необходимо отметить тепловые и механические потери, возникающие в ходе работы двигателя такого типа. Кроме того, свою долю вносит в разнообразные потери и сила трения, которая появляется при тесном соприкосновении этих многочисленных деталей.
Основная часть расходуемой полезной энергии приходится на приведение в движение поршня, вращение внутри мотора различных деталей. Более 60 процентов сгорающего топлива требуется для обеспечения работы всех узлов автомобильного двигателя. При дополнительных потерях появляются существенные проблемы с дееспособностью навесного оборудования, разнообразных систем, механизмов.
Благодаря модернизации системы впрыска удалось внести позитивные изменения в значение коэффициента полезного действия, минимизировать потери.
Повышаем КПД генератора
Подавляющее большинство электрических генераторов, используемых как в быту, так и в промышленных целях, работают за счёт энергии двигателя внутреннего сгорания, в качестве топлива в котором используются бензин, дизельное топливо или газ. С момента изобретения двигателя внутреннего сгорания прошло уже полторы сотни лет, но превращение сгорающего топлива в энергию по-прежнему остаётся самым эффективным способом её получения. Но на фоне всех достоинств ДВС выделяется главный его недостаток – низкий КПД и высокие потери энергии.
В среднем при использовании двигателя внутреннего сгорания на выходе можно получить лишь 20% энергии, тогда как её потери, соответственно, составляют до 80%. В эти 80% входят следующие потери:
· Потери топлива. Поршневые двигатели (как бензиновые, так и дизельные) сжигают лишь 75% всего топлива, а оставшиеся 25% в виде паров топлива вместе с продуктами его сгорания выходят через выхлопную трубу. В двухтактных двигателях топливная эффективность ещё ниже.
· Потери тепла. Современные двигатели внутреннего сгорания используют порядка 35-40% вырабатываемого тепла, а остальные 60-65% выбрасываются в окружающую среду через выхлопные газы и систему охлаждения.
· Потери механической мощности. До 10% мощности двигателя уходит на трение движущихся частей и на привод вспомогательных механизмов. Для электрогенераторов этот показатель ещё выше.
Таким образом, КПД самого эффективного двигателя внутреннего сгорания не превышает 30%. Чтобы добиться от дизельного или бензинового двигателя максимальной эффективности, необходимо воздействовать на все три типа потерь. Самостоятельно повысить КПД генератора достаточно сложно, но в руках профессионала ваш двигатель может обрести небывалую эффективность, которая достигается следующими способами:
· Внедрение дожигателя. Этот способ направлен на повышение топливной эффективности. Дожигатель преобразует неиспользованные пары топлива и продукты неполного его сгорания в топливно-воздушную смесь и отправляет её на повторное сгорание. Таким образом, удаётся добиться почти полного сгорания топлива и на 10-15% повысить общий КПД двигателя.
· Возврат части тепловых потерь.
· Использование тепла высокотемпературных продуктов сгорания для обогрева прилегающей территории или нагрева пара в парогазовой электростанции. Это не повышает КПД двигателя напрямую, но позволяет уменьшить расход энергии на работу сопутствующих устройств.
· Введение системы впрыска с регулируемой подачей воды позволяет сократить расход топлива.
· Снизить механические потери двигателя поможет использование менее вязкого смазочного материала.
Комплексное применение способов повышения эффективности двигателя может увеличить его КПД на 30-35%, то есть, в два раза и даже больше.
Повышение кпд двигателя внутреннего сгорания
КПД двигателя: как на него влияет конструкция, питание, топливо?
Нет в мире более бесполезной штуки, чем личный автомобиль. Подобное утверждение звучит очень странно от автомобильного энтузиаста, который к тому же десять лет проработал журналистом, но это действительно так! Не поймите неправильно, я не спорю с тем, что личный автомобиль полезен в хозяйстве: я говорю немножко о другом. А именно: автомобиль – это перевод ресурсов. Без вариантов. А все из-за врожденно низкого коэффициента полезного действия двигателя.
Наверняка вы помните цифры КПД двигателя внутреннего сгорания из школьной программы: это примерно 20-30%. Иными словами, только 20-30% энергии, выделяемой при сгорании топлива, конвертируется в мощность! Если еще учесть трансмиссионные потери (а заодно и механический КПД двигателя – этим термином обозначают энергию, которая завязла во вспомогательных агрегатах), то «косвенный» КПД двигателя внутреннего сгорания – то есть та энергия, которая перемещает автомобиль – и того ниже! Остальная энергия уходит, по сути, на нагрев атмосферы: это – тепло, выделяемое выпускной системой и радиатором охлаждения. То и другое автопроизводители стремятся применять с пользой: например, автомобильная печка использует тепло двигателя для нагрева кабины. А вот выхлопные газы… Ну, они – ключевой элемент в самом изящном «лайф-хаке», используемом автопроизводителями для повышения КПД двигателя. Имя этого «лайф-хака» – турбонаддув.
Идея турбонаддува заключается в том, чтобы использовать «бесполезные» отработавшие газы для повышения КПД двигателя внутреннего сгорания. Энтузиастам, которые плотно соприкасаются с этой темой, прекрасно известен принцип действия турбонаддува: отработавшие газы раскручивают турбину, которая механически соединена с центробежным компрессором – вот он уже под большим давлением (от 0,5 и вплоть до трех баров) гонит воздух в цилиндры. Массовое применение турбонаддува началось в Японии в 80-90-е годы прошлого века. Сегодня тенденцию подхватила еще и Европа: большинство современных машин из Старого Света оснащено турбонаддувом. Вкупе с высокоточным непосредственным впрыском топлива, который позволяет каждую каплю горючего применять с пользой, это позволило добиться роста КПД двигателей по экспоненте: даже скромные 1,6-литровые двигатели нынче выдают около 200 сил!
КПД дизельных двигателей – отдельная история. Приведенные несколькими абзацами ранее цифры в 20-30% — это усредненный КПД бензинового двигателя. Современные дизельные двигатели – не чета старым тракторным моторам: в них используется высокоточный впрыск под большим давлением, хитрый турбонаддув с изменяемой геометрией, поэтому по мощности они уже не уступают своим бензиновым собратьям. Кстати, о турбонаддуве с изменяемой геометрией: его чаще используют именно в дизельных двигателях, поскольку для изготовления подобных турбин для бензиновых моторов требуются дорогие сплавы. Почему? Все дело в температуре горения: в дизельных двигателях она значительно (на несколько сотен градусов) ниже! КПД двигателя в таком случае выше уже по одной этой причине: меньше энергии превращается в бесполезное тепло! Как следствие – полезного тепла тоже меньше: все знают, что дизельные двигатели (а вместе с ней – печка в салоне) дольше нагреваются… Что касается конкретных цифр КПД двигателей внутреннего сгорания, работающих на дизельном топливе, то некоторые источники говорят о 40%. Разница по сравнению с бензиновыми двигателями значительная! С учетом более скромного расхода топлива, а также более низкой температуры горения «солярки», такие показатели выглядят вполне правдоподобно.
Разговор о КПД двигателя автомобиля не был бы полным без упоминания роторно-поршневых силовых агрегатов. Из всех моторов, широко применяемых в автомобильной промышленности, именно они – двигатели с максимальной КПД. Не надо быть ученым, чтобы это понять, достаточно вооружиться здравым смыслом: если у обычного четырехтактного двигателя внутреннего сгорания за два оборота коленвала происходит один мощностной такт, то в роторном двигателе за один оборот происходит аж три вспышки топлива! У такого двигателя КПД равен примерно 45 процентам. Почему же такие моторы не получили широкого применения, и кроме как в спортивных «Маздах» мы их больше нигде не видим? Простой ответ – грязный выхлоп: КПД у таких двигателей выше, мощность – больше, но и вредных выбросов тоже много. Поэтому от них даже Mazda – и та отказалась… КПД двигателя – вопрос не только его конструкции: не меньшее значение имеет еще и топливо, которое в нем используется.
Данная статья размещена на сайте Econcar, поэтому было бы очень странно, если бы в ней не был упомянут энергетик для моторов: как и полагается, его применение способствует повышению КПД двигателя внутреннего сгорания, за счет снижения температуры горения, не говоря уже о том, что в его присутствии топлива в цилиндрах сгорает больше, чем без него.
Пётр Максимов, специально для www.econcar.ru
Каков КПД автомобиля?. Удивительная механика
Каков КПД автомобиля?
Да простит меня читатель, если я задам ему детский вопрос: каков КПД у автомобильного двигателя? «Совсем профессор от жизни отстал», – скорее всего подумает он и ответит, что из учебника физики следует: КПД бензинового двигателя достигает примерно 25 %, а дизельного – приближается к 40 %.
А может, не будем верить печатному слову, а лучше убедимся в этом сами. Заправим бак топливом «по горлышко» и проедем по городу, разумеется, без происшествий и «пробок», 100 км. А затем дольем бак из мерного сосуда снова до прежнего уровня. Если ваш автомобиль весит около тонны и работает на бензине, то долить придется в среднем около 10 л; для автомобиля той же массы с дизельным двигателем потребуется примерно 7 л солярки. Так как научные расчеты производятся не в литрах, даже не в поллитрах, а в килограммах, то для бензина, с учетом его плотности, это составит 7 кг, а для солярки – чуть больше 5 кг. При сжигании эти килограммы топлива выделят (можете проверить по справочнику!) 323 и 250 МДж энергии, соответственно. А затратит ваш автомобиль при движении со скоростью 50—60 км/ч (и это еще хорошо для города!) в среднем 25 МДж, о чем мы уже говорили выше. Поделим эту полезную работу на затраченную энергию и получим КПД для бензинового двигателя 7-8 %, а для дизеля – 10 %. Вот вам теория – 25 и 40 %, а вот суровая правда жизни – 7,5 и 10 %! Конечно, кое-что теряется и в трансмиссии, но это крохи по сравнению с потерями в двигателе.
Так что ж, врут авторы учебников? Нет, не врут, но лукавят. Тот КПД, что в них указан, относится к одному единственному режиму работы, называемому оптимальным.
Зависимость КПД двигателя внутреннего сгорания от мощности
А как, собственно, в научных институтах получают этот расход топлива? Испытуемый двигатель (не будем уточнять: оснащенный дополнительными системами – вентилятором, компрессором, генератором и т. д. или нет) устанавливают на специальный стенд, где его нагружают сопротивлениями, попросту – тормозят. Изменяют подачу топлива, момент сопротивления, частоту вращения, ведут строгий учет расхода топлива. Зная момент сопротивления и частоту вращения, можно определить мощность, а умножая эту мощность на время, получить работу в киловатт-часах. Правильнее, конечно, было бы выразить ее в джоулях. Так вот – 1 кВт·ч равен 3,6 МДж. Теперь, зная расход топлива в килограммах, можем отнести его к произведенной двигателем работе и получить так называемый удельный расход топлива. Чем современнее двигатель, тем меньше удельный расход топлива при наибольшей мощности и тем больше его КПД. Вот откуда эти 25 и 40 %!
А какова мощность, расходуемая двигателем при движении автомобиля со средней скоростью 50—60 км/ч? Оказывается, для оговоренной массы автомобиля она составляет около 4 кВт. Трудно в это поверить, но автомобиль с двигателем около 100 кВт тратит при этой скорости всего 4 % мощности. И какой КПД вы еще хотите получить при этом? Особенно с учетом привода от двигателя множества всяких дополнительных агрегатов.
Что же делать? Если попробовать ехать на нашем автомобиле при оптимальном режиме работы двигателя, то это составит около 180 км/ч, что не всегда нужно. Да и, честно говоря, при такой скорости почти все топливо уйдет на взбалтывание воздуха, или, по-научному, на аэродинамические потери.
Можно пойти по другому пути, поставив на наш автомобиль двигатель мощностью 5 кВт, то есть в 20 раз меньшей мощности. Тогда при скорости 60—70 км/ч наш автомобиль покажет рекордную экономичность, а двигатель – именно тот КПД, что указан в учебниках. Но, увы, такая скорость движения никого не устроит, не говоря уже о том, что разгоняться наш автомобиль будет медленнее товарного поезда.
Как же разрешить это противоречие, неужели никто об этом раньше не думал? Да нет же, думали. Уже чуть ли не полвека прошло с тех пор, как была предложена концепция так называемого «гибридного» силового агрегата. Предлагалось включать двигатель только при оптимальном режиме, чтобы запасать выработанную им «экономичную», а к тому же и «экологичную» энергию в накопителе, и выключать двигатель, когда он переполняется энергией (пусть отдохнет!), то есть использовать для движения автомобиля именно эту, самую дешевую и чистую энергию!
На заре автомобилизма и даже гораздо позже, в 50-е годы прошлого века, у нас в стране, когда дороги были не так загружены, эту энергию накапливали в самой массе автомобиля. Делалось это так: автомобиль разгоняли примерно до 80 км/ч почти на полной мощности двигателя, а следовательно, и при максимальном КПД. После этого двигатель выключали, а коробку передач ставили в нейтраль. На автомобилях тех лет делать это еще разрешалось. И автомобиль шел с неработающим двигателем и отключенной трансмиссией накатом чуть ли не целый километр, пока скорость не падала ниже 30 км/ч. Затем опять включалась трансмиссия, запускался двигатель и разгон повторялся. И так автомобиль ехал всю дорогу.
Такое движение по научному называется «регулярным импульсивным циклом». Благодаря этому циклу передовые водители-«стахановцы» тех лет экономили до 30 % топлива. При этом энергия двигателя, работающего почти в оптимальном режиме, накапливалась в массе самого автомобиля, как в аккумуляторе, и шла она на движение автомобиля накатом. Конечно же, никакой регулировки скорости движения такого автомобиля-накопителя произвести было невозможно. Его трансмиссия была отключена, разогнанный автомобиль был накопителем и потребителем собственной энергии. Как если бы поставить раскрученное колесо или маховик на ребро и дать ему возможность свободно катиться.
Конечно же, не это было моей целью. Автомобиль должен нести в себе накопленную кинетическую энергию, но при этом быть управляемым, причем лучше всего, чтобы скорость изменялась плавно и бесступенчато, а для этого нужен вариатор.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес3 Возможности повышения эффективного кпд поршневых двс
1. Возможности повышения эффективного кпд поршневых двс
На экономичность двигателя оказывает воздействие большое количество факторов. В данном разделе мы рассмотрим лишь те из них, которые связаны с одним из наиболее ответственных элементов рабочего процесса двигателя – подводом теплоты в цикле. Именно он в основном и определяет пути совершенствования поршневого ДВС согласно требованиям, обозначенным в предыдущем разделе. В ДВС подвод тепла осуществляется, в основном путем сжигания углеводородных топлив в воздухе.
Эталоном совершенства тепловой машины, к которым относятся и поршневые двигатели внутреннего сгорания, является тепловая машина, в которой реализуется цикл Карно. Как известно, КПД этого цикла зависит от температуры горячего источника Т1 и температуры холодильника Т2:
.
Практическая реализация этого цикла затруднена, что объясняется целым рядом факторов, главными из которых являются:
1. Сложность осуществления изотермических подвода и отвода теплоты.
2. Современные конструкционные материалы имеют предел по температурному режиму, что ограничивает допустимую максимальную температуру цикла. Если учесть, что КПД цикла Карно максимально в сравнении с другими циклами лишь при условии одинаковых температурных диапазонов в цикле, то в реальных условиях при заданных материалах другие циклы могут иметь более высокую максимальную температуру вследствие значительно меньшего времени воздействия ее на стенки рабочей камеры.
Представляет интерес сравнение КПД цикла Карно с циклами, реализуемыми в современных поршневых ДВС. Условия сравнения должны быть следующими:
1. Так как в современных ДВС в качестве окислителя используется кислород атмосферы, то в циклах должна быть общая начальная точка цикла, соответствующая параметрам окружающей среды.
Рекомендуемые файлы
2. В связи с тем, что основной схемой двигателя является поршневой двигатель с жестким кривошипно – шатунным механизмом, необходимо сравнивать эти циклы при одинаковой степени сжатия.
Рис. 1.1. Термодинамические циклы поршневого ДВС: Vz – изохора минимального объема; Va – изохора максимального объема; а – общая начальная точка циклов, соответствующая параметрам окружающей среды, с – точка конца сжатия для различных циклов; z – точка конца подвода теплоты для различных циклов
Если рассмотреть эти циклы в T-S координатах, то видно, что лишь при количестве тепла подведенном в цикле стремящемся к нулю, КПД цикла Карно и КПД с подводом теплоты при р = const становятся равными КПД цикла с изохорным подводом теплоты. Поэтому при указанных выше ограничениях более эффективен цикл с подводом тепла при постоянном объеме. Однако на практике, сокращать продолжительность меньше 40 – 50 градусов угла п.к.в. нецелесообразно ввиду сильного роста механической и тепловой нагрузки на двигатель. Таким образом, 40 – 50 град. является оптимальной продолжительностью сгорания.
Известно, что увеличение степени сжатия и показателя адиабаты рабочего тела приводит к однозначному росту термического КПД цикла. Для цикла с подводом теплоты при постоянном объеме термический КПД определяется по формуле:
.
Ниже приведены примерные значения показателя адиабаты для идеального газа: одноатомного – 1,67; двухатомного – 1,4; трех- и многоатомного – 1,29. Отсюда, нетрудно вычислить прирост термического КПД при переходе рабочего тела от трехатомной структуры к двухатомной. К двухатомным молекулам принадлежат кислород и азот, к трехатомным – продукты полного сгорания – углекислый газ и вода. Таким образом, все мероприятия, которые направлены на сокращение коэффициента остаточных газов в рабочей камере будут приводить к росту КПД. Это означает, что с точки зрения термического КПД необходимо стремиться к повышению коэффициента наполнения на режимах близких к полной нагрузке и к обеднению смеси, а, следовательно, отказу от дросселирования на частичных нагрузках.
Характер изменения индикаторного и эффективного КПД в зависимости от степени сжатия и способа регулирования нагрузки более сложен. На рис. 1.2 представлены характерные зависимости эффективного КПД безнаддувного четырехтактного двигателя с качественным регулированием нагрузки от степени сжатия при различных нагрузках, полученные при частоте вращения коленчатого вала, соответствующей максимальному крутящему моменту. Продолжительность сгорания – 80 град. п.к.в. Видно, что повышение степени сжатия выше определенного значения приводит к падению эффективного КПД двигателя. Это обусловлено двумя основными причинами. Во-первых, увеличением механических потерь (рис. 1.3), поскольку с повышением степени сжатия растет давление газов в цилиндре двигателя (рис.1. 4). При увеличении коэффициента избытка воздуха относительная доля механических потерь возрастает, соответственно снижается значение степени сжатия, соответствующее максимальному эффективному КПД.
Во-вторых, повышение степени сжатия при неизменной продолжительности сгорания влечёт большее отклонение от изохорного подвода теплоты. Это легко понять, если ввести условную величину:
где
∆Vh – часть рабочего объёма двигателя, на которую распространяется процесс теплоподвода. При изохорном подводе теплоты (∆Vh=0) это выражение переходит в известное выражение для степени сжатия (расширения):
Отношение этих величин характеризует отклонение от изохорности подвода теплоты в зависимости от объема камеры сгорания:
Видно, что с уменьшением объема камеры сгорания, а, следовательно, с увеличением степени сжатия, отклонение от изохорности при постоянной продолжительности теплоподвода увеличивается. Как следствие, с повышением степени сжатия (при неизменной продолжительности сгорания) индикаторный КПД будет расти гораздо медленнее термического и, при определённых условиях, даже снижаться (рис. 1.3). По этой же причине практически не увеличиваются максимальные значения температуры цикла (рис. 1.4). При меньшей продолжительности сгорания рост индикаторного КПД будет продолжаться до более высоких значений степени сжатия.
Таким образом, варьирование степени сжатия в диапазоне от 12,5 до 20 практически не влияет на эффективный КПД двигателя на полной нагрузке. Если учесть, что большинство транспортных двигателей эксплуатируется на частичных режимах (меньше половины максимальной мощности) до 50 – 70% общего времени, а на режимах холостого хода до 40%, то можно констатировать, что снижение степени сжатия до значений 12,5 — 15 не повлечёт ухудшения экономичности. При этом уровень нагрузок на элементы двигателя (рис. 1.4) значительно уменьшится (до 30%).
К тому же высокие степени сжатия приводят к необходимости увеличения массы и габаритов двигателя, что в условиях применения его в автомобилях и тракторах, как правило, приводит к увеличению расхода топлива, а также – к перерасходу материалов и энергии при производстве, как двигателей, так и агрегатов, на которые они устанавливаются.
Рис.1.2. Зависимость эффективного КПД от степени сжатия при различных нагрузках
Рис.1.3. Зависимость механического (hm) и индикаторного (hi) КПД от степени сжатия при различных нагрузках
Рис. 1.4. Зависимости максимального давления и максимальной температуры цикла от степени сжатия.
На рис. 1.5 представлены характерные зависимости показателей четырехтактного двигателя от коэффициента избытка воздуха, полученные на режиме близком к холостому ходу (обороты двигателя n = 1000 об/мин и цикловая доза топлива постоянны). Рост эффективной мощности четырехтактного двигателя с увеличением коэффициента избытка воздуха объясняется ростом индикаторного КПД, а соответственно и индикаторной мощности, и снижением насосных потерь. В расчетах мощность насосных потерь включена в индикаторную мощность. Поэтому кривая 2 есть результат суммирования их влияний. Мощность механических потерь состоит только из потерь на трение. Увеличение с ростом коэффициента избытка воздуха индикаторного КПД является следствием относительного уменьшения количества продуктов сгорания, содержащих в основном трехатомные компоненты, которые обладают более высокой теплоемкостью.
На рис. 1.6 представлены зависимости показателей двухтактного двигателя с кривошипно-камерной продувкой от коэффициента избытка воздуха, полученные на режиме, близком к холостому ходу (обороты двигателя n = 2000 об/мин и цикловая доза топлива постоянны). Зависимость 2 на этом рисунке представляет собой, как и в случае с четырехтактным двигателем индикаторную мощность за вычетом мощности, затрачиваемой на насосные ходы двигателя. Поэтому мощность механических потерь определяется только потерями на трение.
Рис.1.5. Распределение мощностей при работе двигателя на режиме близком к холостому ходу: 1 – эффективная мощность; 2 – индикаторная мощность; 3 – мощность механических потерь; 4 – мощность насосных потерь двигателя
В случае двухтактного двигателя с кривошипно-камерной продувкой рост индикаторной мощности с увеличением коэффициента избытка воздуха практически компенсируется соответствующим ростом насосных потерь, что наряду с увеличением мощности механических потерь приводит к тому, что эффективная мощность изменяется меньше, чем в четырехтактном ДВС. Следовательно, менее значительно будет меняться и расход топлива.
Дросселирование на впуске вызывает рост относительного количества остаточных газов. Разбавление смеси остаточными газами может создать в цилиндре двигателя такие условия, когда воспламенение смеси или вообще прекращается, или сгорание развивается вяло. Отсюда вытекает необходимость обогащения смеси по мере дросселирования, поскольку максимумы скоростей воспламенения и распространения пламени лежат в области богатых смесей. Это приводит к выбросу в атмосферу продуктов неполного сгорания и перерасходу топлива. Поэтому, на практике, при переходе с количественного регулирования нагрузки двухтактного ДВС на качественное, выигрыш в топливной экономичности, видимо, будет более значительным.
Рис. 1.6. Зависимости показателей двигателя от коэффициента
избытка воздуха; режим, близкий к холостому ходу:
1 – эффективная мощность; 2 – индикаторная мощность; 3 – мощность механических потерь; 4 – мощность насосных потерь двигателя
Таким образом, как для двухтактных, так и четырехтактных двигателей в безнаддувном исполнении для повышения эффективного КПД необходимо, чтобы рабочий процесс позволял реализовать следующие основные требования:
1. Подвод теплоты в цикле, близкий к изохорному (40 – 50 град.пкв).
2. Отсутствие ограничений по степени сжатия (оптимальная находится в диапазоне 12 – 15).
3. Качественное регулирование – работа в широком диапазоне изменения коэффициента избытка воздуха (1 – 6).
4. Учитывая, что двигатели находятся в составе автомобилей, экономичность которых также зависит от массы и размеров, необходимо добавить требование высокой удельной мощности, которая зависит и от частоты вращения. Как показала практика, достаточным диапазоном эксплуатации по целому ряду причин является диапазон, реализованный в современных двигателях с искровым воспламенением.
Необходимо упомянуть еще об одном требовании к рабочему процессу поршневого ДВС, которое, по всей видимости, в будущем может стать определяющим.
Массовое использование ископаемых источников сырья для производства моторных топлив привело к истощению углеводородных ресурсов. В свете надвигающегося глобального топливного кризиса многие ведущие научно-исследовательские организации и предприятия энергетической отрасли мира ведут широкомасштабные исследования по предотвращению его возможных негативных последствий. Анализ современных подходов позволил выделить два лидирующих направления в этом вопросе:
1. Увеличение энергоэффективности использования ископаемых топливных ресурсов
2. Замена современных товарных топлив на возобновляемые альтернативные топлива.
В современных условиях вопрос увеличения эффективности производства механической энергии не может быть решён без рассмотрения полного цикла производства и потребления топлива, что может быть описано системой «перерабатывающий завод – топливо – двигатель». С такой позиции можно установить взаимосвязь между эффективностью производства топлива и эффективностью его сжигания в традиционном поршневом ДВС. Так, например, увеличение коэффициента полезного действия бензинового двигателя обеспечивается за счёт повышения степени сжатия, что, в свою очередь, требует увеличения детонационной стойкости топлива, и, следовательно, существенное увеличение энергозатрат, усложнение производства и увеличение стоимости топлива.
Принципиальным решением этого вопроса могло бы стать использование нефтяных топлив широкого фракционного состава, что, по оценкам специалистов, должно значительно повысить эффективность переработки сырья за счёт отказа от дорогостоящих методов нефтепереработки, снижения требований к перерабатывающему оборудованию и экономии углеводородного сырья. Однако, традиционные типы поршневых двигателей не способны функционировать на таком топливе.
Осуществление второго пункта также имеет некоторые особенности. По данным ведущих двигателестроительных фирм мира, одним из наиболее предпочтительных альтернативных топлив, способным частично, а в перспективе и полностью, заменить традиционные нефтяные топлива, являются спирты, произведенные из лигноцеллюлозного сырья, в том числе биоэтанол. Объясняется это практически неисчерпаемой сырьевой базой (при производстве из органического сырья и отходов), простотой производства и хранения.
Тем не менее, как и в случае с традиционными топливами, анализ системы «перерабатывающий завод – топливо – двигатель» даёт более полное представление о перспективах внедрения этанола. В традиционных поршневых двигателях можно использовать только обезвоженный этанол (содержание воды менее 1%) ввиду необходимости добавления бензина, что объясняется низкой испаряемостью и, как следствие низкими пусковыми свойствами этанола. При этом производство обезвоженного этанола значительно дороже обводненного – примерно в полтора-два раза. И если для производства обезвоженного этанола требуется специальное высокоорганизованное производство, то обводненный этанол можно производить, в том числе, и в условиях крупного сельскохозяйственного предприятия из отходов обычных посевных культур, без высоких требований к квалификации обслуживающего персонала.
В то же время, добавление в рабочую камеру двигателя воды является наиболее перспективным способом понижения токсичности отработавших газов. Этанол является наилучшим топливом, с точки зрения добавления воды, поскольку он образует с водой устойчивые смеси, а с товарными топливами вода не смешивается. Применение обводнённого этанола в качестве топлива для поршневого ДВС позволило бы одновременно радикально улучшить экологические характеристики двигателя, решить проблемы исчерпания источников углеводородного сырья и роста количества парниковых газов в атмосфере. Тем не менее, как уже отмечалось выше, воспламенять и сжигать обводнённый этанол в традиционных поршневых двигателях не представляется возможным.
Таким образом, как в случае с нефтяными топливами, так и в случае с альтернативными топливами производители вынуждены идти на компромисс между эффективностью производства топлива и эффективностью двигателя, функционирующего на этом топливе.
Обобщая вышесказанное, необходимо ещё раз отметить, что в современных условиях вопрос увеличения КПД производства механической энергии не может быть решён без рассмотрения полного цикла производства и потребления топлива. Анализ системы «перерабатывающий завод – топливо – двигатель» показывает, что существенного результата в этом вопросе можно добиться, если обеспечить эффективную работу поршневого двигателя внутреннего сгорания на дешёвых и простых в изготовлении видах топлива.
Таким образом, еще одним требованием к рабочему процессу является возможность работы:
1. на любых современных товарных топливах (от дизельного топлива до высокооктановых бензинов;
2. на водных растворах этанола.
Рабочий процесс, реализующий все эти требования, обеспечит широкое применение нефтяных топлив широкого фракционного состава и водных растворов этанола в качестве моторного топлива и, одновременно, объединит лучшие качества дизелей и бензиновых двигателей. Широкое внедрение двигателя с таким рабочим процессом позволит добиться существенного повышения эффективности производства топлив без ухудшения эффективности самого двигателя, что означает повышение энергоэффективности всей системы «перерабатывающий завод – топливо – двигатель». С экономической точки зрения необходимо также, чтобы рабочий процесс реализовывался на базе традиционного поршневого ДВС, т.е. имелась возможность конвертирования традиционных поршневых двигателей (в том числе уже эксплуатируемых).
Традиционные бензиновые двигатели имеют к моменту воспламенения уже подготовленную, близкую к однородной, смесь. Это условие налагает два ограничения:
1. по максимальной (вблизи 10) степени сжатия, т.к. в однородных смесях при повышенных степенях сжатия возникает детонация,
2. по максимальному обеднению топливовоздушной смеси, т.к. в однородных смесях бедный концентрационный предел искрового воспламенения близок к составу с a » 1.
Эти же ограничения практически исключают возможность реализации работы на низкооктановых топливах. С другой стороны однородная стехиометрическая смесь, в сочетании с искровым воспламенением позволяют реализовать высокую удельную мощность.
Дизели имеют к моменту самовоспламенения неоднородную смесь, что позволяет реализовать качественное регулирование и бездетонационное сгорание. Однако снижение степени сжатия в быстроходных безнаддувных модификациях до вышеуказанного оптимального диапазона приводит к ухудшению процессов воспламенения и сгорания (будет рассмотрено в последующих разделах).
Дизели позволяют осуществить многотопливный цикл при высоких степенях сжатия (более 20). Повышенные значения максимального давления и жесткости сгорания цикла при высоких степенях сжатия определяют высокие нагрузки на детали цилиндропоршневой группы, что приводит к увеличению механических потерь и требует более прочной конструкции двигателя. При использовании топлив с низкими цетановыми числами (например, бензинов) указанные явления усиливаются, поэтому время работы дизеля на резервных топливах по техническим условиям не превышает 10% от общего ресурса двигателя. Снижение степени сжатия в дизелях до уровня 12 – 15 позволило бы снизить массу и габариты двигателя без увеличения расхода топлива. Однако в традиционном дизеле снижение степени сжатия менее 15 приводит к ухудшению смесеобразования, воспламенения и сгорания.
В связи с ограничениями по максимальной частоте вращения и минимальному значению коэффициента избытка воздуха дизели имеют низкую, относительно поршневых ДВС с искровым воспламенением, литровую мощность. Вес и габариты дизеля из-за высоких степеней сжатия достаточно большие. Соответственно, остается относительно низкой удельная мощность, что в условиях применения его в автомобилях и тракторах, как правило, приводит к увеличению расхода топлива, а также приводит к перерасходу материалов и энергии при производстве, как двигателей, так и агрегатов, на которые они устанавливаются.
Решение вышеперечисленных задач выдвигает ряд проблем смесеобразования, воспламенения и сгорания, которые необходимо разрешить в целях достижения высоких экологических и экономических показателей как двигателя, так и системы «перерабатывающий завод – топливо – двигатель» в целом.
Вопросы для самоконтроля
1. Цикл Карно. Причины отсутствия практической реализации цикла Карно.
2. Обоснуйте преимущества цикла двигателя с изохорным подводом теплоты. При каких условиях они справедливы. Причины необходимости увеличения продолжительности теплоподвода до 40 –50 град. угла пкв.
3. Каково влияние продолжительности теплоподвода на КПД? Как влияет на КПД величина теплоподвода?
4. Объясните причины влияния свойств рабочего тела на КПД двигателя.
Вам также может быть полезна лекция «6 Гигиенические регламенты применения добавок, улучшающих внешний вид пищевых продуктов».
5. Назовите способы регулирования мощности в поршневых ДВС, их суть. В каких типах поршневых двигателей они применяются?
6. Охарактеризуйте поведение индикаторного КПД в зависимости от степени сжатия. Как влияют на него свойства рабочего тела, скоростной режим двигателя?
7. Как изменяется зависимость индикаторного КПД от степени сжатия при различных нагрузках. Влияет ли способ регулирования мощности на их протекание?
8. Охарактеризуйте поведение эффективного КПД в зависимости от степени сжатия. Как влияют на него свойства рабочего тела, нагрузка, способ регулирования, скоростной режим двигателя?
9. Объясните причины влияния способа регулирования мощности на эффективный КПД двигателя. Влияет ли способ регулирования мощности на КПД при полной нагрузке?
10. Охарактеризуйте зависимость степени сжатия, соответствующей максимальному эффективному КПД, от нагрузки при качественном регулировании мощности.
Бензиновый двигатель Toyota достигает теплового КПД 38 процентов
Большинство двигателей внутреннего сгорания невероятно неэффективны в преобразовании сожженного топлива в полезную энергию.
Эффективность, с которой они это делают, измеряется с точки зрения «термического КПД», и большинство бензиновых двигателей внутреннего сгорания в среднем имеют тепловой КПД около 20 процентов. Дизели, как правило, выше, в некоторых случаях приближаясь к 40 процентам.
Компания Toyota разработала новый бензиновый двигатель, который, как утверждается, имеет максимальный тепловой КПД 38 процентов, что выше, чем у любого другого серийного двигателя внутреннего сгорания.
Новые агрегаты объемом 1,0 и 1,3 литра должны обеспечивать на 10-15% большую экономию по сравнению с их существующими эквивалентами.
Toyota применила несколько знакомых технологий в своих двигателях для достижения такого уровня эффективности.
Одним из них является тот же цикл сгорания, который используется в гибридных моделях фирмы — цикл Аткинсона.
Используемые на 1,3-литровом агрегате двигатели с циклом Аткинсона обычно имеют регулируемые фазы газораспределения, что позволяет впускным клапанам оставаться открытыми в начале такта сжатия.Более низкая плотность воздуха приводит к более эффективному сжиганию топлива и более высокому тепловому КПД.
Как правило, двигателям не хватает мощности по сравнению с обычными двигателями с циклом Отто, что компенсируется в гибридах дополнительной мощностью электродвигателя.
БОЛЬШЕ: Toyota Prius 2015 года: следующий гибрид нацелен на 55 миль на галлон, больше места, лучшая управляемость
В 1,3-литровом двигателе степень сжатия 13,5 компенсирует часть потерянной компрессии за цикл двигателя — теоретически двигатель должен работать так же, как обычный 1.3-х литровый агрегат.
Модернизированные впускные каналы, регулируемые фазы газораспределения и рециркуляция охлажденных выхлопных газов также используются для повышения эффективности двигателя.
В 1,0-литровом агрегате, разработанном совместно с Daihatsu, японским партнером Toyota, аналогичные технологии двигателя (на этот раз без цикла Аткинсона) обеспечивают 37-процентный тепловой КПД.
Тем не менее, благодаря использованию технологии «стоп-старт» новый двигатель на 30 процентов эффективнее эквивалентных 1,0-литровых двигателей в японском испытательном цикле JC08, ориентированном на город.
Toyota не подтвердила, в каких автомобилях будут использоваться новые двигатели, а также в том, будет ли какая-либо силовая установка поступать в США. Вполне вероятно, что несколько автомобилей японского рынка и отдельные модели, такие как Yaris и Aygo, продаваемые за рубежом, в конечном итоге выиграют от этих агрегатов.
Это показывает, что в обычных бензиновых двигателях есть еще много возможностей для улучшения.
Обычные двигатели внутреннего сгорания будут оставаться доминирующими в дорожном транспорте, по крайней мере, в течение следующих нескольких десятилетий, поэтому любые усилия по их улучшению за это время заслуживают одобрения.
_________________________________________
Подписывайтесь на GreenCarReports в Facebook, Twitter и Google+
Насколько эффективны двигатели: термодинамика и эффективность сгорания
Насколько эффективны двигатели? Двигатели внутреннего сгорания ошеломляюще неэффективны. Большинство дизельных двигателей не имеют даже 50-процентного теплового КПД. Из каждого галлона дизельного топлива, сжигаемого двигателем внутреннего сгорания, менее половины вырабатываемой энергии становится механической энергией. Другими словами, из энергии, производимой дизельным двигателем в пикапе, например, менее половины произведенной энергии фактически толкает пикап по дороге.
А автомобили с бензиновым двигателем еще более неэффективны, значительно более неэффективны.
Хотя может показаться, что транспортное средство, которое преобразует только 50% тепловой энергии, вырабатываемой при сгорании, в механическую энергию, чрезвычайно неэффективно, многие транспортные средства на дороге фактически тратят впустую около 80% энергии, вырабатываемой при сгорании топлива. Бензиновые двигатели часто выбрасывают более 80% произведенной энергии через выхлопную трубу или отдают эту энергию в окружающую среду вокруг двигателя.
Причины, по которым двигатели внутреннего сгорания настолько неэффективны, являются следствием законов термодинамики. Термодинамика определяет тепловой КПД — или неэффективность — двигателя внутреннего сгорания.
«Двигатели внутреннего сгорания производят механическую работу (мощность) за счет сжигания топлива. В процессе сгорания топливо окисляется (сгорает). Этот термодинамический процесс высвобождает тепло, которое частично преобразуется в механическую энергию», — сообщает X-Engineer.org. Но большая часть произведенной энергии теряется.Большая часть энергии, вырабатываемой двигателем внутреннего сгорания, тратится впустую.
В то время как даже краткое объяснение того, почему двигатели внутреннего сгорания обязательно требуют несколько длинного объяснения термодинамики, объяснение длины Твиттера легко понять: разница в температуре между сгоранием топлива, двигателем и воздухом снаружи двигателя определяет тепловой КПД — т.е. неэффективность двигателя внутреннего сгорания.
Что такое тепловой КПД и каковы законы термодинамики
КПД двигателя внутреннего сгорания измеряется как сумма теплового КПД.Тепловой КПД является следствием термодинамики. Существует и определение, и формула для теплового КПД. Согласно LearnThermo.com, «тепловой КПД — это мера производительности энергетического цикла или теплового двигателя».
Строгое определение теплового КПД, согласно словарю Merriam-Webster Dictionary, это «отношение тепла, используемого тепловой машиной, к общему количеству тепловых единиц в потребленном топливе». Более практичное непрофессиональное определение теплового КПД заключается в том, что количество энергии, вырабатываемой при сжигании топлива в двигателе внутреннего сгорания, по отношению к количеству этой энергии, которая становится механической энергией.
Однако формула для теплового КПД может дать самое простое объяснение. Тепловая энергия – это количество потерянного тепла, деленное на количество тепла, переданного в систему, причем тепло является синонимом энергии. Результатом деления потерь на вход является коэффициент теплового КПД этой системы. Коэффициент теплового КПД — это количество энергии, которое идет на приведение в действие коленчатого вала двигателя внутреннего сгорания — по крайней мере, с поршнями.
Существуют два закона термодинамики, определяющие тепловой КПД двигателя внутреннего сгорания.
Первый закон термодинамики
Тепловой КПД — следовательно, КПД двигателя внутреннего сгорания — определяется законами термодинамики. Согласно первому закону термодинамики выход энергии не может превышать энерговклад. Другими словами, энергия, которую вырабатывает двигатель — будь то потерянная энергия или энергия, используемая для передвижения, — никогда не будет больше энергетического потенциала топлива, подаваемого в камеру сгорания.
Первый закон термодинамики интуитивно понятен.Первый закон термодинамики является неотъемлемой частью закона сохранения энергии. Энергия не может быть ни создана, ни уничтожена. Первый закон термодинамики — это просто еще одна формула, доказывающая, что энергия не может быть создана. Используя деньги в качестве метафоры для первого закона термодинамики, вы не можете получить больше четырех четвертей с доллара.
В то время как первый закон имеет отношение к эффективности двигателя внутреннего сгорания, именно второй закон термодинамики объясняет, почему двигатели внутреннего сгорания настолько неэффективны.
Второй закон термодинамики
Согласно второму закону термодинамики невозможно достичь 100% тепловой эффективности.
Существует предел потенциальной эффективности двигателя внутреннего сгорания. Второй закон термодинамики, называемый теоремой Карно, гласит: «Даже идеальный двигатель без трения не может преобразовывать почти 100% поступающего тепла в работу. Ограничивающими факторами являются температура, при которой тепло поступает в двигатель, и температура окружающей среды, в которую двигатель отводит отработанное тепло.”
Чрезвычайно большой процент энергии, произведенной при сгорании топлива, теряется. Потеря энергии является причиной перегрева двигателя. Нагрев двигателя происходит за счет кондуктивной теплопередачи. Потеря энергии в виде тепла является причиной нагрева воздуха вокруг двигателя за счет конвективной теплопередачи. Вместо того, чтобы производить механическую энергию, обогреватель нагревает двигатель и атмосферу вокруг двигателя. В результате конвекции и теплопроводности энергия теряется в воздухе вокруг двигателя и в двигателе, потому что и двигатель, и воздух вокруг двигателя имеют более низкую температуру, чем температура сгорания топлива.
Кроме того, огромная часть энергии, производимой двигателем внутреннего сгорания, просто выбрасывается выхлопными газами, опять же, никогда не превращаясь в механическую энергию.
Теплота — энергия — потери и теорема Карно
Чем больше разница температур между температурой сгорания топлива и температурой окружающей среды, тем ниже тепловой КПД двигателя. Другими словами, чем больше разница между температурой горящего топлива и металла и воздуха вокруг него, тем больше потери энергии.Чем больше разница температур, тем больше неэффективность двигателя — факт, доказанный теоремой Карно.
Предел Карно – это количество энергии, выделяемой при сгорании, которая становится механической энергией. Этот предел определяется разницей в теплоте сгорания и температуре элементов и атмосферы вокруг процесса сгорания. Чем больше разница между температурой горящего топлива и температурой окружающей среды вокруг процесса горения, тем ниже предел Карно .
Какова тепловая эффективность бензинового двигателя по сравнению с дизельным двигателем?
Термический КПД бензинового двигателя чрезвычайно низок. В то время как есть компании, стремящиеся улучшить тепловую эффективность бензиновых двигателей, чрезвычайно сложно даже сравнить эффективность сгорания со старыми дизельными двигателями. По словам Toyota, компании, пытающейся повысить тепловую эффективность своих автомобилей, «большинство двигателей внутреннего сгорания невероятно неэффективны в преобразовании сожженного топлива в полезную энергию.Эффективность, с которой они это делают, измеряется с точки зрения «теплового КПД», и большинство бензиновых двигателей внутреннего сгорания в среднем имеют тепловой КПД около 20 процентов.
Дизельобычно имеет более высокий тепловой КПД, в некоторых случаях тепловой КПД приближается к 40 процентам. Toyota находится в процессе разработки нового бензинового двигателя, который, по утверждению компании, имеет максимальный тепловой КПД 38 процентов, тепловой КПД, который «больше, чем у любого другого серийного двигателя внутреннего сгорания».
Другой взгляд на тепловую эффективность связан с затратами на топливо. На каждый доллар бензина, который покупает человек, уходит почти 80 центов в виде отходов. Только 20 центов из каждого доллара фактически приводят в движение бензиновый двигатель. Несмотря на то, что это поразительно мало, даже обычные дизельные двигатели стоят не менее 40 центов за доллар при механическом использовании.
Хотя 60 центов из каждого доллара дизельного топлива теряется из-за термической неэффективности, это все же в два раза лучше, чем средний бензиновый двигатель.
Почему тепловой КПД дизельного двигателя выше, чем у бензинового двигателя
В то время как Toyota утверждает, что тепловой КПД бензиновых двигателей составляет 20%, а дизельных двигателей — 40%, MDPI из Базеля, Швейцария, считает, что эти цифры на самом деле выше. Согласно MDPI, бензиновые двигатели имеют тепловой КПД от 30% до 36%, тогда как дизельные двигатели могут достигать термического КПД почти 50%. «Двигатели с искровым зажиганием современного производства работают с тормозным тепловым КПД (КПД) порядка 30–36 % [12], двигатели с воспламенением от сжатия давно признаны одними из самых эффективных силовых агрегатов, текущий КПД дизелей может достигать до 40–47%.
Тем не менее, это означает, что тепловой КПД дизельного двигателя примерно на 25% выше, чем у бензинового двигателя. Согласно Popular Mechanics, причина, по которой дизельные двигатели имеют более высокий тепловой КПД, чем бензиновые, заключается в двух факторах: степени сжатия и сгорании на обедненной смеси. «Когда дело доходит до преодоления больших расстояний на скоростях по шоссе, дизельные двигатели с более высокой степенью сжатия и сгоранием на обедненной смеси обеспечивают эффективность, с которой в настоящее время не может сравниться ни один газовый двигатель — по крайней мере, без серьезной помощи дорогой гибридной системы.
Тепловой КПД и коэффициент сгорания
В двигателе внутреннего сгорания тепловой КПД частично определяется степенью сжатия. Степень сжатия — это разница между наибольшим объемом в камере сгорания — когда поршень опущен — и объемом в камере сгорания, когда она достигает точки, в которой топливо, впрыскиваемое в камеру, взрывается. Степень сжатия бензинового двигателя намного ниже, чем у дизельного двигателя.
Коэффициент сгорания типичного бензинового двигателя составляет от 8:1 до 12:1. «Если компрессия бензинового двигателя выше примерно 10,5, если октановое число топлива не высокое, происходит детонационное сгорание». Детонация является результатом предварительного сгорания, когда бензин воспламеняется из-за давления сжатия, а не сжатия в результате воздействия искры.
Дизельные двигателиимеют гораздо более высокую степень сжатия. На это есть две причины. Во-первых, дизельные двигатели являются двигателями сжатия.Компрессия — это то, что заставляет дизель в камере сгорания взрываться. В компрессионном двигателе нет искры, которая воспламеняет дизель. Кроме того, дизельные двигатели имеют более высокую степень сжатия, поскольку дизель является более стабильным топливом. Для воспламенения дизельного топлива необходимо большее давление — более высокая степень сжатия. Степень сжатия большинства дизельных двигателей составляет от 14:1 до 25:1.
Решения для повышения эффективности двигателя
Владелец транспортного средства мало что может сделать для повышения теплового КПД двигателя.Ограничения конструкции и ограничения технологий не позволяют владельцам вносить значительные улучшения в транспортное средство в отношении теплового КПД. Тем не менее, возможно сделать улучшения в отношении эффективности сгорания.
Эффективность сгорания — это скорость, с которой двигатель преобразует топливо в энергию. В частности, применительно к тяжелому топливу с высокой плотностью энергии — дизельному топливу, мазуту, бункерному топливу и т. д. — существуют технологии, позволяющие значительно повысить эффективность сгорания. Из-за природы топлива с высокой плотностью энергии, а именно из-за того, что топливо с высокой плотностью энергии состоит из больших и длинных молекул углеводородов, тяжелое топливо может иметь низкую эффективность сгорания.
Топлива с низкой плотностью энергии, такие как бензин и природный газ, обычно имеют постоянную скорость сгорания по сравнению с более тяжелыми видами топлива, поскольку они состоят из более мелких молекул углеводородов с короткой цепью. Но более крупные и длинные молекулы углеводородов и молекулярные цепи в тяжелом топливе имеют тенденцию объединяться в кластеры, что означает, что молекулы внутри кластера не подвергаются воздействию воздуха.Без воздуха углеводороды не воспламеняются.
Топливные катализаторы являются одним из простейших средств повышения эффективности сгорания тяжелого топлива. Благородные металлы — также известные как катализаторы — в составе благородных металлов разрушают кластеры топлива, деполяризуя внутренние заряды, которые заставляют углеводороды собираться вместе.
Топливный катализатор Rentar, например, может повысить эффективность сгорания и, следовательно, топливную экономичность на 3-8% в вездеходах. На тяжелой технике увеличение топливной экономичности еще более заметно.При добавлении топливного катализатора Rentar в печь или котел, работающий на тяжелом топливе, увеличение может составить 30% и более.
Несмотря на то, что трудно предотвратить растрату энергии, присущую всем двигателям внутреннего сгорания, повысить эффективность использования топлива все же возможно. Пока мы не сможем производить двигатели с более высоким тепловым КПД, лучшее, что мы можем сделать, — это улучшить эффективность сгорания.
ДВС Против. EV — Знаете ли вы, насколько неэффективны двигатели внутреннего сгорания?
Есть много причин любить электромобили.Они бесшумны, мощны и быстры, но, возможно, их наиболее часто наблюдаемая характеристика — эффективность. Джейсон Фенске из Engineering Explained уже рассказал нам об этом во время поездки, которую он совершил со своей моделью 3. В любом случае, это видео выше, созданное Джонатаном Стюартом для канала YouTube Cleanerwatt , посвящено именно эффективности и предлагает электромобили.
Обычно мы предпочитаем, чтобы наши читатели были достаточно любопытны, чтобы они могли посмотреть видео, которые мы представляем.Мы могли бы сделать это здесь, просто говоря о том, что отходы — это плохо, и что двигатели внутреннего сгорания расточительны по своей природе. Они не могут с этим поделать.
Самые эффективные двигатели внутреннего сгорания, доступные сегодня на рынке, имеют эффективность использования топлива 40 процентов. Это означает, что они могут преобразовать только 40 процентов энергии топлива в движение. Все остальное теряется в тепле и трении — все 60 процентов остались.
Другими словами, на каждые 100 долларов, которые вы тратите на заправку бака автомобиля с двигателем внутреннего сгорания, вы буквально сжигаете эквивалент 60 долларов в лучшем случае.Видео показывает нам, что то, что вы получаете, намного меньше, чем у большинства автомобилей с ДВС.
Вы когда-нибудь задумывались о том, чтобы сэкономить эти 60 баксов или полностью использовать их для передвижения? Это возможность, которую предлагает электромобиль, и это лишь одна из соответствующих информационных частей, которые приносит это видео. Тот, который мы покажем здесь, вместо того, чтобы позволить его исключительно видео. Прости за это, Джонатан!
Знаете ли вы, что галлон бензина эквивалентен аккумуляторной батарее емкостью 33,7 кВтч? Это больше, чем может предложить новая Mazda MX-30 или Honda E.Тем не менее, их дальность действия превышает 200 км (124 мили). С существенным недостатком: при весе галлона 6 фунтов (2,72 кг) аккумуляторная батарея с таким же количеством энергии весит 475,5 фунтов (215,7 кг). Это все равно, что носить с собой в машине двух больших взрослых людей все время.
По данным Агентства по охране окружающей среды, максимум, что вы можете получить от автомобиля, который сжигает только топливо, составляет 33 мили — с Chevrolet Spark. Если это гибрид, вы можете проехать 58 миль — с Hyundai Ioniq. Это 46,7 процента от того, что Mazda и Honda могут достичь с эквивалентом двух телохранителей на борту постоянно.
Если вы находитесь здесь, по адресу InsideEVs , вы, вероятно, хорошо осведомлены об этих преимуществах, но должно быть много людей, которых вы не знаете. Поделитесь с ними этой статьей, чтобы показать, что если они не сжигают деньги в буквальном смысле, то иметь автомобиль с двигателем внутреннего сгорания — это самое близкое, что они могут сделать для этого. Знают ли ваши друзья-механизмы, что они зарабатывают более 60 процентов своих денег, превращаясь в тепло и дым, заправляя бак? Что еще хуже, быть избитым Теслой на дрэг-стрипе?
Это может быть более разумным призывом к покупке электромобиля, чем более здоровая окружающая среда или более чистый воздух.К несчастью.
Двигатель внутреннего сгорания продолжает улучшаться по мере роста популярности электромобилей
Это может быть рассвет эры электромобилей, но 2018 год был феноменальным годом для скромного двигателя внутреннего сгорания.
Среди наиболее заметных достижений: General Motors выпустила полноразмерные пикапы, которые могут работать только на двух цилиндрах, Mercedes-Benz представила свой первый новый рядный шестицилиндровый двигатель более чем за 20 лет, а Nissan Motor Co. -компрессионный двигатель, который уникальным образом сочетает в себе экономию топлива и мощность.Тем временем поставщики бешеными темпами выкачивают технологии экономии топлива.
«Бензиновые двигатели будут оставаться очень и очень актуальными в течение долгого времени, — сказал Эд Ким, вице-президент по отраслевому анализу AutoPacific. «Потому что даже с этим стремлением к электрификации точка, где мы доберемся до полного парка электромобилей по всей стране, очень далека».
Несмотря на ажиотаж вокруг Tesla, даже самые оптимистичные прогнозы говорят о том, что доля полностью электромобилей в США составит лишь около 8 процентов.рынок S. к 2025 году. Сегодня они составляют менее 2 процентов.
Чтобы обслуживать остальные 90 процентов покупателей, автопроизводители вкладывают средства в новые конструкции двигателей и технологии, которые повышают мощность, снижают выбросы и повышают эффективность. Toyota Motor Corp., например, планирует заменить почти все свои двигатели в период до 2023 года, при этом 17 версий девяти новых двигателей должны появиться только в ближайшие три года. А Fiat Chrysler Automobiles работает над 3,0-литровым рядным шестицилиндровым двигателем с турбонаддувом, который мог бы заменить некоторые двигатели V-8; он, вероятно, начнет появляться в автомобилях Jeep примерно в 2020 году.
«Я не вижу прекращения производства двигателей внутреннего сгорания на горизонте», — заявил Automotive News генеральный директор Volkswagen Герберт Дисс. «Мы все еще работаем над следующим поколением бензиновых двигателей. Они станут более экономичными. У нас будут 48-вольтовые системы старт-стоп и мягкие гибридные системы. с другой стороны, улучшение — поколение двигателя за поколением двигателя — будет уменьшаться, потому что в этом просто не намного больше [эффективности].Низко висящие плоды исчезли».
Эффективность преобразования топлива – x-engineer.
orgДвигатели внутреннего сгорания производят механическую работу (мощность) за счет сжигания топлива. В процессе сгорания топливо окисляется (сгорает). Этот термодинамический процесс выделяет тепла , которое частично преобразуется в механическую энергию .
Рассмотрим двигатель внутреннего сгорания как систему с определенной границей. воздуха.После процесса сгорания двигатель будет находиться в конечном состоянии, содержащем продукты сгорания (выхлопные газы).
Изображение: Схема процесса сгорания
Применение первого закона термодинамики к нашей системе двигателя, между начальным и конечным состоянием, дает:
\[Q_{RP} – W_{RP}=U_P – U_R \tag{ 1}\]где:
Q [Дж] – теплопередача
Вт [Дж] – механическая работа
U [Дж] – внутренняя энергия
T [К] – температура
p [Па] – давление
В [м 3 ] – объем
Эффективность сгорания
В реальных двигателях процесс сгорания является неполным . Это означает, что не все энергосодержание топлива, подаваемого в двигатель, высвобождается в процессе сгорания. Существует несколько факторов, которые могут влиять на процесс сгорания, наиболее важными из которых являются подача топлива и воздуха и распыление топлива (размер капель).
Топливу внутри цилиндра для горения требуется воздух (кислород). При недостатке кислорода сгорает не все топливо, поэтому при сгорании выделяется только часть энергии (например, около 96 %).
Если проанализировать отработавший газ двигателя внутреннего сгорания, то можно увидеть, что он содержит как продуктов неполного сгорания (окись углерода CO, оксиды азота NO x , несгоревшие углеводороды HC, сажа PM), так и продуктов полного сгорания (двуокись углерода CO 2 и вода H 2 O).
Изображение: Функция полноты сгорания от коэффициента эквивалентности топлива и воздуха
Если двигатель работает в условиях обедненной смеси , количество продуктов неполного сгорания небольшое, поскольку имеется избыток кислорода. В рабочих условиях обогащения эти количества становятся более значительными, поскольку кислорода недостаточно для завершения сгорания топлива.
Поскольку часть химической энергии топлива не полностью высвобождается внутри двигателя в процессе сгорания, полезно определить эффективность сгорания.
Эффективность сгорания η c [-] определяется как соотношение между энергией, выделяемой сгоревшим топливом, и теоретическим энергосодержанием массы топлива в течение одного полного цикла двигателя.
\[\eta_c = \frac{H_R (T_A) – H_P (T_A)}{m_f \cdot Q_{HV}} \tag{2}\]где:
H R [Дж] – энтальпия ( внутренняя энергия) реагента
H P [Дж] – энтальпия (внутренняя энергия) продукта
T A [K] – температура окружающей среды
м f [кг] – масса топлива, подаваемая за цикл
Q HV [Дж/кг] – теплотворная способность топлива
Теплотворная способность
Теплота сгорания (также известная как энергетическая ценность или теплотворная способность ) фиксированного количества топлива, это количество теплоты выделяется при его сгорании. Теплота сгорания топлива — это величина теплоты реакции, измеренная при постоянном давлении/объеме и стандартной температуре (26 °C) для полного сгорания единицы массы топлива.
Любое топливо имеет два типа теплоты сгорания:
- высшая теплотворная способность (ВТС), также известная как высшая теплота сгорания
- низшая теплота сгорания (НТС), также известная как чистая теплота сгорания вычитая теплоту испарения воды из более высокой теплотворной способности)
Например, в таблице ниже мы можем увидеть теплотворную способность для наиболее распространенных и альтернативных видов топлива, используемых в двигателях внутреннего сгорания:
Топливо | Низшая теплотворная способность [МДж/кг] | Высшая теплота сгорания [МДж/кг] | ||
Водород | 119.96 | 141,88 | ||
Природный газ | 47,13 | 52,21 | ||
Обычный бензин | 43,44 | 46,52 | ||
Обычные дизель | 42,78 | 45,76 | ||
Этанол | 26,95 | 29,84 | ||
Сжиженный нефтяной газ (СНГ) | 46,60 | 50,14 | ||
Сжиженный природный газ (СПГ) | 9096 48296 482966255. 19 | 55.19 | ||
Butane | 49.27 | 49.27 | 49.20 | |
50.22 | 96 50.22 902950.22 |
Эффективность термической преобразования
Эффективность термической преобразования связана с фактической работой за цикл на количество топлива химическая энергия, выделяющаяся в процессе горения.
КПД термического преобразования определяется как отношение работы за цикл W c [Дж] к энергии, выделяемой при сгорании топлива.
\[\eta_t = \frac{W_c}{H_R (T_A) – H_P (T_A)} \tag{3}\]Эффективность термического преобразования показывает, сколько сгоревшего топлива преобразуется в полезную механическую работу.
Эффективность преобразования топлива
Эффективность преобразования топлива определяется как отношение между полезной механической работой, производимой двигателем, и теоретическим содержанием энергии в топливной массе.
\[\eta_f = \frac{W_c}{m_f \cdot Q_{HV}} \tag{4}\]Работа за цикл Вт c [Дж] может быть записана как функция мощности и скорости двигателя :
\[W_c = \frac{P \cdot n_R}{N} \tag{5}\]где:
P [Вт] – мощность двигателя (указана)
Н [об/с] – частота вращения двигателя
n R [-] – число оборотов коленчатого вала для каждого рабочего такта на цилиндр
Масса топлива , израсходованная за цикл двигателя m f [кг] может быть записана как функция массового расхода топлива и частоты вращения двигателя:
\[m_f = \frac{\dot{m}_f \cdot n_R}{N} \tag{6}\], где m f (dot) [кг/с] — массовый расход топлива.
Замена (5) и (6) в (4) дает выражение функции эффективности преобразования топлива от мощности двигателя, массового расхода топлива и теплотворной способности топлива:
\[\eta_f = \frac{P}{\ dot{m}_f \cdot Q_{HV}} \tag{7}\]Удельный расход топлива двигателя SFC [кг/Дж] — отношение массового расхода топлива к приведенной мощности двигателя:
\[SFC = \frac{\dot{m}_f}{P} \tag{8}\]Замена (8) в (7) дает выражение функции эффективности преобразования топлива от удельного расхода топлива и теплоты сгорания топлива:
\[ \eta_f = \frac{1}{\text{SFC} \cdot Q_{HV}} \tag{9}\]Эффективность преобразования топлива также является произведением эффективности сгорания и эффективности теплового преобразования. 6 } = 0,307\]
Эффективность преобразования топлива двигателем составляет 30,7 %.
Не забудьте поставить лайк, поделиться и подписаться!
Nissan работает над двигателем с 50-процентной тепловой эффективностью
По большому счету, газовые двигатели внутреннего сгорания не так уж и эффективны, поскольку большая часть того, что они производят, — это отработанное тепло. Считается, что Toyota предлагает самый термически эффективный из производимых на сегодняшний день автомобильных двигателей внутреннего сгорания — 2,0-литровый безнаддувный четырехцилиндровый двигатель, который достигает 41-процентного теплового КПД.Другими словами, 41 процент работы этого двигателя преобразуется в питание автомобиля, а 59 процентов — просто бесполезное тепло.
Компания Nissan заявляет, что добилась прорыва в области теплового КПД внутреннего сгорания, разработав двигатель, который достигает 50-процентного теплового КПД. Но есть большая разница между этим новым двигателем Nissan и четырехцилиндровым двигателем Toyota — первый рассчитан на работу только в очень узком диапазоне. Nissan разрабатывает этот двигатель в качестве генератора для серийного гибридного автомобиля, в котором только электродвигатель приводит в движение колеса.Двигатель внутреннего сгорания вырабатывает энергию для зарядки аккумулятора, и этот аккумулятор питает двигатель. Механической связи между двигателем и колесами нет.
Этот двигатель будет использоваться в будущем поколении системы Nissan e-POWER, которая в настоящее время используется в Note для японского рынка. Nissan смог достичь 50-процентного теплового КПД в ходе испытаний, по существу настроив двигатель для работы в очень определенном диапазоне скоростей и нагрузок. Поскольку двигатель не приводит в движение колеса, ему не приходится работать с такими широкими параметрами.
«В обычном двигателе существуют ограничения на контроль уровня разбавления топливовоздушной смеси в ответ на изменение нагрузки при вождении с несколькими компромиссами между различными условиями эксплуатации, такими как поток газа в цилиндре, метод зажигания и компрессия. соотношение, которое может пожертвовать эффективностью в пользу выходной мощности», — говорится в пресс-релизе Nissan. «Тем не менее, специальный двигатель, работающий в оптимальном диапазоне скорости и нагрузки для выработки электроэнергии, позволяет значительно повысить тепловую эффективность.»
Ниссан
Двигатель настроен на работу с очень разбавленной топливно-воздушной смесью и работает с высокой степенью сжатия. Nissan не стал раскрывать подробности о самом двигателе, отказавшись указать размер, количество цилиндров и степень сжатия. Фотографии, опубликованные Nissan, показывают макет одноцилиндрового двигателя на испытательном стенде, поэтому кажется, что компания еще не определилась с точной формой, которую примет этот двигатель.
Nissan стремится к 100-процентному углеродному нейтралитету к 2050 году, и для достижения этой цели компания вкладывает большие средства в электромобили и автомобили, использующие систему e-POWER. Эта система кажется отличной альтернативой электромобилю, особенно в местах, где отсутствует инфраструктура для зарядки.
На данный момент единственным известным нам газовым двигателем внутреннего сгорания, имеющим тепловой КПД более 50 процентов, является 1,6-литровый V-6 Mercedes-AMG Formula 1. Но в этом двигателе используются технологии, слишком дорогие и сложные для массовых дорожных автомобилей. Пока неясно, когда мы увидим этот новый двигатель от Nissan, но подобные разработки показывают, что во внутреннем сгорании еще может быть жизнь.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка браузера на прием файлов cookie
Существует множество причин, по которым файл cookie не может быть установлен правильно.Ниже приведены наиболее распространенные причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
- Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.
Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.