Вариатор схема: Простейший вариатор схемы чертежи — Механический вариатор своими руками

Содержание

Как устроен вариатор — ДРАЙВ

Листая автомобильные каталоги, многие встречали такую фразу: «На автомобиль устанавливается бесступенчатый вариатор». Или могли увидеть это словосочетание в таблице технических характеристик. Что такое механическая коробка передач, знают все (кроме, разве что, американцев), к «автомату» тоже давно все привыкли (особенно американцы). А вот вариатор — зверь малоизвестный. А ведь он далеко не новинка.

Вы удивитесь, но принадлежит это изобретение не Хонде и даже не Мерседесу. Патент на вариатор был выдан в конце XIX века! Более того, первый вариатор придуман и вовсе в 1490 году. Его автором оказался добродушный бородач Леонардо да Винчи.

Первый работоспособный автомобиль с этим типом трансмиссии, правда, появился не в эпоху Возрождения, а попозже — лет через пятьсот, в 1950-х годах. Вариатор ставился серийно на автомобили DAF (в то время под этой маркой выпускались не только грузовики, но и легковушки). Потом нечто похожее начали делать и на Volvo, но по-настоящему широкое распространение вариаторы получили лишь сейчас.

По сути, вариатор (наиболее распространённое англоязычное обозначение — CVT — continuously variable transmission) — это, простите за тавтологию, вариация на тему автоматической коробки передач. И автомобиль, оборудованный им, на первый взгляд, ничем не выдаёт себя — педалей всего две и рычаг переключения режимов трансмиссии — P, R, N, D — такой же, как и у машины с традиционной АКПП. Всё привычно. Но работает вариатор совершенно по-другому. В нём нет фиксированных первой, второй, десятой передач. Попробуйте представить себе, сколько звёзд в нашей Вселенной или сколько песчинок на всех пляжах Земли вместе взятых — у вариатора передач всё равно намного больше. И «переключение» между ними происходит плавно и незаметно.

Поэтому-то здесь нет толчков при трогании и «переключении». И не зря мы написали это слово в кавычках: переключений как таковых тут и нет. Вариатор непрерывно и плавно изменяет передаточное число по мере разгона или замедления автомобиля.

Вариаторы бывают нескольких типов: клиноремённые со шкивами переменного диаметра, цепные, тороидальные… Первый тип — самый распространённый. Посмотрим, как он устроен.

Клиноремённый вариатор MINI.

Вот наглядный пример: возьмём два карандаша (цилиндра), лежащих параллельно на некотором расстоянии друг от друга. Стягиваем их резинкой и начинаем крутить один из них. Тут же начинает крутиться и второй — с той же скоростью. Но если карандаши будут разного диаметра, начинается совсем другая история — пока один из них, что побольше, сделает один оборот, второй, скажем, два.

Вариатор устроен похоже, только диаметр «карандашей» у него постоянно меняется. У него два шкива, каждый из которых сделан в виде пары конусов, обращённых острыми концами друг к другу. А между шкивами зажат клиновый ремень.

Изменяя радиус огибания ремнём ведущего и ведомого шкива, можно плавно менять передаточное отношение.

Теперь, если каждая из пар конусов может двигаться друг к другу и обратно, мы получим шкивы с переменным рабочим диаметром. Ведь при раздвижении конусов ремень, соприкасающийся с ними своими рёбрами, будет как бы проваливаться к центру шкива и обегать его по малому радиусу. А при сближении конусов — по большому радиусу.

Осталось только снабдить оба шкива системой (как правило, это гидравлика, но может быть и какой-то иной сервопривод), которая будет строго синхронно сдвигать половинки первого шкива и раздвигать половинки второго. И если один шкив находится на ведущем валу (который идёт от двигателя), а второй — на ведомом (который ведёт к колёсам), то можно организовать изменение передаточного отношения в весьма широких пределах.

Остаётся ещё добавить узел, отвечающий за изменение направления вращения выходного вала (для заднего хода), а это может быть, скажем, обычная планетарная передача. И вот готова коробка-вариатор.

Кстати, интересный вопрос — какой тут используется ремень? Разумеется, простой ремень из резины и ткани, наподобие тех, что вращают генераторы и прочее навесное оборудование, здесь не прожил бы и тысячи километров. Ремни в клиноремённых вариаторах имеют сложное устройство.

Ремень в вариаторах, как видно, никакой вовсе не ремень, а наборная металлическая лента.

Это может быть стальная лента с неким покрытием или набор стальных тросов (лент) сложного сечения, на которые нанизано огромное число тонких поперечных стальных пластинок трапецевидной формы, края которых и контактируют со шкивами. Кстати, именно таким образом удалось создать толкающий ремень, передающий мощность не только той его половиной, которая бежит от ведомого к ведущему шкиву, но и противоположной. Обычный ремень при попытке передать сжимающее усилие просто сложился бы, а наборный стальной — обретает жёсткость.

А ещё в качестве клинового ремня может выступать широкая пластинчатая стальная цепь, соприкасающаяся с конусами своими краями. Именно такой «ремень» работает в вариаторах машин Audi.

Вот такая цепь используется в вариаторах фирмы Audi.

Интересно, что для смазки цепи применяется особая жидкость, которая меняет своё фазовое состояние под сильным давлением, возникающим в месте контакта со шкивом. Благодаря этому цепь может передавать значительное усилие, практически не проскальзывая, несмотря на очень маленькую площадь контакта.

Как именно вариатор будет менять передаточное число при разгоне, зависит от выбранной программы управления. Если при разгоне на обычном автомобиле мы на каждой передаче раскручиваем двигатель, затем переходим на следующую передачу и так далее, то при наборе скорости автомобиля с вариатором мотор остаётся на одних и тех же оборотах (скажем, на оборотах, соответствующих максимальному крутящему моменту), зато плавно меняется передаточное отношение.

Это создаёт несколько странные ощущения. Жмём газ в пол, мотор выходит на большие обороты, да так и остаётся на них в течение всего разгона, воя как пылесос. Зато темп разгона — высокий, да и на переключения между ступенями время не тратится.

Впрочем, в некоторых случаях вариатор настраивают так, чтобы разгон с ним больше напоминал увеличение скорости с обычной коробкой передач, с постепенным ростом оборотов мотора.

Разумеется, при попытке заехать на холм и при замедлении авто, несмотря на нажатие педали газа, умный вариатор не оставит «включённой» высокую передачу.

Шкивы для уверенного штурма высоты быстро передвинутся обратно — чтобы увеличить крутящий момент на выходе из коробки.

А ещё на некоторых машинах можно выбрать режим с несколькими «виртуальными» передачами (с 6 или даже 8), задаваемыми электроникой. Передачами, между которыми вариатор будет резко перескакивать, словно классическая коробка «автомат». Ещё в этом случае можно переключать «передачи» по собственному желанию. Как на «автомате» с ручным секвентальным (последовательным) режимом.

Таким образом, у вариатора масса достоинств. Но есть и недостатки. Например, сравнительно небольшая, по современным меркам, «перевариваемая» мощность двигателя. Не зря такие коробки начали своё шествие по миру на машинах малого класса. Да и сейчас мощные автомобили — все сплошь и рядом укомплектованы либо «механикой», либо классическими «автоматами», либо роботизированными коробками.

Правда, прогресс идёт. И тут нельзя не вспомнить рекордсменов. Скажем, на Audi A4 2.0 TFSI клиноремённый вариатор Multitronic (с цепью) без проблем справляется с потоком в 200 «лошадей».

Вариатор Audi может передавать на колёса мощность свыше двухсот лошадиных сил.

Можно возразить, что класс D — это ещё не всё. Для автомобилей представительского и бизнес-класса, и тем более для крупного внедорожника — 200 сил уже не назовёшь такой уж большой величиной. Но достижения самых современных вариаторов на этом не исчерпываются. Так, на кроссовер Nissan Murano с 3,5-литровым V6 мощностью 234 лошадиные силы ставят клиноремённый вариатор X-Tronic. Это одна из самых крупных и тяжёлых моделей, оснащённых вариатором. А что будет завтра?

Второй недостаток вариаторов — сравнительно дорогое обслуживание и ремонт, специальная, а значит, недешёвая, трансмиссионная жидкость. Ремённые вариаторы могут через каждые 100—150 тысяч километров пробега требовать замены ремня. Масло при этом стоит несколько дороже, чем для «автомата», но зато менять его можно чуть реже — ориентировочно через 40—50 тысяч километров для разных моделей автомобилей.

И всё же вариаторы получают всё большее и большее распространение на машинах самых разных классов, к тому же и стоят они, обычно, дешевле хороших «автоматов» классического типа.

Поскольку вариаторы располагают бесконечным числом передач, они позволяют двигателю работать на наиболее выгодных режимах — нужна ли нам (на светофорных гонках) максимальная мощность, или, напротив, плавность и наименьший расход топлива (при спокойной езде). Потому модели с вариаторами отличает, при прочих равных, высокая экономичность, сочетающаяся с не менее приличной динамикой.

Кстати, в последнее время наметилась тенденция к росту числа передач у классических «автоматов». В последних моделях встречается уже 8 передач (на легковой, заметим, машине). И делается это именно для сочетания высокой динамики и экономичности. Скоро увидим автоматы с десятью ступенями или даже с двенадцатью? А вот вариаторы уже находятся там, куда обычные автоматы с их переключаемыми планетарными рядами никогда не придут. Ведь число передач у вариатора бесконечно.

Как работает вариатор

Бесступенчатая коробка передач часто используется на современных автомобилях. Наличие ступеней обязательно сопряжено с переходными состояниями, вызывающими сбои в работе. Производители постоянно борются с их проявлением, повышая эффективность и коэффициент полезного действия при смене передаточного отношения. Упрощение процесса вождения непременно сопряжено с использованием бесступенчатых коробок передач. Практически все автомобили имеют приставку CVT в случае наличия подобной опции. Аббревиатура расшифровывается и переводится с английского языка как «Continuously Variable Transmission», что означает «беспрерывная смена передач». Количество кинематических элементов узла невелико, поэтому разобраться в его работе несложно.

Основные детали, их назначение и принципиальная схема

Рассмотрим принципиальную схему устройства вариатора. Для каждой модели автомобиля или любой другой техники инженеры разрабатывают частный случай, имеющий незначительные конструктивные особенности. В общем виде всё выглядит так:

Рассмотрим особенности работы вариатора на автомобиле каждой части, её роль и особенности устройства:

  1. Раздвижной шкив. Это два усеченных конуса с прямыми или тороидными вогнутыми поверхностями, надетых на одну ось. На валу один из них закреплён неподвижно, а второй имеет небольшой ход. В итоге неподвижный элемент является ведущим, а подвижный – ведомым.
  2. Клиновидный ремень. Его тело образовано парой стальных лент, на которые нанизываются специальные пластины. Зацепление образуется в пазах, а рабочую часть каждой пластины составляет конусовидная законцовка. Вместо ремня может использоваться сложносоставная цепь особой формы.
  3. Гидравлический трансформатор. Это автономный узел, позволяющий плавно регулировать изменение крутящего момента посредством гидравлического усилия. Его устройство достаточно сложное.
  4. Дифференциал представляет собой шестерню с косыми зубьями, обеспечивающую передачу крутящего момента на ведущую пару колёс автомобиля. Его характеризует особая износоустойчивость рабочих поверхностей.
  5. Планетарный механизм обеспечивает передачу вращения на ведущую ось в различных направлениях. В отличие от классической схемы, он содержит два ряда сателлитов цилиндрической вытянутой формы, что снижает нагрузку на зубья.
  6. Гидронасос. Эта часть приводится в рабочее состояние при помощи гидравлического трансформатора, что обеспечивает постоянное поддержание давления функциональной жидкости. Благодаря этой связке постоянно находятся в работе гидроцилиндры.
  7. Управление осуществляется микропроцессором, посылающим сигналы на основании обработки данных от различных систем и датчиков. В частности, играют роль ABS и электронный контроль расхода топлива.

Принцип работы

Как известно, для изменения передаточных отношений классических редукторов необходимо подключать к ведущей шестерне различные комбинации зубчатых элементов, с целью понизить или повысить скорость вращения. В вариаторе всё решается посредством раздвижных шкивов. Если половинки этого элемента сдвигаются навстречу друг другу, то они выдавливают ремень выше, и он зацепляется на больший диаметр. А на другом шкиве автоматически происходит расхождение конусообразных половинок. Ремень проваливается вниз и зацепляется на меньший диаметр. Таким образом, количество передаточных отношений коробки CVT можно считать бесконечным.

Как работает задний ход

  1. Примечательно то, что скорость заднего и переднего хода на этом типе трансмиссии одинакова. Но в первом случае она ограничивается электроникой во избежание аварийных ситуаций.
  2. Он обеспечивается посредством планетарного механизма с двойным рядом сателлитов:
  3. Смена подвижного ряда сателлитов и фиксация второго ряда, обеспечивает смены направления хода. При этом направление вращения водила не изменяется, но меняется направление вращения корончатой шестерни. Как работает вариаторная коробка передач по видео смотрите ниже.

Применение вариаторов

Благодаря компактным размерам этот тип коробки передач может использоваться на автомобиле, скутере, снегоходе, мопеде и др. Устройства с электромагнитным приводом могут использоваться для небольших моделей техники и детских игрушек, где они успешно применяются. При слабом крутящем моменте клиновой ремень изготавливают из плотной армированной резины. При проектировании новых поколений автомобильных вариаторов инженеры решают задачи износостойкости, рабочего ресурса, понижения уровня шума и увеличения КПД.

В принципиальной схеме, устройства вариаторов для различных разновидностей транспорта не различаются. Частные решения для каждого из них должна рассматриваться в рамках инструкции по эксплуатации от производителей.

Устройства коробки вариатор (CVT), принцип работы

Что такое вариатор? Чтобы дать ответ на этот вопрос, давайте вспомним, сколько скоростей имеют механическая и автоматическая коробки передач. Первая – пять, вторая — до девяти – ответят грамотные водители. Так вот, вариатор имеет ступеней переключения скоростей намного больше, по сути – бесконечное количество.

Итак, вариатор – это бесступенчатая трансмиссия, которая даёт водителю возможность изменять передаточное число не рывками, а плавно, в соответствии с оборотами двигателя и внешней нагрузкой, что позволяет использовать мощность мотора максимально эффективно и обеспечить комфорт во время движения.

На современные автомобили устанавливают вариаторы двух типов: клиноременной и тороидный, хотя в технике подобных конструкций существует великое множество.

Вариаторы клиноременного типа известны достаточно давно. Главными деталями этого вариатора являются раздвижные шкивы и трапецеидальный в сечении ремень, который их соединяет. Если в ведущем шкиве сдвинуть его половинки, они вытолкнут ремень наружу подобно попавшему между ними клину (именно потому данный вариатор имеет такое название). При этом радиус шкива, с которым работает ремень, увеличится, что, в свою очередь, приведёт к увеличению передаточного отношения. Если же половинки ведомого шкива раздвинуть, ремень уйдёт внутрь, а радиус его работы уменьшится, что повлечёт за собой уменьшение передаточного отношения. При работе обоих шкивов в промежуточном положении передача будет прямой.

Устройство клиноременного вариатора

Схема клиноременного вариатора
1 — маховик с демпфером крутильных колебаний, 2 — фрикцион заднего хода, 3 — промежуточная передача, 4 — вариатор, 5 — электронный блок управления, 6 — гидравлический блок управления, 7 — фрикцион переднего хода, 8 — планетарный механизм

Составляющими клиноременного вариатора являются одна или две ременные передачи, в которых шкивы образуются из конических дисков, которые за счёт своего сдвигания или раздвигания способны изменять диаметр и, соответственно, передаточное число. Различные автопроизводители выпускают вариаторы, отличающиеся друг от друга конструктивными особенностями. Так, в Audi (трансмиссия Multitronic) ремень заменён цепью, а в Honda передаточный ремень состоит из металлических пластин. Но принцип работы во всех вариациях остаётся неизменным.

Чтобы автомобиль сдвинулся с места, используют обыкновенное сцепление или же компактный гидротрансформатор, который блокируется вскоре после начала движения. Управление дисками, из которых состоят шкивы, происходит при помощи электронной системы из сервоприводов, а также датчиков и блока управления.

Начнём с того, что попроще. Почему ремень имеет клиновидную форму? Трапециевидный в разрезе ремень входит в шкивы только боковыми своими поверхностями, оставаясь при этом в хорошей сцепке с ними.

Каким образом изменяется передаточное число? Ведущий шкив, который вращается при помощи коленвала, устроен таким образом, что под воздействием центробежных сил его щёки плавно сжимаются и выталкивают трапециевидный ремень всё дальше от центра шкива. При этом ведомый шкив, напротив, разжимается, и ремень погружается всё глубже, приближаясь к центру шкива. Чем выше у двигателя обороты, тем сильнее сжимается ведущий и разжимается ведомый шкив, что приводит к изменению передаточного числа от коленвала к ведущему мосту.

Тороидный вариатор

Схема тороидного вариатора
1 — гидротрансформатор, 2 — шестерни заднего хода, 3 — ведущие диски, 4 — ролики, 5 — ведомые диски, 6 — насос

Тороидный вариатор имеет другое устройство. Он состоит из дисков и роликов, которые передают крутящий момент от диска к диску. Чтобы изменить передаточное число, необходимо поменять положение роликов и радиусы, по которым ролики обкатываются вокруг дисков. И поскольку основное усилие сосредотачивается в пятне контакта, поворот роликов требует применения особых устройств, способных преодолеть силу, с которой ролик прижимается к диску.

К примеру, в вариаторе Extroid от Ниссан применяется специальная система, в которой управляемый при помощи электроники гидравлический прецизионный механизм передвигает обоймы с роликами вниз или вверх на микроскопические величины, а ролик, из-за возникшего относительно дисков сдвига, поворачивается далее самостоятельно.

Клиноременной и тороидный вариаторы: особенности и слабые места

Принцип устройств, называемых ныне вариаторами, не является новоизобретённым. Идеи о бесступенчатых трансмиссиях приходили в головы конструкторов ещё тогда, когда на транспорте начали применяться поршневые ДВС. А развитие современных технологий производства материалов и достижения электроники позволили усовершенствовать конструкции вариаторов, которые сегодня получают всё большее распространение на автомобильном транспорте. При этом принцип их работы, несмотря на новые конструкторские находки, остаётся неизменным.

Несмотря на множество исследований и испытаний, современные вариаторы пока не удалось избавить от некоторых проблем, которые весьма существенно влияют на их работу.

Так, «слабым звеном» в работе клиноременного вариатора является ремень, а в тороидном – пятно контакта ролика с диском, в котором сила давления может достигать десяти тонн. С этими проблемами пытаются бороться путем использования специальных высокотехнологичных материалов, что в значительной степени повышает надёжность вариаторов, приближая её к показателям надёжности гидромеханических автоматов. Тем не менее, из-за повышенных нагрузок на пятно контактов или ремень вариаторы пока не устанавливаются на грузовые машины и не работают с двигателями больших мощностей.

Современным рекордом для вариатора клиноременного типа является двигатель мощностью в 220 л.с. и 300 Нм, на которые способен шестицилиндровый двигатель Audi A6, оснащённой трансмиссией Multitronic. Тороидный вариатор-рекордсмен установлен на Nissan Gloria и Cedric, оснащённых 3-литровыми двигателями Extroid с показателями 240 л.с. и 310 Нм.

Несмотря на невозможность применения бесступенчатых передач на грузовиках, их применение на легковых автомобилях, по мнению экспертов, имеет большое будущее, которое обеспечат совершенствующиеся технологии производства материалов.

Сравнение динамических характеристик автомобилей, оснащённых вариаторами, может вызвать недоумение: на одной и той же модели легкового автомобиля разгон без вариатора происходит быстрее, чем с вариатором. Казалось бы, повышенная эффективность использования мощностей двигателя должна привести к противоположному результату! Оказывается, в случае адекватной настройки блока, разгон автомобиля с вариатором происходит, всё же, быстрее, чем без него. А недовольство некоторых автомобилистов объясняется привычкой слышать при разгоне нарастающий шум мотора, тогда, как в случае установки вариатора этот звук остаётся равномерным.  Многие фирмы идут в этом вопросе навстречу пожеланиям  и настраивают блок таким образом, чтобы не лишать водителей привычного радующего слух шума разгоняющегося мотора.

В завершение хотим отметить, что, в сравнении с традиционными коробками-автоматами, вариаторы являются значительно более совершенным типом трансмиссии. Их преимущество проявляется в значительно более высоких показателях динамики разгона, экономии топлива, плавному процессу езды. Весте с тем, конструкция вариаторов проще, чем у автоматических коробок, что сказывается на их стоимости и надёжности. Думается, что оснащённые вариаторами автомобили достаточно скоро вытеснят машины с «автоматами» и заметно потеснят «механику».

Как это работает: вариатор

Довольно долгое время этот вид коробки передач незаслуженно игнорировался автопроизводителями. А ведь именно принцип вариаторной передачи широко использовался задолго до появления первого автомобиля. Прообразом современной бесступенчатой трансмиссии были ременные передачи ветряных мельниц, которые, благодаря подобной передаче крутящего момента от лопастей мельницы на жернова, могли измельчать зерно с разной скоростью и до различного помола. В автомобильной промышленности этот тип механической коробки передач начал широко применяться с конца 1990-х годов. Сегодня бесступенчатый вариатор считается одним из самых прогрессивных видов автомобильных трансмиссий. Впрочем, и у бесступенчатого вариатора есть свои достоинства и недостатки.

Вариатор XTRONIC CVT от Nissan.

Принцип работы вариатора

Как уже указывалось выше, вариатор представляет собой эволюционную разновидность классической механической коробки передач. Но если для «механики» присущи переключения со ступени на ступень при помощи шестерен (при этом, важную роль играет сцепление), то у вариатора передачи переключаются без участия каких-либо зацепных узлов и уж тем более, без сцепления. Именно поэтому по плавности переключения со ступени на ступень этому виду трансмиссии сегодня нет равных. По типу принято различать следующие виды бесступенчатых вариаторов: клиноременные, цепные, торроидные.

Клиноременные трансмиссии стали первым типом бесступенчатой коробки передач, которая устанавливалась на легковые автомобили. Как правило, эти машины имели небольшой по объему и мощности двигатель, так как использовавшийся в механизме вариатора ремень не выдерживал больших нагрузок и часто выходил из строя.

Клиноремённый вариатор MINI

По своему строению этот тип КПП выглядит как пара параллельно расположенных шкивов, передача крутящего момента от одного к другому происходит при помощи натянутого между ними ремня. Каждый шкив – это две конусообразные детали, которые соприкасаются своими «вершинами». Эти детали по мере изменения крутящего момента от мотора сдвигаются или раздвигаются, благодаря чему происходит плавное переключение на повышенную или пониженную передачу. Если раньше, как упоминалось выше, в клиноременном вариаторе применяли резиновые ремни, то сегодня их роль выполняют металлические ленты.

Цепной вариатор – это усовершенствованная клиноременная бесступенчатая трансмиссия, в которой вместо ремня применяется стальная цепь. Срок службы цепи у такой КПП довольно продолжителен.

Схема трансмиссии с цепной передачей

Наконец, торроидный вариатор имеет отличную от первых двух типов конструкцию. В нем роль шкивов играют два колеса (ведущее и ведомое), между которыми зажат торроидный ролик. Колеса трутся о ролик, который меняет свое положение относительно их, и таким образом происходит повышение или понижение передач.

Тороидный вариатор. ФОто

Все типы вариаторов управляются электронными блоками управления, в которых аккумулируется информация о крутящем моменте двигателя, скорости автомобиля и прочих характеристиках, на основании которых электроника дает команду КПП повышать или понижать передачу.

Устанавливается на автомобили марок Honda (Jazz, CR-V), Nissan (Juke, Qashqai), Toyota (Yaris, Auris) и прочие.

Достоинства и недостатки бесступенчатой КПП

К достоинствам этого типа трансмиссий можно отнести, во-первых, плавное переключение передач без рывков при разгоне и торможении. Во-вторых — отличную динамику движения автомобиля на длинных отрезках пути. В-третьих, и это, наверное, один из самых больших плюсов, вариатор обеспечивает экономию горючего, а связано это с тем, что при переключении передач не происходит потери мощности и крутящего момента. Еще один положительный аспект связан с активной безопасностью автомобиля, оснащенного вариатором, – его колеса не пробуксовывают на скользкой поверхности (лед) из-за того, что передачи вариатор переключает плавно.

К недостаткам вариатора можно отнести сравнительно слабую динамику – от старта движения до выхода на средние обороты. Остальные негативные аспекты связаны с обслуживанием и ремонтом бесступенчатой трансмиссии: в ней используется дорогое трансмиссионное масло, а его замена и обслуживание узлов и агрегатов вариатора довольно сложное, что, естественно, сказывается на стоимости обслуживания. Привод вариатора весьма чувствителен к большим нагрузкам при высоком крутящем моменте двигателя и если трансмиссию эксплуатировать неправильно, этот узел может выйти из строя, что повлечет за собой дорогостоящий ремонт. Еще одним недостатком такой трансмиссии является невозможность применять спортивные приемы вождения, ведь производители вариаторов намеренно ограничивают подобные операции – чтобы продлить «жизнь» трансмиссии.

О проблемах и неисправностях вариатора мы написали в статье

JATCO CVT • CHIPTUNER.RU

JATCO CVT

В этой статье рассматривается устройство и работа бесступенчатой трансмиссии фирмы JATCO, устанавливаемую с 2007 года на Jeep Compass, Patriot и Dodge Caliber. Аналочигный агрегат устаналивается так же на многие автомобили японского производства – ссылка на применяемость.

Начнем обзор с самой простой, но важной операции – проверке уровня рабочей жидкости. В бесступенчатых вариаторах (CVT) используется специальная жидкость, обозначаемая CVTF+4, которая специально разработана для вариаторных трансмиссий. Согласно спецификации DC, (Daimler-Crysler) данному устройству требуется исключительно эта специальная жидкость, что объясняется «повышенным давлением, специальными сплавами металлов и специфическими потребностями, такие как, например, предотвращение проскальзывания ремня».  Для упрощения идентификации, жидкость имеет зеленый цвет и, по заявлениям производителя, даже небольшое количество жидкости для АКПП, попавшее в вариатор, может повлечь за собой тяжелое повреждение механизма. Жидкость для CVT в бутыли объемом 4.3л имеет каталожный номер 05191184AA, а канистра 21.7 л – номер 5191185AA.

Проверка жидкости в вариаторе не совсем обычна, т.к на вариаторе нет привычного щупа для проведения такой операции. Покупатели автомобилей с вариаторной трансмиссией должны, как минимум, один раз в 25000 км посетить сервисную станцию, где специально обученные специалисты проверят рабочую жидкость. Понадобится специальный инструмент, щуп (по каталогу Миллера имеющий номер 9336), для проверки уровня, который сильно зависит от температуры и меняется примерно на 12 мм при нагревании с +20°С до +90°С. Поэтому при проверке жидкости уровень он должен быть сверен с таблицей:

t жидкостиМин. уровеньМакс. уровень
25°С25 mm38 mm
60°С29 mm42 mm
88°С34 mm46 mm


Замена рабочей жидкости в течении всего срока службы автомобиля не предусмотрена, но сервисное расписание «B» от Daimler-Chrysler (которое применимо для большинства авто) предписывает замену рабочей жидкости каждые 100’000 км.  для автомобилией эксплуатируемых в следующих условиях:

  • при температурах ниже 0*C

  • частые запуски и остановки двигателя

  • продолжительная работа на холостом ходу

  • пыльные условия

  • короткие поездки на расстояние меньше 16км

  • более 50% времени эксплуатации на высоких скоростях при высокой температуре окружающей среды (выше 32*С)

  • буксировка прицепа

  • такси, полиция, служба доставки или иная коммерческая эксплуатация

  • езда по бездорожью или пустыням

  • тяжелая загрузка

Механика – снаружи.


Быстрый осмотр CVT обнаруживает два датчика холла (ISS и OSS), датчик диапазона трансмиссии (TRS – transmission range sensor), водно-масляный охладитель и множество датчиков давления.

Компоненты, отмеченные на следующих рисунках (1, 2, 3 и далее) – это порты для измерения рабочего давления в различных частях трансмиссии. Цифрами на рисунках 1 – 3 обозначены:

  1. Line Pressure (Давление в трубопроводе)
  2. TCC Release (Гидротрансформатор выкл)

  3. Primary Variator (Первичный шкив вариатора)

  4. Forvard Clutch (Сцепление режима D)

  5. TCC Apply (Гидротрансформатор вкл)

  6. Input Speed Sensor (Датчик скорости вращения на входе)

  7. Water-to-Oil Cooler (Радиатор)

  8. Pass-Throught Electrical Connector (Сквозной электрический разъем)

  9. Secondary Variator (Вторичный вариатор)

  10. Reverse Clutch (Сцепление режима R)

  11. Trans Range Sensor (Датчик текущего коэфф. передачи (диапазона)

  12. Output Speed Sensor (Датчик скорости вращения на выходе)

Необходимо использовать манометр, рассчитанный, как минимум, на 70 bar. Типичное рабочее давление может легко достигнуть 55…62 bar при максимальном давлении на ремень CVT (рис 4).

Во время измерения давления можно увидеть второй пик вариаторного давления в переходном процессе от движения к остановке – во время снижения коэффициента передачи вплоть до полной остановки автомобиля. После того, как трансмиссия перестала вращаться, CVT не может изменить коэффициент передачи, потому что вариаторы должны вращаться для смены КП. Об этом чуть позже.

Типичные значения рабочих давлений приведены в таблице:

ИзмерениеМинимальное значение, бар
Максимальное значение, бар
Типовое значение на ХХ, бар
 Рабочее давление в трубопроводе5605 – 10
 Первичное сцепление1151 – 15
 Входной шкив вариатора1601 – 7
 Гидротрансформатор вкл/выкл0101 – 15
 Задний тормоз1155 – 10

Механика – внутри.

Секреты CVT находятся внутри ее корпуса. Здесь находятся два вариаторных шкива, стальной ремень, помпа высокого давления, клапанные корпуса вместе с соленоидами, планетарный набор шестерен (в том числе и для задней передачи) и пару пакетов муфт (для режимов D и R).

 

Упрощенно устройство вариатора похоже на цепной привод обычного велосипеда (звездочки и цепь). Вместо цепи CVT использует ремень, движущийся по поверхности шкивов двух вариаторов. Для изменения передаточного числа шкивы меняют свой диаметр.

Первичный шкив вариатора соединен при помощи муфты, которая всегда подключена в режиме D. Входной шкив толкает вторичный при помощи при помощи специального стального ремня, состоящего из множества сегментов. Управление изменением коэфф. передачи происходит модуляцией соленоидов, что приводит к изменению давления внутри каждого из двух вариаторных шкивов.

TCM (transmission control module) может менять расстояние между поверхностями двух вариаторных шкивов. Это позволяет ремню вращаться на первичном шкиве медленнее (имитируя пониженную передачу) или быстрее (имитируя повышенную передачу). Изменяя положение вариаторного шкива, TCM может достигнуть любого коэффициента передачи в диапазоне от 2.349:1 до 0.394:1

Только один компонент соединяет два шкива – это ремень. Как и в вариаторах фирмы Honda, ремень собран из множества стальных сегментов со специальными вырезами, плотно закрепленными между собой при помощи слоеной стальной ленты. Ремень является толкающим, а не тянущим. Это значит, что первичный шкив вариатора толкает вторичный при помощи стального ремня.

Эта концепция предполагает, что сталь не может быть сжата, т.е. ремень не может «износиться» (т.е. растянуться) с течением времени. Поскольку сегменты ремня очень плотно связаны между собой, он работает как единая стальная структура, которая передает крутящий момент от одного шкива к другому. Эта разработка очень сильно отличается от моделей фирмы ZF, которая использует цепи и зубцы, когда один шкив тянет за собой другой.

Во всех конструкциях вариаторов давление является ключевым компонентом. Проскальзывание ремня между поверхностями шкивов может быстро вывести его из строя. Вот почему вариаторные трансмиссии используют сумасшедшие давления и специальные жидкости.

 Поток мощности

Как можно говорить о передачах, если их нет? Есть, конечно, набор планетарных шестерен, но они используются лишь для переключения между режимами D и R. В режиме заднего хода, сцепление режима D отпускает и включается заднее. Крутящий момент по часовой стрелке поступает через входной вал на кольцевую передачу. Поскольку работает планетарная шестерня, вращение будет направлено в обратную сторону, т.е. против часовой стрелки. Планетарная передача соединена с первичным шкивом вариатора, раз так – вот так просто у нас появилась задняя скорость.

Коэффициент передачи в режиме заднего хода заблокирован во избежание глупых случайностей. Двигатель ведь может оставаться на постоянных оборотах, в то время, как автомобиль будет ускоряться задним ходом. Водитель может этого и не понимать, но автомобиль может (если ему позволено) ускоряться задним ходом быстрее, чем передним. Вот почему при движении задним ходом коэффициент передачи вариаторной трансмиссии заблокирован (рис.6).

 

Если селектор трансмиссии находится в положении D, поток мощности из гидротрансформатора через входной вал прикладывается к переднему входу, через планетарную передачу. Она соединена с первичным валом вариатора, но находится в выключенном состоянии, ничто ее не удерживает.

TCM полностью управляет коэффициентом передачи (КП) вариаторной трансмиссии. При разгоне, когда требуется большая мощность и отдача двигателя, КП снижается, что увеличивает обороты двигателя – для большей отдачи крутящего момента и лошадиных сил. После того, как водитель отпускает педаль газа и переходит в режим неспешного движения, TCM увеличивает «виртуальную передачу», что снижает обороты двигателя, что увеличивает эффективность и топливную экономию.

Если после некоторого времени равномерно движения водитель нажмет на газ, TCM снова увеличит обороты двигателя и будет удерживать их на этом уровне. А автомобиль тем временем продолжит ускорение. Очень интересное ощущение – управлять автомобилем с вариатором в первый раз. Речь идет не только о переключении передач, просто иногда теряется понимание, насколько быстро Вы едете, несмотря на то, что двигатель не подключен к колесам через какое-то определенное количество шестерней. Я ожидал услышать шум двигателя, который я мог бы «перевести» в скорость автомобиля. С вариатором двигатель может рычать на одних и тех же оборотах – как на крейсерской скорости, так и в городском потоке. Следует лишь немного привыкнуть.

После того, как крутящий момент пройдет через шкивы вариатора, он умножается через блок шестерней холостого хода. Этот блок умножает коэффициент передачи на 1.72; выходные шестерни еще раз умножают коэфф. передачи на 3.55. Суммарный коэффициент передачи меняется от 14. 34 до 2.44. Это вполне сравнимо с любыми современными видами трансмиссий.

Блок клапанов

Блок клапанов JATCO CVT состоит из датчиков давления, вариаторных соленоидов давления, гидротрансформатора и уникального шагового мотора для управления распределением давления между первичным и вторичным шкивами вариатора.

Шаговый мотор работает (1) вместе с управляющим клапаном коэфф.передачи (2) и как механическая связь, которая соединяет клапан коэфф. передачи и шаговый двигатель с первичным вариатором (4).

Управляющий клапан коэфф. передачи работает в трех рабочих режимах: наполнять, удерживать и стравливать. Эти режимы определяют конечное положение вариаторов и добиваются заданного КП (рис.10)

Когда TCM (модуль управления вариатором) достиг заданного коэффициента передачи, управляющий клапан (2) переходит в положение HOLD (удержание). Давление в магистрали от насоса подается во вторичный вариатор (5) для установления необходимого натяжения ремня (рис.2). Если TCM дает команду на увеличение коэфф. передачи (чтобы снизить обороты двигателя), шаговый двигатель (1) выдвигается, что перемещает управляющий клапан (2) наружу. Это позволяет давлению рабочей жидкости из магистрали попасть в первичный шкив вариатора (4). Дополнительное давление входит в первичный вариатор, что приводит к сжиманию его стенок и перемещению ремня наружу, т.е. на больший рабочий диаметр (т.о. получается повышенная передача). Как только первичным валом будет достигнут необходимый (заданный TCM) коэффициент передачи, управляющий модуль вновь дает команду клапану (2) перейти в положение HOLD (удержание заданного давления).

Положение управляющего клапана зависит от положения вариатора и шагового двигателя. TCM может изменить соотношение, задействуя шаговый двигатель, позволяя вариатору менять коэффициент передачи до тех пор, пока управляющий клапан (2) не вернется в положение HOLD. Это возможно из-за того, что все три элемента механическую связаны между собой.

Жидкость, освобождающаяся из вторичного вариатора, контролируется вторичным датчиком давления и клапаном (3). Если соленоид активирован, давление рабочей внутри вторичного вариатора (5) может как снижено до 0, так и направлено для увеличения прижима ремня. Все это тоже управляется при помощи TCM.

Во время увеличения коэфф. передачи давление во вторичном вариаторе снимается, что позволяет изменить его диаметр. Как только изменение завершено, давление из магистрали снова направляется во вторичный шкив для натяжения ремня (рис.11)

Во время уменьшения коэфф. передачи трансмиссии (переключение на пониженную), TCM дает команду шаговому двигателю открыть управляющий клапан в положение «стравить давление». Жидкость из первичного вариатора вытекает, что позволяет стенкам расшириться и ремень перемещается на меньший рабочий диаметр.

Вторичный вариатор сохраняет внутреннее давление магистрали, что приводит к сжатию его стенок и перемещает ремень на внешний, больший диаметр. В итоге получается «переключение на пониженную». Как только коэфф. передачи уменьшится до требуемого, управляющий клапан переходит в положение HOLD, давления в первичном и вторичном вариаторах стабилизируются.

Очевидно, что указанные процессы могут происходить на любых скоростях и при любых оборотах двигателя. TCM использует электрические сигналы, такие как датчик положения педали газа, температура рабочей жидкости, датчики скорости (CKP, ISS, OSS), давления, текущего коэфф. передачи и тд – все это для того, чтобы вычислить необходимое в данный момент соотношение первичного и вторичного валов вариатора.

Итак, мы рассмотрели в первую очередь управляющий клапан коэффициента передачи и вторичный клапан давления, но в CVT трансмиссии JATCO есть еще много очень важных клапанов.

Рассмотрим клапан регулировки давления. Масляная помпа (рис.12) способна вырабатывать давление вплоть до 70 bar, но не все элементы CVT требуют именно такого давления. Номинальное рабочее давление 55 bar. Регулятор давления снижает давление в магистрали до трех рабочих уровней:

1) 15 bar – максимум для сцеплений
2) 10 bar – максимум для гидротрансформатора
3) 4 bar – максимум для схем смазки и охлаждения

Клапан регулировки давления в магистрали (рис.13) определяет общее максимальное давление в трансмиссии. Все остальные давления преобразуются именно от него, что может составлять от 5 до 60 bar, в зависимости о текущий условий. Давление регулируется соленоидом магистрали, который управляется при помощи ШИМ от модуля управления трансмиссией (TCM). Давление магистрали идет прямо в управляющий клапан коэфф. передачи и вторичный клапан для изменения диаметров шкивов и нормализации нагрузки на ремень (рис.14).

1. Secondary Puller Regulator
2. Pressure Regulator 1
3. Pressure Regulator 2
4. TCC Regulator Valve
5. Manual Valve

Клапан снижения давления уменьшает давление из магистрали до 1 – 15 bar, необходимого для муфт переключения режимов D/R. Давление выбирается необходимым из условия предотвращения проскальзывания пакетов фрикционов.

При включении режима R или D, соленоид гидротрансформатора модулируется сигналом ШИМ для того, чтобы обеспечить плавное включение клапана. Если автомобиль находится в режиме D или R, широтно-импульсная модуляция (ШИМ) позволяет плавно управлять клапаном гидротрансформатора от режимов «включено» до «выключено».

Соленоид гидротрансформатора управляет приложенным к гидротрансформатору давлением. После того, как клапан гидротрансформатора перемещается в положение «включено», давление рабочей жидкости поступает в гидротрансформатор. Регулируемое давление позволяет ему плавно работать. Давление в гидротрансформаторе может меняться от 0 до 10 bar.

В отличие от вариаторов фирмы Honda, JATCO использует гидротрансформатор. Его основная цель – обеспечить плавное ускорение автомобиля из положения «стоп» путем полного гидравлического отключения трансмиссии от двигателя. Гидротрансформатор работает на небольших скоростях, ориентировочно до 19 км/час.

Одним из преимуществ вариаторной трансмиссии является его повышенная эффективность и неограниченный набор «виртуальных скоростей», поэтому TCM настроен на как можно более «раннее» отключение (блокировку) гидротрансформатора.

Электроника


CVT имеет три соленоида, управляемых ШИМ (широтно-импульсной модуляцией): давления магистрали, давления вторичного шкива вариатора и гидротрансформатора. В добавок к ШИМ-управляемым электромагнитам, в CVT есть один соленоид с двумя рабочими положениями: «вкл» и «выкл» клапана блокировки гидротрансформатора (рис.17)

Соленоид давления магистрали управляется командами TCM. Его типичное сопротивление находится в пределах 3 – 9 Ом. В случае любой его неисправности предусмотрен широкий список кодов диагностики (DTC): P0746, P0962, P0963.

Управляющий соленоид давления вторичного шкива вариатора регулирует положение второго вариатора при помощи клапана давления. Этот клапан стравливает давление рабочей жидкости из вторичного шкива в момент переключения на пониженную «передачу». Т.к. от этого зависит правильное натяжение ремня, очень важно, чтобы этот соленоид и связанный с ним клапан работали корректно. В случае неисправности в схеме вторичного вала вариатора преулсмотрены следующие коды ошибок: P0776, P0777, P0966 и P0967. Управляющий модуль (TCM) все время контролирует давление во вторичном шкиве. Если заданное и текущее значения давлений не совпадают, будет записан код диагностики (DTC).

Если рассмотреть приведенную электрическую схему, Вы можете заметить модуль ПЗУ (ROM). Этот чипсет запрограммирован при сборке трансмиссии и несет важную информацию о вариаторе и его гидравлической системе. Этот модуль ни в коем случае нельзя менять с любым таким же CVT. Он уникален для каждого экземпляра трансмиссии, с которой он поставляется. Если все-таки Вы решите заменить модуль ROM с другой вариаторной коробки, или поменяете модуль управления (TCM), будет выставлен код «ошибка калибровки» P167A. В таком случае необходима заводская рекалибровка TCM и ROM при помощи специального заводского оборудования.

При установке нового модуля TCM, будет установлен диагностический код DTC P1679 «не проведено обучение», который так-же требует рекалибровки при помощи заводского оборудования. В любом случае, очень важно сохранять оригинальный ROM вместе с самими железками блока трансмиссии, с которой он был выпущен.

TCM электрически связана с СVT через 22‑х контактный разъем (рис.18).
Для первичной диагностики трансмиссии используйте следующую таблицу:

ЦветФукцияИзмерение
1DG/LB Line Press Sol PWM 3 – 9 ohms
2YL/DB Sec Press Sol PWM 3 – 9 ohms
3YL/LB TCC Sol PWM 3 – 9 ohms
4YL/GY TCC On/Off 10 – 15 ohms (прим. 1)
5PK/LB +5V Supply 5 V
6BK GND
7PK/LB Sec Press Signal 0.7 – 3.5V (прим. 2)
8LB/YL Motor C 10 – 20 ohms
9YL/OR Motor A 10 – 20 ohms
10YL/WT Motor B 10 – 20 ohms
11TN/YL Motor D 10 – 20 ohms
16YL/LB Chip Select for ROM 
17RD/WT Trans Temp Signal 5 kOm при 24°С
18DG/YL Primary Press Signal 0. 7 – 3.5V (прим. 2)
19DG/VT Sensor Ground 
21DG/BR Clock Selectfor ROM 
22CY/YL Data In/Out for ROM 
Прим. 1  Наблюдаемое значение на оборудовании учебного центра 26.5 Ом
Прим. 2  Напряжение, контролируемое с датчиков давления, может иметь разные значения, в зависимости от текущего давления. Сравните показания датчиков, выводимых в диагностике с реальным показанием манометра. На нейтральной передаче, в режиме холостого хода, должно быть 0. 7 – 3.5V.

Вариаторы JATCO устанавливаются только на автомобили, оборудованные шиной CAN, которая способна пересылать информацию между модулями автомобиля со скоростью до 1 Мб/сек при помощи всего двух проводов. Поэтому ТСМ использует минимальное количество соединений с электронными системами автомобиля. Всю нужную информацию (обороты двигателя, положение педали газа и тп.) TCM получает по CAN.

Коды неисправностей

DTCDESCRIPTIONNOTES
P0219Engine Overspeed
Sets when CAN bus detects engine speed over 6800 RPM
P0571
Brake Switch
Sets if the brake switch status doesn«t change but the computer registers MPH. This needs to fail in two consecutive key cycles to set a DTC. Beware two footed drivers
P0602Control Module Programming
Error/NotProgrammed
TCM doesn«t recieve valid vehicle info from FCM
P0610Ecu Vehicle Options MismatchProbably set from using a different module for tht TCM. FRM/TIPM
P0641Sensor Reference Voltage CircuitPressure sensors have less than 0.05V. Open or short to ground in sensor supply circuit
P0707Transmission Range Circuit Low
Continuous loss of valid signal. Takes two failures to set a DTC
P0708Transmission Range Circuit High
TCM recieves more than two valid TR signal
P0711Transmission Temp Sensor Perfomance
Trans temp doesn«t change for 10 min or calculated vs. fctual varies by more than 40°C
P0712Transmission Temp Sensor LowScan tool indicates 180°C. Short to ground, sensor failure, 20°C = 2.5K – 6.5K, 80°С = 300 – 900 ohms
P0713Transmission Temp Sensor HighScan tool indicates ‑40°C. Short to Power, open, sensor failure

 

Кинематический и силовой анализ схемы зубчатого вариатора момента с не-симметричным дифференциалом

Библиографическое описание:

Лысянский, В. А. Кинематический и силовой анализ схемы зубчатого вариатора момента с не-симметричным дифференциалом / В. А. Лысянский, С. А. Кузнецов, А. В. Ярута. — Текст : непосредственный // Актуальные вопросы технических наук : материалы II Междунар. науч. конф. (г. Пермь, февраль 2013 г.). — Т. 0. — Пермь : Меркурий, 2013. — С. 55-58. — URL: https://moluch.ru/conf/tech/archive/73/3436/ (дата обращения: 08.05.2021).

Кинематическая схема зубчатого вариатора момента с несимметричным дифференциалом представлена на рисунке 1.

Устройство состоит из дифференциального механизма, входным звеном которого является водило 1 с сателлитами и двумя центральными колесами 4 и 5, установленными на выходных валах 2 и 3 соответственно, один из которых соединен с водилом 6 планетарного механизма, который выполнен двухрядным, а на водиле 6 установлен с возможностью вращения блок сателлитов 7, образованный двумя соосными сателлитами с равным числом зубьев, взаимодействующими с двумя центральными соосными зубчатыми колесами 8, одно из которых закреплено неподвижно, а ко второму подвижному колесу жестко прикреплен рычаг управления 9 вариатором [1].

Рис. 1. Кинематическая схема зубчатого вариатора момента

Вариатор работает следующим образом. Вращение от двигателя подается на водило 1 дифференциала. Полученное водилом движение делится между выходными валами 2 и 3 с центральными колесами 4 и 5 соответственно. При неподвижном выходном вале 2 движение центрального колеса 5 передается на водило планетарного механизма 6, которое вместе с блоком сателлитов 7 свободно вращается вокруг центральных зубчатых колес 8, которые остаются неподвижными, поскольку одно из них закреплено неподвижно, а передаточное отношение равно бесконечности при равных числах зубьев центральных зубчатых колес 8. При приложении управляющего момента на рычаг управления 9 свободное движение водила 6 с блоком сателлитов 7 затормаживается, и возникающий момент торможения на валу водила 6 способствует возникновению крутящего момента на выходном валу 2 вариатора, причем этот момент пропорционален управляющему усилию. Угловая скорость выходного вала 2 также начинает увеличиваться по мере преодоления момента полезного сопротивления пропорционально управляющему воздействию.

Рассмотрим кинематические и силовые параметры вариатора представленного на рисунке 1 в зависимости от того, какое из звеньев дифференциала будет ведущим, ведомым или управляемым (рисунок 2)

Рис. 2. Варианты расположения звеньев вариатора

Для определения угловых скоростей звеньев дифференциала используем формулу Виллиса [2, 3]:

. (1)

Передаточное отношение определяется через радиусы начальных окружностей зубчатых колес или через числа их зубьев

.

Обозначим величину (знак «-» так как центральные колеса при остановленном водиле вращаются в разные стороны) через р.

Тогда зависимость между моментами на центральных колесах (5 и 4) и водила (Н) без учета потерь на трение [2]:

;

или (2)

.

Используя формулы (1) и (2) определим кинематические и силовые зависимости вариатора.

Первый вариант (рисунок 2, а)

Водило 1 (Н) — входное звено, центральное колесо 5 соединено с нагружателем (управляющее звено), центральное колесо 4 соединено с ведомым валом (выходное звено).

При угловая скорость выходного звена будет иметь максимальное значение, которое составит

.

Таким образом, угловая скорость ведомого вала 4 изменяется в пределах

.

Силовые параметры выходного звена (крутящий момент и мощность ) без учета к. п.д. дифференциала связаны соотношениями

; .

Второй вариант (рисунок 2, б)

Водило 1 (Н) — входное звено, центральное колесо 5 выходное звено центральное колесо 4 соединено с нагружателем (управляющее звено).

При угловая скорость выходного звена будет иметь максимальное значение, которое составит

.

Таким образом, угловая скорость ведомого вала 5 изменяется в пределах

.

Силовые параметры выходного звена без учета к. п.д. дифференциала связаны соотношениями

; .

Третий вариант (рисунок 2, в)

Центральное колесо 4 — входное звено, центральное колесо 5 управляемое звено, а водило 1 (Н) выходное звено.

При угловая скорость выходного звена будет иметь максимальное значение, которое составит

.

Таким образом, угловая скорость выходного звена изменяется в пределах

.

Силовые параметры выходного звена без учета к. п.д. дифференциала связаны соотношениями

; .

Четвертый вариант (рисунок 2, г)

Центральное колесо 4 — входное звено, центральное колесо 5 выходное звено, а водило 1 (Н) управляемое звено.

При угловая скорость выходного звена будет иметь максимальное значение, которое составит

.

Таким образом, угловая скорость выходного звена изменяется в пределах

.

Силовые параметры выходного звена без учета к. п.д. дифференциала связаны соотношениями

; .

Пятый вариант (рисунок 2, д)

Центральное колесо 5 — входное звено, центральное колесо 4 управляемое звено, а водило 1 (Н) выходное звено.

При угловая скорость выходного звена будет иметь максимальное значение, которое составит

.

Таким образом, угловая скорость ведомого вала 4 изменяется в пределах

.

Силовые параметры выходного звена без учета к. п.д. дифференциала связаны соотношениями

; .

Шестой вариант (рисунок 2, е)

Центральное колесо 5 — входное звено, центральное колесо 4 выходное звено, а водило 1 (Н) управляемое звено.

При угловая скорость выходного звена будет иметь максимальное значение, которое составит

.

Таким образом, угловая скорость выходного звена изменяется в пределах

.

Силовые параметры выходного звена без учета к. п.д. дифференциала связаны соотношениями

; .

Проведенный кинематический и силовой анализ позволяет определить оптимальное расположение входного, выходного и управляемого звеньев зубчатого вариатора момента при использовании его в составе привода технологической машины, для максимально эффективной работы исполнительного органа при выполнении технологических операций.

Литература:

  1. Пат. № 2445531 Российская федерация МПК F16H 3/74, F16H. Вариатор момента [Текст] / Кузнецов С. Н., Владимиров А. В., Лысянский В. А., Старченко И. Е.; заявитель и правообладатель Государственное образовательное учреждение высшего профессионального образования «Южно-Российский государственный университет экономики и сервиса» (ГОУ ВПО «ЮРГУЭС») — № 2010149799/11; заявл. 03.12.2010; опубл. 20.03.2012, Бюл. № 8.

  2. Артоболевский И. И. Теория механизмов и машин [Текст] / И. И. Артоболевский. — М.: Наука, 1988. — 640 с.

  3. Кирдяшев Ю. Н. Многопоточные передачи дифференциального типа [Текст] / Ю. Н. Кидряшев. — М.: машиностроение, 1981. — 231 с.

Вариатор или автомат что лучше

Что лучше — вариатор или “автомат”? Этим вопросом зачастую задаются люди, планирующие покупку нового автомобиля с той или иной трансмиссией. В интернете существует огромное количество противоречивой информации, в которой очень легко запутаться. Мы предлагаем для вас сравнительные характеристики, преимущества и недостатки в устройстве и обслуживанию, сведения о которых собраны по отзывам реальных владельцев машин с этими двумя трансмиссиями, а также информацию о конструкции и эксплуатации как вариатора, так и автоматической коробки передач.

Мы рассмотрим:

Конструкция и работа вариатора

Прежде чем мы перейдем к сравнительным характеристикам вариатора и автоматической КПП, вам будет полезно узнать устройство и принцип действия первого и второго агрегатов. Эта информация поможет вам сделать правильные выводы в конце повествования. Итак, начнем с вариатора.

Ремень вариатора

Основное отличие вариатора (Сontinuosly Variable Transmission, CVT — англ.) от любой коробки передач (как автоматической, так и ручной) является отсутствие фиксированных передач. У каждого такого агрегата существует некий диапазон, в которых находится передаточное усилие (число) при определенных условиях в конкретный момент времени. Это становится возможным благодаря тому, что в основе работы вариатора лежит другой иной принцип работы, нежели у КПП.

Как работает вариатор? Его принцип действия заключается в использовании ременной передачи (чаще всего в современных машинах используется металлический ремень или цепь), которая передает усилия межд ведущим валом (от двигателя) и ведомым валом (идущим далее к колесам). При этом передаточное число меняется плавно за счет плавного же изменения диаметра как ведущего, так и ведомого валов. Для этого используются специальные методики. Каждый современный автопроизводитель имеет собственные наработки в этой области. Однако все вариаторы можно разделить на два основных типа:

Работа вариатора

  • клиноременной;
  • тороидный.

Основой клиноременной передачи является трапециевидный зубчатый ремень (некоторые автопроизводители используют цепь или ремень из металлических пластин). Вторая составляющая — это два шкива, которые образованы коническими дисками. Они могут изменять свой диаметр, благодаря чему возможно изменение скорости и значения передаваемого крутящего момента.

Работа происходит по следующему алгоритму. При нажатии водителем на педаль акселератора ведущий шкив передает вращение от двигателя к ведомому валу. Однако его конструкция создана таким образом, что при действии центробежных сил в силу увеличения оборотов щеки дисков сжимаются и выталкивают приводной ремень от центра шкива к его краю. А на ведомом валу происходит обратный процесс. То есть, у него щеки разжимаются и ремень двигается к центру шкива. Так плавно изменяется передаточное число и усилия. Когда педаль акселератора отпущена происходит обратный процесс.

Схема работы тороидного вариатора

Тороидный вариатор имеет другой принцип действия. Вместо валов у него имеются два колеса со сферической поверхностью. Между зажаты ролики. Одно из колес — ведущее, второе — ведомое. Изменение значения передаваемого крутящего момента и передаточного числа возникает в силу изменения силы трения между колесами и роликами. Изменение положения роликов в поперечной плоскости позволяет изменять и передаточное число. Когда ролик находится горизонтально, то ведущее и ведомое колеса крутятся с одинаковой угловой скоростью. Когда же ролики меняют свое положение, изменяется и передаточное число.

Однако в силу сложности конструктивных решений и технологий изготовления отдельных частей тороидные вариаторы используются редко. Поэтому в дальнейшем мы будем рассказывать о клиноременных устройствах, как наиболее популярных в автомобилестроении.

Масла для вариаторов отличаются от других трансмиссионных жидкостей. Они имеют соответствующее обозначение — CVT. Дело в том, что эти масла не только смазывают, но и предотвращают проскальзывание. Именно благодаря этому свойству становится возможным эксплуатация ремня по передаче крутящего момента между валами. В связи с этим нельзя допускать “масляного голодания”. В противном случае ремень или цепь начнет проскальзывать по рабочим поверхностям валов, тем самым значительно изнашивая их.

Работа автоматической КПП

Гидротрансформатор АКПП

Основными элементами автоматической коробки передач являются гидротрансформатор и механический редуктор. Гидротрансформатор в данном случае выполняет роль автоматического сцепления, а редуктор передает механическое усилие между шестернями. Крутящий момент от вала двигателя передается посредством гидротрансформатора, который работает, основываясь на имеющемся давлении масла. Также в конструкцию АКПП входят стальные диски с фрикционами, а также муфты. Они выполняют механическую функцию сцепления, то есть, при их сжатии и расжатии выполняется включение необходимых муфт, которые в данном случае выполняют роль передач в коробке.

АКПП имеет свои преимущества и недостатки, о которых мы поговорим далее. Именно они позволят нам увидеть, чем вариатор отличается от автомата и что лучше в тех или иных условиях.

Работа вариатора

Работа автоматической КПП

Преимущества и недостатки вариатора

Для наглядности плюсы и минусы вариатора представим в виде таблицы.

ПреимуществаНедостатки
Плавность движения. Ускорение автомобиля происходит без рывков, которые характерны для КПП. Движение напоминает езду на электромобиле (например, Tesla) или электрическом подъемнике.Вариатор невозможно установить на машины с мощными двигателями (от 220 л.с. и выше). Это связано с тем, что мощные двигатели оказывают значительное усилие на приводной ремень или ролик вариатора.
Высокий КПД. Благодаря ему значительно сокращается время передачи полезной мощности с двигателя на трансмиссию. Из-за этого автомобиль становится более динамичным при разгоне. Особенно это ощущается на скоростях от 50-60 км/ч и выше.Высокая стоимость трансмиссионного масла. Кроме этого, вариатор очень требователен к его качеству. Поэтому, как правило, необходимо покупать только оригинальное масло, которое стоит значительно дороже бюджетных аналогов.
Значительная экономия топлива. Она становится возможной благодаря плавному набору скорости и торможению и более высокому КПД, чем у АКПП.Наличие большого количества электроники и датчиков увеличивает вероятность поломки электронной системы управления вариатором. Как следствие, в результате даже незначительной поломки электроники вариатор может быть переведен в аварийный режим или попросту отключен.
Машина с вариатором является более экологичной вследствие меньшего расхода топлива (меньше выброс СО2).Сложность ремонта. Зачастую при возникновении неисправностей возникает проблема с поиском автосервисов, занимающихся ремонтом вариаторов (особенно это актуально для небольших городов). Кроме этого, стоимость ремонта будет выше, чем у АКПП.
Щадящий режим работы. Выбор условий эксплуатации во многом выполняет электроника, которая выбирает оптимальные рабочие режимы с тем, чтобы уменьшить износ деталей и продлить срок их эксплуатации.На машине с вариатором нельзя буксировать прицеп или другие транспортные средства, а также буксировать саму машину с выключенным двигателем.

Помните, что на машине с вариатором нельзя буксировать прицеп или другие транспортные средства. Также нельзя буксировать саму машину с выключенным двигателем. Исключение составляет случай, когда вывешивается приводная ось.

Теперь для создания полноты картины перейдем к описанию преимуществ и недостатков автоматической трансмиссии. Это даст нам возможность определиться с выбором, что лучше — коробка-автомат или вариатор.

Преимущества и недостатки АКПП

Информацию о них также приведем в виде таблицы.

ПреимуществаНедостатки
Высокая надежность агрегата. Современные АКПП рассчитаны на эксплуатацию с пробегом в несколько сотен тысяч километров (более 300 тыс км гарантировано, обычно больше при должном уходе). При этом возможны любые условия эксплуатации. Это же относится и к автоматическому сцеплению, чьи функции выполняет АКПП.Низкий КПД, вызванный значительными потерями в гидротрансформаторе. Поэтому используется далеко не вся полезная мощность двигателя,
Относительная простота ремонта. В отличие от вариатора отремонтировать АКПП не представляет особых проблем. Этим занимаются большинство СТО. Кроме этого, стоимость ремонта АКПП значительно ниже.Высокий расход топлива. Это является следствием предыдущего пункта. Автомобили с АКПП расходуют больше горючего, чем машины с вариатором.
АКПП не так требовательна к качеству трансмиссионного масла. Необязательно (хотя и желательно) пользоваться оригинальным маслом, вполне можно обойтись более дешевым аналогом.Худшие динамические характеристики. В частности, разгон машины с АКПП происходит медленнее, чем у аналога с вариатором или с МКПП.
Щадящее отношение к двигателю. Переключение скоростей происходит без необходимости набора высоких оборотов мотора.Рывки машины при автоматическом переключении передач (хотя современные многоступенчатые коробки менее подвержены этому недостатку, поскольку у них большее количество передач).
Большее количество используемого трансмиссионного масла (8-10 литров против 5-8 у вариатора и 2-3 у “механики”).В очень редких случаях автомобиль можно завести с толкача или при помощи буксирования.

Одним словом, АКПП на сегодняшний день является более надежной системой, особенно при пробеге свыше 100 тысяч километров. Единственным условием, как и в любом автомобильном агрегате является своевременный и достаточный уход.

Дополнительные сведения об автоматической трансмиссии

Приведем еще несколько интересных фактов, которые наверняка помогут будущему автовладельцу, и он сможет определиться, какая коробка передач лучше — автомат или вариатор.

График разгона машины с вариатором и АКПП

  1. Объем трансмиссионного масла в АКПП больше (хотя и незначительно, это зависит от конкретной модели). Но это зачастую не сказывается на стоимости, поскольку цена оригинальной жидкости для вариатора, как правило, выше.
  2. Замену масла и фильтров на вариаторе необходимо проводить чаще. А в процессе эксплуатации следить, чтобы оно не почернело и не потеряло своих характеристик, поскольку его качество критически важно для агрегата.
  3. Обычно автопроизводители рекомендуют менять масло в вариаторе через каждые 60 тысяч километров пробега. Однако по отзывам многих автовладельцев машин с вариатором лучше делать это раньше, приблизительно на 50 тысячах. Причем необходимо выполнять замену не только непосредственно масла, но и фильтров, благо стоят они недорого.
  4. На вариаторе нельзя резко стартовать с места. Вся суть его работы сводится к оптимизации скорости и крутящего момента с тем, чтобы механизм работал в щадящем режиме. Поэтому, если вы любите “погонять”, то такой вариант трансмиссии вам явно не подойдет. Также на вариаторе нельзя буксовать и тянуть прицепы или другие ТС.
  5. Для вариатора одинаково вредны долгая езда как на самой высокой, так и на низкой скорости. Дело в том, что при этих двух условиях ремень испытывает значительные механические нагрузки, от чего он изнашивается. Кроме этого, повышается температура масла. Следует подумать о дополнительном охлаждении. Поэтому если вы часто стоите или медленно передвигаетесь в городских “пробках”, то еще раз подумайте о целесообразности покупки автомобиля с вариаторной трансмиссией.
  6. При эксплуатации машины с вариатором в значительный мороз обязательно прогрейте двигатель с тем, чтобы уменьшить вязкость трансмиссионного и других масел. В противном случае ремень вариатора будет проскальзывать, дополнительно изнашивая свою поверхность и поверхности шкивов.
  7. Нежелательно покупать машину с вариатором на вторичном рынке. Существует большая вероятность того, что проблемы в первую очередь возникнут именно с этим узлом. Проверить состояние ремня достаточно просто. Для этого нужно проехать на машине по ровной дороге с небольшой скоростью расстояние около 1 километра. Если в процессе езды вы почувствуете рывки — от покупки такой машины однозначно придется отказаться.
  8. Следите за состоянием датчика скорости. При его выходе из строя электроника переводит вариатор в аварийный режим. Если это происходит на ходу, то выполняется “торможение двигателем”, что бывает вредно для автомобиля.
  9. Своевременная замена масла для вариатора крайне важна. Дело в том, что если масло потеряет свои эксплуатационные свойства, то постепенно забьется гидроблок вариатора, соответственно, масляный насос не сможет нагнетать нормальное рабочее давление. Вследствие этого валы не смогут сжимать и разжимать ремень, он начнет буксовать на них и сильно изнашиваться. В самом худшем случае он порвется и “разорвет” все внутренности вариатора.
  10. Замену ремня вариатора необходимо производить через каждые 120…150 тысяч километров пробега вне зависимости от его состояния.

Подытожим…

Несмотря на все имеющиеся недостатки, на сегодняшний день вариаторы являются наиболее совершенным видом трансмиссии. Их преимущества оценили десятки тысяч водителей по всему миру. Что касается упомянутых недостатков, то автопроизводители постоянно работают над усовершенствованием конструкции вариаторов, поэтому можно с уверенностью сказать, что они постепенно вытеснят автоматическую и механическую трансмиссию с рынка.

Напоследок предоставим информацию с тем, чтобы дать лучшее понимание, кому больше подойдет покупка машины с вариаторной трансмиссией:

  • вариатор не любит агрессивный стиль езды;
  • не рекомендуется на вариаторной трансмиссии долгое время ехать на предельно низкой или высокой скоростях;
  • при эксплуатации вариатора при очень высокой или низкой температурах необходимо создать специальные условия;
  • машину с вариатором нельзя буксировать с выключенным двигателем (можно буксировать при вывешенной приводной оси), а также нельзя с ее помощью буксировать другие транспортные средства или прицепы;
  • ездить желательно только по ровным дорогам, так как приводной ремень вариатора боится значительных ударных нагрузок;
  • своевременно производить замену масла и приводного ремня.

Таким образом, перед покупкой машины с вариатором необходимо подготовить себя к условиям ее будущей эксплуатации. Особенно, если вы до этого пользовались исключительно механической КПП. Однако со временем вы привыкнете и наверняка останетесь довольны выбором. Только не забывайте вовремя обслуживать вариаторную трансмиссию и соблюдать правила эксплуатации автомобиля, описанные выше.

Заключение

Учитывая всю приведенную выше информацию, можно сказать, что однозначного ответа на вопрос что лучше — вариатор или “автомат”, не существует. Ведь эти два агрегата очень отличаются друг от друга, и каждый имеет свои особенности. Поэтому выбор необходимо делать на основании условий эксплуатации машины. Кроме этого, помните, что в настоящее время на отечественном авторынке представлены вариаторы, далекие от совершенства (“сырые”). Автопроизводители постоянно работают над их развитием, и есть все предпосылки, что в будущем они займут свое место на рынке.

Спрашивайте в комментариях. Ответим обязательно!

КАК РАЗНИЦА МЕЖДУ ГИДРАВЛИЧЕСКИМ ВАРИАТОРОМ СКОРОСТИ И МЕХАНИЧЕСКИМ ВАРИАТОРОМ?

КАК РАЗНИЦА МЕЖДУ ГИДРАВЛИЧЕСКИМ ВАРИАТОРОМ СКОРОСТИ И МЕХАНИЧЕСКИМ ВАРИАТОРОМ?

ГИДРАВЛИЧЕСКИЕ ВАРИАТОРЫ СКОРОСТИ VAR-SPE

Многие клиенты спрашивают нас, в чем разница между гидравлическим и механическим вариатором: мы решили создать сводную таблицу с основными характеристиками.

ВАРИАТОРЫ VARSPE: Принцип работы

Var-Spe Гидравлический вариатор скорости имеет главный контур, состоящий из первичного и вторичного насосов.

Оба блока размещены в одном корпусе и установлены на неподвижном валу распределителя.

Регулировка скорости достигается путем регулировки эксцентриситета первичного насоса, и, следовательно, поток масла направляется во вторичный насос (с фиксированным эксцентриситетом). Последний, соединенный с выходным валом, приводит в движение скорость, прямо пропорциональную принимаемому потоку масла. Таким образом, максимальный эксцентриситет первичного насоса соответствует максимальной скорости вращения выходного вала, меньший эксцентриситет будет соответствовать более низкой скорости вращения выходного вала.(см. изображение № 2)

МЕХАНИЧЕСКИЙ ВАРИАТОР: Принцип работы

Механическая система трансмиссии с регулируемой скоростью основана на передаче мощности посредством трения между движущимися частями (перемещаемыми регулируемой скоростью) , приводной и ведомый валы.

ДВА ВАРИАТОРА ИЗМЕНЯЮТ СКОРОСТЬ ДВУМЯ СПОСОБАМИ, НО НАШИ ВАРИАТОРЫ ИМЕЮТ ЭТИ ПРЕИМУЩЕСТВА:

ПРЕИМУЩЕСТВА VAR-SPE:

ЕМКОСТЬ ПРЕИМУЩЕСТВ что СОХРАНЯЕТ износ всех внутренних компонентов, минимальное ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ — это замена масла, что позволяет ОЧЕНЬ ОЧЕНЬ ДОЛГОВЕЧНОСТЬ гидравлического вариатора , внутренние компоненты не имеют МЕХАНИЧЕСКОГО НАПРЯЖЕНИЯ..БЕЗ ТРЕНИЯ
  • БЕЗОПАСНОСТЬ вариаторов Varspe: каждый ВАРИАТОР оснащен предохранительными клапанами, которые задействуются в случае блокировки машины… в основном в случае остановки клапаны позволяют слив масла в корпус вариатора
  • СИСТЕМА УПРАВЛЕНИЯ СКОРОСТЬЮ : у нас есть очень разный диапазон регуляторов скорости: маховик, пневматический, электрический, рычажный, ELETTROTRONIC. Мы можем настроить ВАРИАТОРЫ в соотв. по запросу заказчика, в зависимости от приложения, типа среды и т. д.
  • VARSPE охватывает мощностью до 22 кВт ТЯЖЕЛОЙ СЕРИИ (обычно механический вариатор достигает максимальной мощности 9,2 кВт)
  • ШИРОКИЙ ДИАПАЗОН скорости: диапазон скоростей от 0 до 1500/1750 об / мин
  • БЫСТРАЯ ИНВЕРСИЯ В ОБЕ ЧУВСТВА ВРАЩЕНИЯ
  • Возможность регулировки скорости также с помощью эл. двигатель выключен
  • НАКОНЕЦ… НАШ ВАРИАТОР ЯВЛЯЕТСЯ ЕДИНСТВЕННЫМ ВАРИАТОРОМ, КОТОРЫЙ ИМЕЕТ ДАННЫЙ ПРИНЦИП РАБОТЫ (ЗАПАТЕНТОВАН)

    (PDF) Электронный вариатор скорости для бесщеточного двигателя постоянного тока

    Аннотация — В этой статье описывается разработка Электронный вариатор скорости

    для бесщеточного двигателя постоянного тока (BLDC).Вариатор скорости

    состоит из нескольких блоков, которые включают в себя усилитель мощности

    , датчик углового положения на основе датчиков Холла, регулятор напряжения

    и цифровую обработку и генерацию данных. Основная характеристика

    этой работы заключается в том, что она не основана на использовании предварительно разработанных коммерческих компонентов

    , что дает основу для разработки новых идей

    . Кроме того, можно расширить эту работу для

    более широкого диапазона двигателей BLCD и приложений, таких как медицина,

    дистанционно управляемых транспортных средства (ROV) и общепромышленное использование.

    Ключевые слова: вариатор скорости, бесщеточный двигатель постоянного тока.

    I. ВВЕДЕНИЕ

    Идея, лежащая в основе конструкции вариатора скорости, состоит в том, чтобы

    спроектировать, сконструировать и управлять квадрокоптером ROV, который, очевидно, требует

    для регулирования скорости пропеллеров

    бесщеточных двигателей постоянного тока. Управление траекторией беспилотных летательных аппаратов

    (БПЛА) привлекало большое внимание в последние

    лет. В частности, управление траекторией квадрокоптеров, [].

    Для достижения этой цели необходимо разработать и сконструировать

    соответствующие приводы для управления скоростью пропеллеров

    и, следовательно, силами и моментами, которые управляют траекторией

    или траекторией полета квадрокоптера. Вариатор скорости

    должен иметь соответствующие временные характеристики, чтобы он мог быть вставлен в качестве исполнительного механизма в контур управления

    . С академической точки зрения

    вторая цель этого проекта — выработать

    необходимых знаний для расширения конструкции вариаторов скорости для

    более мощных двигателей BLDC.

    Дж. М. Хаймес-Понсе работает в электронном отделе UAM-

    Azcapotzalco, Av. Сан-Пабло 180 C.P. 02200, Мексика (электронная почта:

    [email protected]).

    J. U. Liceaga-Castro работает в электронном отделе UAM-

    Azcapotzalco, Av. Сан-Пабло 180 C.P. 02200, Мексика (телефон: 52-55-

    53189041; электронная почта: [email protected]).

    I. I. Силлер-Алкала работает в электронном отделе UAM-

    Azcapotzalco, Av.Сан-Пабло 180 C.P. 02200, Мексика (электронная почта:

    [email protected]).

    Э. Аревало-Самудио работает с электронным отделом UAM-

    Azcapotzalco, Av. Сан-Пабло 180 C.P. 02200, Мексика (электронная почта:

    [email protected]).

    II. ОБЩЕЕ ОПИСАНИЕ

    Система, способная регулировать скорость каждого из 4 двигателей квадрокоптера

    , основана на трех блоках с различными задачами

    : первый, предназначенный для обработки данных; второй — для преобразования сигнала

    , а третий — для драйвера питания.То есть система

    представляет собой трехфазный драйвер, питаемый от источника постоянного напряжения

    , который генерирует три сигнала напряжения ШИМ, необходимых для работы

    трехполюсного двигателя BLDC, как показано на Рисунке 1, [1, 2]. Следует отметить, что частота вращения роторов

    пропорциональна частоте коммутации

    трехфазного инвертора.

    Рис. 1 Упрощенная блок-схема

    Источник напряжения 7.4 представляет собой перезаряжаемую LiPo батарею с

    2 последовательными элементами.Микроконтроллер и датчики Холла

    питаются от линейного регулятора L4931ABD33 от

    National Instrument. Этот регулятор имеет выходное напряжение 3,3 В

    и питается от источника 7,4 В. Трехфазный инвертор

    требует источника 12 В для питания схем формирования сигнала

    и силовых транзисторов. Источник 12 В

    основан на коммутируемом стабилизаторе LT1372 от

    Linear Technology.Он был сконфигурирован для выработки 12,5 вольт

    и также питается от LiPo батареи.

    Для определения положения роторов 3 датчика Холла

    US1881KUA от Melexis размещены вокруг ротора, чтобы

    обнаруживать магнитное поле постоянных магнитов, рис. 2.

    Это датчики с «открытым стоком»; следовательно, его поляризация 3,3 В

    осуществляется посредством подтягивающих сопротивлений. Затем каждый из трех сигналов

    поступает на микроконтроллер

    Электронный вариатор скорости

    для бесщеточного двигателя постоянного тока

    Двигатель

    Хорхе М.Хаймс Понсе, Хесус У. Личеага К., Ирма И. Силлер А. и Энрике Аревало Замудио

    Последние достижения в области схемотехники

    Вариатор скорости | Цифровая платформа IMTS

    Вариатор скорости — это разновидность оборудования для передачи энергии, которое используется для регулирования скорости и управления крутящим моментом. Бесступенчатая трансмиссия, выполняемая вариаторами скорости, регулирует выходную скорость и крутящий момент двигателя. По мере увеличения выходной скорости двигателя передаточное число двигателя уменьшается, и крутящий момент соответственно уменьшается.С другой стороны, когда передаточное число и крутящий момент увеличиваются, выходная скорость машины уменьшается. Регулируя скорость и передаточное число, вариатор скорости поддерживает оптимальную эффективность двигателя, одновременно контролируя выходную скорость машины.

    Поддерживая эффективность двигателя, можно контролировать расход топлива. Для поддержания работы машины требуется меньше топлива. Кроме того, вариатор скорости позволяет двигателю развивать максимальную мощность в широком диапазоне скоростей.Использование вариатора скорости можно увидеть во многих промышленных установках, таких как транспортные средства, конвейерные ленты, кухонные комбайны и многие другие машины. Как правило, вариаторы скорости используются в качестве общего переключателя скорости. В зависимости от механизмов, применяемых вариатором скорости, вариаторы можно разделить на два типа: механические вариаторы и гидравлические вариаторы.


    Материал вариатора скорости

    На рынке представлен широкий выбор вариаторов скорости.Независимо от марки или типа машины, они обычно имеют полностью металлическую конструкцию. Идеальный материал для изготовления вариатора скорости — нержавеющая сталь или чугун. В зависимости от типа вариатора материал может варьироваться, но в большинстве случаев предпочтительнее использовать материал на основе стали. Причина в том, что при работе вариатора машина должна работать в экстремальных условиях, таких как высокое давление и высокая температура. Материал должен выдерживать экстремальные условия, не вызывая усталости металла или поломки.В результате при изготовлении вариатора скорости необходима цельнометаллическая конструкция.


    Гидравлический вариатор скорости

    Обычно гидравлический вариатор скорости использует принцип гидростатической трансмиссии для управления скоростью машины. Гидравлический вариатор скорости в основном состоит из первичного и вторичного насосов. Первичный насос представляет собой гидравлический радиально-поршневой насос переменной производительности, а вторичный насос представляет собой насос постоянного рабочего объема.И первичный, и вторичный насос находятся в одном корпусе и установлены на неподвижном валу.


    Как это работает?

    Насос постоянного объема служит распределителем жидкости. Между двумя насосами есть напорная линия и обратная линия, по которым жидкость течет вперед и назад между двумя насосами. Таким образом, поток жидкости между насосами создает замкнутый гидравлический контур. К основному насосу подключается дополнительный насос.Он служит для подачи жидкости (масла) в гидравлический контур. Входной вал вращает блок цилиндров радиально-поршневого насоса; поршни входят и выходят из своих цилиндров, перекачивая гидравлическое масло через вал распределителя к радиально-поршневому гидромотору.

    После этого масло вернется прямо в насос. Есть набор эксцентриковых колец, ограничивающих ход поршней в насосе и двигателе. Положение эксцентрикового кольца в насосе регулируется регулировочным штифтом.Следовательно, это изменяет расход от насоса к двигателю. Поскольку эксцентриковое кольцо в двигателе зафиксировано, скорость гидравлического двигателя прямо пропорциональна потоку, полученному от насоса. Эксцентриковое кольцо насоса может перемещаться потоком в любую сторону от центрального положения. Когда к выходному валу прилагается крутящая нагрузка, в замкнутом контуре создается давление, пропорциональное крутящему моменту. С помощью гидравлического контура, который управляет выходным валом, можно регулировать выходную скорость.


    Механический вариатор скорости

    В механическом вариаторе скорости применяется система механической трансмиссии с регулируемой скоростью, которая основана на передаче мощности за счет трения между движущейся частью, ведущим и ведомым валами. Движущийся компонент перемещается за счет контрольной скорости. Изменение скорости достигается механически шестернями внутри машины. Принцип работы механического вариатора скорости проще, чем у гидравлического вариатора. Выходная скорость и крутящий момент изменяются путем изменения передаточного числа.

    Передаточное число относится к числу зубьев шестерни. Расчет передаточного числа тоже прост. Это происходит так: если ведомая шестерня имеет тридцать шесть зубцов, а ведущая шестерня — двенадцать, то передаточное число здесь равно три к одному, как в случае 3: 1. Ведомая шестерня также называется выходной шестерней, а ведущая шестерня — входом. механизм. По мере увеличения зубьев ведомой шестерни выходной крутящий момент машины становится сильнее. С другой стороны, когда ведомая шестерня имеет меньше зубьев, выходная скорость становится выше, но выходной крутящий момент уменьшается.


    Преимущества механического вариатора скорости

    По сравнению с гидравлическими вариаторами, механические вариаторы легче обслуживать из-за внутренней конструкции машины. Шестерни внутри механического вариатора смазываются моторным маслом. Следовательно, шестерни внутри машины могут работать более плавно. Поскольку трение и удар между шестернями уменьшаются, подвижные компоненты с меньшей вероятностью изнашиваются. Для обслуживания вариатора обычно требуется только периодическая замена моторного масла, и машина может прослужить максимально долго.

    Нужна помощь в поиске следующего вариатора скорости? Выставка

    IMTS объединяет производителей со всего мира. Отправьте нам сообщение с вашими требованиями, и наши эксперты IMTS с радостью ответят на ваши вопросы.

    Цепь однофазного частотно-регулируемого привода

    VFD

    В посте обсуждается однофазная схема частотно-регулируемого привода или схема частотно-регулируемого привода для управления скоростью двигателя переменного тока, не влияя на их рабочие характеристики.

    Что такое VFD

    Двигатели и другие подобные индуктивные нагрузки особенно не «любят» работу с частотами, которые могут выходить за рамки их производственных спецификаций, и, как правило, становятся неэффективными, если вынуждены делать это в таких ненормальных условиях.

    Например, двигатель, предназначенный для работы с частотой 60 Гц, не может быть рекомендован для работы с частотами 50 Гц или другими диапазонами.

    Это может привести к нежелательным результатам, таким как нагрев двигателя, более низкие или высокие скорости, чем требуемые, и чрезмерно высокое потребление, что делает вещи очень неэффективными и сокращает срок службы подключенного устройства.

    Однако работа двигателей в условиях различной входной частоты часто становится принудительной, и в таких ситуациях частотно-регулируемый привод или схема привода с регулируемой частотой могут стать очень удобными.

    VFD — это устройство, которое позволяет пользователю управлять скоростью двигателя переменного тока, регулируя частоту и напряжение входного источника питания в соответствии со спецификациями двигателя.

    Это также означает, что частотно-регулируемый привод позволяет нам управлять любым двигателем переменного тока через любую доступную сеть переменного тока, независимо от его характеристик напряжения и частоты, путем соответствующей настройки частоты и напряжения частотно-регулируемого привода в соответствии со спецификациями двигателя.

    Обычно это делается с использованием данного элемента управления в виде регулируемой ручки, масштабируемой с помощью другой калибровки частоты.

    Создание ЧРП в домашних условиях может показаться сложной задачей, однако взгляд на конструкцию, предложенную ниже, показывает, что, в конце концов, собрать это очень полезное устройство (разработанное мной) не так уж и сложно.

    Работа схемы

    Схема может быть принципиально разделена на два этапа: этап полубрейджевого драйвера и этап логического генератора ШИМ.

    В каскаде драйвера полумоста используется микросхема драйвера полумоста IR2110, которая в одиночку заботится о каскаде высоковольтного двигателя, включающем два МОП-транзистора с верхней и нижней стороны соответственно.

    Таким образом, микросхема драйвера является сердцем схемы, но для реализации этой важной функции требуется всего несколько компонентов.

    Однако вышеуказанная ИС потребует высокой логики и низкой логики по частотам для управления подключенной нагрузкой на желаемой конкретной частоте.

    Эти входные логические сигналы высокого и низкого уровня становятся рабочими данными для ИС драйвера и должны включать в себя сигналы для определения заданной частоты, а также ШИМ в фазе с сетевым переменным током.

    Приведенная выше информация создается другим каскадом, состоящим из пары 555 микросхем и декадного счетчика. IC 4017.

    Две микросхемы 555 отвечают за генерацию модифицированных синусоидальных ШИМ, соответствующих двухполупериодной выборке переменного тока, полученной с выхода понижающего мостового выпрямителя.

    IC4017 функционирует как логический генератор на выходе тотемного полюса, чья переменная частота становится параметром, определяющим ОСНОВНУЮ частоту схемы.

    Эта определяющая частота снимается с вывода № 3 IC1, который также питает вывод запуска IC2 и для создания модифицированных ШИМ на выводе № 3 IC2.

    Модифицированные синусоидальные ШИМ сканируются на выходах микросхемы 4017 перед подачей на IR2110, чтобы наложить точную «печать» модифицированных ШИМ на выходе драйвера полумоста и, в конечном итоге, для двигателя, который работает.

    Cx и значения потенциометра 180k должны быть соответствующим образом выбраны или отрегулированы, чтобы обеспечить правильную заданную частоту для двигателя.

    Высокое напряжение на стоке МОП-транзистора верхнего плеча также должно быть рассчитано соответствующим образом и получено путем выпрямления доступного сетевого напряжения переменного тока после соответствующего повышения или понижения в соответствии со спецификациями двигателя.

    Приведенные выше настройки определяют правильное значение вольт на герц (В / Гц) для конкретного двигателя.

    Напряжение питания для обеих ступеней может быть объединено в общую линию, то же самое для заземления.

    TR1 — это понижающий трансформатор 0–12 В / 100 мА, который обеспечивает схемы необходимыми рабочими напряжениями питания.

    Схема ШИМ-контроллера

    Вам нужно будет соответствующим образом интегрировать выходы от IC 4017 из приведенной выше схемы во входы HIN и LIN на следующей схеме. Кроме того, подключите указанные диоды 1N4148 на приведенной выше схеме с затворами полевого МОП-транзистора нижнего уровня, как показано на схеме ниже.

    Драйвер двигателя полного моста

    Обновление:

    Обсуждаемая выше простая конструкция с одним VFD может быть дополнительно упрощена и улучшена с помощью автоколебательной полной мостовой ИС IRS2453, как показано ниже:

    Здесь IC 4017 полностью устранены, поскольку драйвер полного моста оснащен собственным каскадом генератора, и поэтому для этой ИС не требуется внешнего запуска.

    Будучи полностью мостовой конструкцией, выходной регулятор двигателя имеет полный диапазон регулировки от нуля до максимальной скорости.

    Гнездо на выводе № 5 микросхемы IC 2 может использоваться для управления скоростью и крутящим моментом двигателя с помощью метода ШИМ.

    Для управления скоростью В / Гц Rt / Ct, связанные с IRS2453 и R1, связанные с IC1, могут быть соответственно настроены (вручную) для получения подходящих результатов.

    Упрощение еще больше

    Если вы обнаружите, что полная секция моста перегружает вас, вы можете заменить ее полной мостовой схемой на основе P, N-MOSFET, как показано ниже.Этот частотно-регулируемый драйвер использует ту же концепцию, за исключением секции драйвера полного моста, в которой используются полевые МОП-транзисторы с каналом P на верхней стороне и полевые МОП-транзисторы с N-каналом на нижней стороне.

    Хотя конфигурация может выглядеть неэффективной из-за использования полевых МОП-транзисторов с P-каналом (из-за их высокого рейтинга RDSon), использование множества параллельных полевых МОП-транзисторов с P-каналом может показаться эффективным подходом для решения проблемы низкого уровня RDSon.

    Здесь 3 полевых МОП-транзистора используются параллельно для устройств с P-каналом, чтобы обеспечить минимальный нагрев устройств, наравне с аналогами с N-каналом.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    Калькулятор закона Ома | Ecomsa

    То есть «R» — это постоянная и независимая единица измерения тока; «V» имеет небольшую плавность тока при более высоком сопротивлении, а «I» прямо пропорционален приложенному напряжению и обратно пропорционален его сопротивлению.Следовательно, закон Ома фокусируется на свойствах некоторых материалов. Однако это не электромагнитный закон, как закон Гаусса. На языке математики это переводится как V = IR

    История закона Ома

    До создания любого калькулятора сопротивления закон Ома был рожден в 1827 году немецким физиком Георгом Симоном Омом. Он провел обширное исследование в области гальванических последовательностей, обнаружив некоторые значения напряжения и тока, протекающие через простые электрические цепи.В настоящее время это расследование привело к принятию закона, носящего его имя.

    В связи с этим Ом получил множество признаний и наград: в 1849 году Мюнхенский университет присвоил ему кафедру профессора физики, а в 1941 году Лондонское Королевское общество наградило его медалью Копли. единица электрического сопротивления после него, Ом.

    Особенности закона Ома

    • Электрическое сопротивление : это противодействие или затруднение, обнаруживаемое током в замкнутой цепи, которое уменьшает свободный поток электронов.Единицей измерения сопротивления является ом (R o Ω), что означает, что сопротивление, оказываемое проводником, когда через него и между его крайними значениями циркулирует ампер (сила), дает разность потенциалов (напряжение) в один вольт.
    • Ом : это единица электрического сопротивления, и один ом равен одному амперу тока, протекающего при приложении напряжения в один вольт. Все цепи имеют определенную степень сопротивления (или сопротивления) току, в результате чего формула Ома R = V / I.Другими словами, увеличение тока при том же напряжении уменьшит сопротивление.
    • Вольт : это единица электродвижущей силы или электрического давления (B), регулярно прикладываемая к цепи с сопротивлением в один Ом, которая производит ток в один ампер. В двух словах, воду, текущую по медной трубке, можно считать равной напряжению, протекающему по электрическому кабелю; потому что для его движения требуется сила, а сопротивление этому потоку измеряется в амперах.

    Ампер : это стандартная единица измерения электрического тока, которая создается давлением в один вольт в цепи с сопротивлением в один ом.

    Формула Ватта, формула Ома и формула Ампера — понимание закона Ома

    Из-за наличия материалов уменьшите электрический ток, протекающий через них, а при изменении их сопротивления значение силы тока в амперах также изменяется обратно пропорционально.По мере увеличения сопротивления ток уменьшается, а по мере уменьшения сопротивления ток увеличивается. В обоих случаях значение напряжения требует постоянного поддержания.

    Следовательно, закон Ома работает для цепей и пассивных участков цепи, которые а) имеют исключительно резистивные нагрузки (но не индуктивные или емкостные) или б) имеют постоянный режим. В обоих случаях на значение сопротивления проводника может влиять температура. Следовательно, с точки зрения физики, любое устройство или материал, вставленные в электрическую цепь, вызывают сопротивление в токе.Это сопротивление может быть увеличено или уменьшено в зависимости от используемого материала.

    Чтобы рассчитать сопротивление материала определенной длины и толщины, мы должны применить формулу Ома:

    Это означает, что R равно rho (ρ), умноженному на длину проводника (L) и разделенному на проводник. сечение или толщину (область S). Где rho (ρ) — постоянная величина, называемая удельным сопротивлением; L — длина жилы кабеля в метрах, а S — сечение или толщина жилы кабеля в мм2.

    Для получения дополнительной информации мы поделимся таблицей с некоторыми значениями rho (ρ) в зависимости от типа проводящего материала:

    Для расчета значений резистора нам уже известна постоянная удельного сопротивления (ρ), поэтому мы должны определить длину проводника (L) и сечение (S). Значение:

    • Чем больше длина, тем выше сопротивление.
    • Чем меньше длина, тем меньше сопротивление.
    • Чем длиннее участок, тем меньше сопротивление.
    • Чем меньше сечение, тем выше сопротивление.

    Проанализировав эти четыре утверждения, мы пришли к выводу, что значение сопротивления прямо пропорционально длине проводника и обратно пропорционально его сечению.

    Колпак ступицы вариатор legrand opalis 85632 856 32 Электрооборудование и материалы для бизнеса и промышленности

    вариатор legrand opalis 85632 856 32 Колпак ступицы, Legrand opalis réf 85632.opalis 85632 856 32 Колпачок ступицы вариатор legrand6 856 И промышленность, Электрическое оборудование и материалы, Автоматические выключатели и разъединители, Автоматические выключатели прочие.

    Вариатор ступицы legrand opalis 85632 856 32

    Колпак вариатора legrand opalis 85632 856 32. Legrand opalis réf 85632 .. Состояние :: Б / у: Предмет, который использовался ранее. На изделии могут быть некоторые признаки косметического износа, но он полностью исправен и функционирует должным образом. Это может быть напольная модель или возврат магазина, который был использован. См. Список продавца для получения полной информации и описания любых недостатков. См. Все определения условий: /,


    -Размер: размер доступен для детей от 3 до 8 лет. Наш широкий выбор дает право на бесплатную доставку и бесплатный возврат.Не сомневайтесь, можете ли вы быть джентльменом. 1 ПРОЗРАЧНАЯ СИНИЯ АКРИЛОВАЯ ТРУБКА ИЗ ПЛЕКСИГЛАССА 1 «OD x 3/4» ID ДИАМЕТР 36 «ДЮЙМОВ, ДЛИНА 3 ФУТОВ. Дата первого упоминания: 8 октября. Изготовлена ​​из высококачественной ткани — 95% хлопок. некоторые мотоциклы 110cc и 125cc, 2PCS NEW 2N4045 INTERSIL 0322 CAN6. Возможно, именно поэтому у Sprint Booster есть поклонники по всему миру, и почему мы постоянно добавляем сотни тысяч пользователей в наш список довольных клиентов каждый год. еще можно назвать тарельчатыми пружинами.Светодиодный налобный фонарь Princeton Tec Sync (200 люмен, TMR1-4811SM Wandler DC / DC 1 Вт UEing 36-75 В UAusg 5 В постоянного тока IAusg 200 мА SMD, этот процесс печати позволяет использовать динамические характеристики. Покупайте мужские оксфорды Cortland Oxford и другие оксфорды от Florsheim в магазинах, так как размеры зона будет другой. Kenwood UHF FM Transceiver Model No. TK-880. Международный день защиты детей и любой другой особый праздник, эластичные панели на локтях и по бокам дают вам неограниченное движение, когда вы тренируетесь для большого. Высота цилиндра: ниже 46 см. трубка: 30см.3/4 «WYE STRAINER Сетчатый фильтр-клапан 800 WOG Нержавеющая сталь SS316 НОВИНКА. Пожалуйста, проверьте детали размера в описании перед заказом. Вы можете использовать чистящий раствор, состоящий из теплой воды и мягкого мыла. ГАРАНТИЯ УДОВЛЕТВОРЕНИЯ: Мы обещаем и гарантируем превосходное качество. услуга, которая включает быструю доставку и погрузку / разгрузку, БЕЛЫЕ ПОЧТОВЫЕ ПАКЕТЫ 2,5 мил 50 MAILER 19×24 ОТПРАВКА ПЛАСТИКОВЫХ КОНВЕРТОВ. Ваши украшения поставляются в элегантной подарочной упаковке. Пожалуйста, обратитесь к фактическому продукту, Mazda BPYS-33-28XA. 10 шт. Силикон OD 25 мм, диаметр 2.Уплотнительное кольцо толщиной 5 мм. Пружина S&W и шариковые поршни — это устройства, которые заключают пружину в капсулу с резьбой и обеспечивают средство приложения точных и повторяемых усилий на концах пружины через шар или округлый носик. Золотая рамка, купите NIECO 8439 Char-Diamonds Коробка из 54: Детали и аксессуары для варочных панелей — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках. ФЛАНЦЕВЫЕ ЦИНКОВЫЕ ФЛАНЦЕВЫЕ ВИНТЫ ДЛЯ МАШИННОЙ ГОЛОВКИ H + R ВИНТЫ PHILLIPS COMBI M3 M4 M5 M6.

    Вариатор ступицы legrand opalis 85632 856 32 Прочие автоматические выключатели для бизнеса и промышленности

    Вариатор ступицы legrand opalis 85632 856 32 Прочие автоматические выключатели для бизнеса и промышленности

    Вариатор ступицы legrand opalis 85632 856 32,32 Вариатор ступицы legrand opalis 85632 856, Legrand opalis réf 85632.856 32 Вариатор ступицы legrand opalis 85632.

    Вариатор ступицы legrand opalis 85632 856 32

    Колпак вариатора legrand opalis 85632 856 32.Legrand opalis réf 85632 .. Состояние: Используемый: предмет, который использовался ранее. На изделии могут быть некоторые признаки косметического износа, но он полностью исправен и функционирует должным образом. Это может быть напольная модель или возврат магазина, который был использован. См. Список продавца для получения полной информации и описания любых недостатков. Просмотреть все определения условий : ,

    Вариатор ступицы legrand opalis 85632 856 32





    Вариатор ступицы legrand opalis 85632 856 32

    32-дюймовый большой палец обратной лопаты АМЕРИКАНСКОЕ СДЕЛАНО.Новый 1шт 22мм R8 Фрезерная оправка Зубчатая оправка Держатель фрезы Держатель фрезы Держатель инструмента, 100x68x50мм водонепроницаемая крышка Прозрачная электронная коробка для проектов Корпус h5, шаровой клапан из нержавеющей стали, закрывающийся 3/8 дюйма NPT. 10x PANASONIC 105 ° C электролитический конденсатор 470 мкФ 50 В 10×22 мм 3/8 «X 7/8», 1 шт. Б / у HP 2511X 2711X 4H.1C001.A00 # w651 wx, 10 шт. Коричневые крафт-бумажные пакеты для пищевых бутербродов Бакалея для фруктов и овощей. Дроссельная заслонка экскаватора CAT Caterpillar 320C в сборе.NOS Caterpillar CAT 2W-9162 Сапун, 28 # Белый 8,5 x 8,5 Упаковка из 50 квадратных приглашений 8 1/2, 1x коаксиальный адаптер RF APC-7 мм — N, гнездовой разъем 7 мм / N DC-6GHZ. Код РАЗБЛОКИРОВКИ SAMSUNG SGH-C417 SGH-D807 SGH-D407 SGH-ZX20 SGH-X507 ZX10 D357 AT&T. Руководство пользователя логических анализаторов серий Hp 1660E / ES / EP и 1670E. NEW UNION BUTTERFIELD M10 X 1.5 D10 ФОРМА HSS с титановым покрытием ROL-RITE BOTTOMING TAP. 1pc 58x22mm Черные алюминиевые ножки HIFI pad Корпус DIY усилитель для наушников Динамик, 2 x CD4066 4066 IC CMOS QUAD BILATERAL SWITCH БЕСПЛАТНАЯ ДОСТАВКА.Биджур Юниты CTB-5/0; В-7192. ORIGINAL MIRACOOL BANDANA EVAPORATIVE COOLING 24 BANDANAS * БЕСПЛАТНАЯ ДОСТАВКА * 24, НАСОСНЫЙ КЛАПАН МЕХАНИЧЕСКИЙ КОМПРЕССИОННЫЙ СЪЕМНИК НАБОР ГИБКИХ ИНСТРУМЕНТОВ 17 ШТ. SM35778 Трехфазный шаговый двигатель 5,8 А / фаза, совместимый с SMD356C 1,2 градуса, Хорошая отличная зачистка электрика Автоматическая зачистка артефакта скручивания. Ремень замены 112-0305 «EXACT FIT BELT» OEM SPEC БЕСПЛАТНАЯ ДОСТАВКА Toro. Подъемный кран с нейлоновой сеткой 4 дюйма x 20 футов 4-слойный буксирный ремень EE4-904, LT LT1021BCN8-10 Прецизионный эталон DIP8, решение для нескольких SIM-карт SIMBOX 4G Несколько карт в режиме ожидания на линии Совместное использование портативной SIM-карты, MPL-600-VG-8-INHG -SPC PLC Center Radwell / V7-2S17D8,

    Вариатор ступицы Legrand opalis 85632 856 32
    Legrand opalis réf 85632. .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *